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ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL
FOR PHAGE ATTACHMENT TO BACTERIA'

By R C. SRIVASTAVA

The Ohzo State University and Banaras Hindu University

0. Summary. Recently Gani [3] has considered a stochastic model for the at-
tachment of phages to bacteria. In this paper we describe a simple method of
estimating the parameter « which occurs in this model and study the asymptotic
properties of the estimate.

1. Introduction. The stochastic model for phage attachment to bacteria gives
rise to a multivariate stochastic process N(t) = (no(t), * - - , n.(t))’, depending on
a single unknown parameter «. The process N(¢) is Markovian and its transition
probabilities are functions of a.

Let 790 be the number of bacteria in a nutrient medium and suppose that vy be
the number of phages released into it. Then in a random fashion phages attach
themselves to bacteria. Also let m = /7m0 be the multiplicity of phages and r
the saturation capacity of a bacterium. Further let n:(¢) (¢ = 0,1, --- , r) be the
number of bacteria with exactly ¢ phages attached to them and () be the
number of free phages at time ¢, 0 < ¢ < ty. The duration of the experiment is
taken to be small, less than £, , so that the number of bacteria or phages neither
increases nor decreases in this period. Let P(n,, - -+ , n, ; £) denote the proba-
bility that there are no, - - - , n, bacteria with 0, - - - , r phages attached to them
respectively at time ¢ = 0. Now if the probability of attachment during interval
(¢, t + ot) of a phage to a bacterium already having exactly 7 phages be
Anwodt + o(8t),2=0,1,---,r, where \; = (r — 2)a, \, = 0, > 0, then it is
shown by Gani [3] that

P(no, -+ ,ne3t) = (nool/mal - net) [Tico (a0i(8))™,

that is, at any fixed time ¢, the distribution of N(t) = [ne(t), - - - , n.(¢)] is multi-
nomial with parameter ng and probabilities aw(t), - - - , ao(t). The probabilities
a0;(t) are functions of a single parameter o, defined by

aoi(t) = (5)e" (™ — 1)
where
p(t) = a'log {lr — mexp (—pat)l/(r — m)}; = noo(r — m).
It is easily seen that expected value of N(t) is noac(t), - - - , ao(t)]’ and the

Received 27 May 1966; revised 13 June 1967.

1 This paper is based on a portion of the author’s doctoral dissertation, accepted by
Michigan State University. This research was supported by the National Science Founda-
tion under contracts G-18976, GP-2496 and GP-4307.

183

G]

)y

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @?’ )79
The Annals of Mathematical Statistics. EIKOIRS ®

WWww.jstor.org



184 R. C. SRIVASTAVA
covariance matrix is 2(¢) = ||Z;|| where
Zi(t) = noodoi(t)(1 — aoi(t));  Zi(t) = —nooaoi(t)aoi(t).

Some of the basic properties of this process were studied by the author [6]. It
is shown that for #; < ¢, (equation (2.8) in [6])

Cov {ni(t1)ni(t)} = nooao(tr){aij(ty, t2) — aoj(te)}

where

ai(ty, b) = (5=) exp (—(r — D)ap(ty , &))lexp (ap(ty, 1)) — 11", j 24,
=0, Jj<i,

and )

p(tr, ) = o log {[r — mexp (—pat)]/[r — m exp (—poty)]}.

Let £(t) = nod[ni(t) — nooaoi(t)] and &) = (&(2), -+ -, £(t))". It is proved
in [6], Theorem 4.3, that if m, the multiplicity of phages is such that m — r with
m < r and ng tends to infinity such that np(r — m) = ue where uo > 0 is a fixed
constant, then the asymptotic joint distribution of a finite number of observa-
tions £(4), -, &(&)(h < t2-++ < &) on £(t) is a multivariate normal dis-
tribution. We will need this result to prove the asymptotic normality of our esti-
mate & of a.

In Section 2 we describe a simple method, of the type originated by Ruben
[5], for estimating the parameter . The estimate is based on the consecutive
differences of the relative frequencies 7:(¢;) /ne observed at discrete time points
b, - 3t =4r(r>0,7=1,---,k). Following Ruben we call such an esti-
mate the MSCF (Mean Square Consecutive Fluctuation) estimate. In Section 3
we prove an extension of the implicit function theorem which is used to prove the
existence of the estimate and its asymptotic properties in Section 4. In Section 5
we derive a lower limit to the asymptotic variance of a consistent estimate satis-
fying certain conditions and use our results to derive an expression for the asymp-
totic efficiency of the estimate.

2. Derivation of the estimation equation. Let N(#), ---, N(&) be k ob-
servations on the process N(¢) at times ¢; = jr (r > 0,5 =1, ---, k).
Let

d(3) = [do(3), -+, dra(D)]

‘oo lno(ts) — mo(ti-a), <+, Mea(ts) — nea(tion)]

I

and let
R: = E(d(s)d'(3)).
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Thus R; = [|Ripe|| where [|a,,|| denotes a matrix whose (p, ¢)th element is a,, and
Ripe = E(dyp(7) do(2))
= noo [nootop(t:)@og(t:) — MooGop(t:)aog(t:)

— Noo@og(tiz1)@ap(tis , t:) — Moo(Noo — 1)@og(ti1)aop(t:)

— Noo@op(ti-1)@pa(tis, £:) — moo(moo — 1)aop(tio1)aog(ts)

+ nioo@op(tio1)@og(ti1) — Moodop(ti-1)@og(tizs)].
Now we have
(2.1) Er'd/R7d) = 1.

The equation (2.1) is true for all values of ¢; 7 = 1, --. , k. This suggests that
we use

(2.2) (k)™ 3k d'(DRTA(G) = 1
as an estimation equation; this may be rewritten as
(2:3) (rk)™ 2250 2 a0 R4 dy(7) do(3) = 1

where R”? denotes the (p, ¢)th element of R;™'. Any solution of (2.2) or (2.3)
which effectively depends on the relative frequencies ¢i(t;) = n(t;)/ne may be
taken as an estimate of a. It may be noted that the estimation equation is a
transcendental equation in a and therefore in general cannot be solved explicitly.
However, a numerical solution may be found.

3. An extension of the implicit function theorem. In this section we prove an
extension of the implicit function theorem which may be found in Taylor [8],
page 1052. The proof of our lemma is essentially similar to that of a lemma due
to Ferguson on page 1052 in [2]. First we state the implicit function theorem.

ImpriciT FuncTioN THEOREM. Let = (&1, «+ - , &,) and let F(x, z) be defined
on an open set B containing the point (a, ¢). Suppose that F has continuous partial
derivatives in B. Also assume that

F(a, C) = 0, (aF/az)(,,,c) #= 0.
Then, there exists a neighbourhood
A(a’ C) = {(xyz)llxt - ail < Ai,i: 1, .-+ ,m; IZ - Cl < C}

such that the following are true:
Let N(a) = {z||z: — ail < Ai, i =1, ---,n}, then
(i) for any x ¢ N(a), there is a unique z such that [z — ¢| < C and
F(z, z) = 0. Let us express this dependence of z on x by z = f(x).
(ii) The function f is continuous in N.
(iii) The function f has continuous first partial derivatives.
Remark. It follows from (i), that

(3.1) fla) = c.
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Lemma 3.1. Let x = (&1, -+ , ) and let F(z, 2) be a function defined on the
open set

B={(z,2)| —1<2i<1l,2=1,---,n;2zeD = (0, )}.
Also let p(z) be a function from D into the set
A={z|-1<2z:<1l,i=1,---,n}.

Assume that

(1) p(2) s one-to-one and inversely continuous.

(ii) F(z, z) is continuous and has continuous first partial derivatives with re-
spectto @y, -+ , T and 2.

(iii) F(p(2),2) = 0 and (0F/32) (wy.y # O for all z € D.

Then, there exists a neighbourhood N of the set S = {p(2)|z e D} and a unique
Sunction f from the set A into the set D such that

(a) fis continuous and has continuous first partial derivatives on N,

(b) f(p(2)) = zforall ze D,

(e) F(z,f(z)) =0forallzeN,

(d) there exists a neighbourhood of the curve {(p(z), 2)| 2z € D} in which the only
zeros of the function F(x, z) are the points (z, f(x)).

Proor. From the implicit function theorem, for any 2 & D, there is a neighbour-
hood N(p(2)) = {z||z; — pi(2)] < Ai, ¢ = 1,---, n} of the point
p(2) = (p1(2), -++, pa(2)) and the unique function f, (whichmay, ingeneral,
depend on 2z) from the set N(p(z)) into the set D such that

(i) f is continuous on N(p(z)) and has continuous first partial derivatives,

(3.2) (i) J{p(2)) =2,
and
(iii) for any point x ¢ N(p(2)),
(33) F(xy fz(x)) =0 and Ifa(x) - z[ < C,.

That is, for any point z e N(p(z)), f(z) e N, where N, = (2 — C,, 2 + C,).

Since f, is a continuous function, the set f,™ (V) is an open set and contains
p(2). Also f,/(N,) n N(p(2)) is an open set containing p(z). So we canchoose a
spherical neighbourhood N*(p(z)) of p(z) such that N*(p(z)) < f,YN,)
nN(p(2)) and p " (N*(p(2))) C N, because p~" is a continuous function. Now
if p(z1) e N*(p(2:)) for any 21, 2 in D, then p(z) ¢ p(N.,) but then 2, ¢ N, .
That is, due to inverse continuity of p and continuity of f. we can replace the
neighbourhood N(p(z)) by the spherical neighbourhood N*(p(z)) with the
additional property

(iv) if p(a) N*(p(ZQ)) for any 2, ,2: ¢ D, thez; e N, .

Now consider the spherical neighbourhoods N**(p(z)) with radii equal to %
that of N*(p(2)) with centre at p(z). Let N = U,., N**(p(2)). The set N is
clearly a neighbourhood of the set 8 = {p(2)|z e D}.

We will show that if 2°e N**(p(21)) n N**(p(22)), then £, (2°) = f.,(2°).
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Since N**(p(21)) n N**(p(2)) # & (where & denotes the null set) we have,
either

(3.4) p(21) e N¥(p(2))
or o
(3.5) p(z) e N¥(p(a1)).

Suppose (3.4) is true. Then

F(p(21), f,(p(21))) = 0.
But F(p(z1), f:,(p(21))) = 0and 2z, ¢ N,, , hence

(3.6) fa(p(21)) = fo(p(21)) = 21,

If zeN*™(p(a))nN*(p(z)), then f,, is continuous and satisfies
F(z, f..(z)) = 0. Also f,,(z) e N,, forz e N*(p(z1)) and this implies that foy 18
the unique function, as is shown below, which is continuous and has continuous
first partial derivatives in N**(p(21)) such that

(3.7) fa(p(21)) =2 and F(z,f.(z)) = 0.

Suppose g is any other continuous function, having continuous first partial
derivatives in N**(p(z)) such that

g(p(z1)) =2 and F(x,g(z)) = 0.

Let B* = {z|f.,(z) — g(z) = 0}. Then B* is a closed set since f, (z) — g(z) is
a continuous function. Let x ¢ B¥, then £, (z) = g(z). Since fo(x) €N, , there
exists an open set G, containing f.,(z) (hence also g(z)) such that f,,'(@) and
9 (@) are both contained in N(p(21)). Hence by the implicit function theorem,
f..(z) = g(z) on g (@), that is, x is an interior point of B*. So B* is open.
Therefore either B* is the null set or the whole set N**(p(z)). Since B* is not
null, B* is N**(p(21)). So f., is a unique continuous function, having continuous
first partial derivatives in N**(p(21)) such that

(3.8) fa(p(z)) =2 and F(z, f.,(2)) = 0.
Hence
(3.9) fu(2) = f(2°).

Ifze N = U,.p N**(p(2)), then z e N**(p(z)) for some 2. Define
f(z) = fu=).

It may be remarked here that in view of (3.9), we may take any z such that
z e N**(p(2)). Thus we have defined a function on N. Clearly this function has
the properties (a), (b) and (¢) of the lemma. For (d), the neighbourhood can be
taken to be U..o (N**(p(2)) X N.).
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4. Properties of the MSCF estimate. In this section we consider the question
of existence of a root (or roots) of the estimating equation and study the asymp-
totic properties of the MSCF estimate & of . In Theorem 4.1 we prove that there
exists a unique root & of the estimation equation which is a continuous function of
dp(i)dy(?) (4= 1,---,k;p,q¢ =0,---,r — 1) possessing continuous first
partial derivative with respect to each d,(7)d(¢). Then we deduce the con-
sistency and asymptotic normality of the estimate & of «. We also obtain an ex-
pression of the asymptotic variance of 4.

THEOREM 4.1. (i) As no tends to infinity, there exists, with probability tending to
one, one and only one function & of dp(i)d(¢) (¢ =1, --- ,k;p,¢=0, -+ ,7r —1)
which satisfies the estimation equation (2.2) and has the following properties:

(ii) & possesses continuous first partial derivatives with respect to all dy(2)dq(7);

(iii) &(R(a)) = a for all a ¢ D (which implies that &(d) is a consistent esti-
mate of a); :

(iv) nao(d — a) 1s asymplotically normally distributed with mean zero and
variance o°(a) as ng tends to infinity, where o*(a) is defined in (4.6).

Before we present the proof of this theorem, we make a few remarks.

REMARK 1. ag(?) is a one-to-one continuous function of « for any fixed ¢ as can
be seen by observing the form of ag(¢) and checking that its derivative with re-
spect to a is positive for all positive a.

ReMARK 2. Let d be a vector defined by

(do(1)do(1), -+, da(1)dra(1), - -+, dya(k)dra())

and let R(a) = E(d). Then R(«a) is a one-to one continuous function of a.

Proor. Clearly R(a) is a continuous function of a because Rip(a)
(¢=1,---,k;p,¢g=0,:--,r — 1) is a continuous function of a. Now R(«)
is a one-to-one function of « if one element of R(a) is a one-to-one function of a.
We show that Ri(e) is a one-to-one function of a. By definition

Rio(a) = nos E(no(t) — neo)’
=(1-— aOO(tl))z + ao(t) (1 — ag(t)) /Moo .

Clearly Rioo( ) is a one-to-one funetion of ag(#) which is a one-to-one function of
a. Hence Ripo(a) is a one-to-one function of a.

Remarxk 3. If f(z) = (fi(z), ---, fr(x)) is a one-to-one continuous vector
valued function of a real variable z, then f(z) is inversely continuous if one of the
functions fi(x), - - - , fu(x) is one-to-one and inversely continuous.

Proor. Suppose fi(z) is one-to-one and inversely continuous. Let f*(zo);
n = 0,1, .- be a sequence of points in the range space of f(z) such that *(x,)
tends to f°(x) as n tends to infinity. Then f,"(xo) tends to fi’(zo). Due to the
inverse continuity of fi(z), fi '(fi"(w)) tends to fi'(fi'()) = xo. But
O (20)) = A (A" (20)), hence (f,) " (f"(z0)) tends to z, as n tends to in-
finity. This proves Remark 3.

REMARK 4. In view of Remarks 2 and 3, R(«) is a one-to-one and bicontinuous
function of a.
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Proor or THEOREM 4.1, (i) AND (ii). The estimation equation is
(k)™ 20 2 p.a R¥ dp(4)dy(d) — 1 = 0.

The expression on the left hand side of the above equation is a function of d and
a. Denote this function by F(d, ). ~

By assumption « ¢ (0, «). The function B(a) is a one-to-one and inversely
continuous function of & as shown above. Also the function F(d, &) is continuous
in d and a. Clearly 9F /9« exists and is given by

(4.1) OF /9o = (k)™ 205 2.0 (ORP/80)dy(1)dy(%)

which is a continuous function of d and «. Also the derivatives 0F/9(d,(7)dy(7))
exist and are continuous. We have

(4.2) Zl Zp,q RPRip, = k.

Differentiating (4.2) with respect to «, we get

2 i 2opa (ORP/0a)Ring = — i D_p.q B8R ipe/dcx)
= _Zi lR,~|"l(6/aa)|R,~| #= 0.

The last sum is not equal to zero because R; is a non-singular matrix and is not
equal to a constant for all values of the parameter a. Thus we see that all the
conditions of Lemma 3.1 are satisfied. Hence there exists a neighbourhood N of
the set S = {R(a)| @ & D} and a unique function &(d) from N to D such that

(a) a(d) is continuous and has continuous first partial derivatives,

(b) &(R(a)) = aforallaeD,

(¢) F(R(a), @) —1 = O for all R(a) ¢ N,

(d) there exists a neighbourhood of the curve {(R(a), )| @ £ D} in which the
only zeros of the function F(z, z) are the points (d, &(d)).

Thus we see that for d ¢ N, the estimation equation has one and only one root
&(d) which possesses the properties mentioned in (a) through (d). By definition

Ripg = E(dy(?)do(?))

noo B(np(t:) — np(tin))(ng(ts) — n(tioa))
— (@op(t:) — Gop(ti1) )(@og(ts) — Gog(ti1))

as ngo tends to infinity. Also

(4.4) dp()do(5) = no(np(t:) — np(tis))(ng(ts) — na(tics))

=5 (@op(ts) — @op(ti-1))(@og(ti) — Gog(ti-1))
as ng tends to infinity. Hence from (4.3) and (4.4), we have
(4.5) dp(?)do(2) — Ripg —» 0

as,ngo tends to infinity. Therefore d — R —» 0 as ng tends to infinity. Hence with
probability tending to one, as 7 tends to infinity the estimation equation has one
and only one root which possesses the properties mentioned in the theorem.

(4.3)
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Proor or (iil). Since &(d) is a continuous function of d, and dy(7)d,(7) —
Ripq —p 0 as ngo tends to infinity, it follows from (b) that a(d) —» o as ne tends
to infinity. Here —» denotes convergence in probability. That is &(d) is con-
sistent.

Proor or (iv). Let

g = [ao(h), -+, ¢ra(h), -+, ga(te)]
and
V = laoo(t), -+, Goa(tr), -+ 5 @8]
By Taylor’s formula, we have
nbo(&(q) — @) =mndo 2 2.5 (qi(t;) — aoi(t:))[96/0q:(t;)]er

where ¢* is a point on the line segment joining ¢ and V. Since [04/8¢:(t;)]es —»
86,/3a0i(j); it follows from Rao (4.5e) that néy(a(q) — a) is asymptotically
normally distributed with mean zero and variance o*(c). Here

(4.6) o(a) = 2w 2ii [(8a/da0i(t;))(der/dags(t;:))]
caoi(t;) (@iw (5, tr) — @our(tr)).

5. Efficiency of the MSCF estimate. We now discuss the asymptotic effi-
ciency of the MSCF estimate &. First we prove that consistent estimates satisfy-
ing Assumption A are asymptotically normally distributed and obtain a sufficient
condition for such an estimate to have a minimum asymptotic variance. We also
obtain a lower limit to the variance of consistent estimates satisfying Assumption
A and use this result to obtain an expression for the asymptotic efficiency of 4.

Let us recall that

V = la(h), * -+, Gora(tt), =+, Gopaa(ti)]
and T = T(V) be a function of V. Also let
q = [qo(tl)’ ttty qr—l(tl)a ] qr—l(tk)],

and
Vo = 6V/6a = [aaoo(t1>/aa, ey, aao,,_l(tl)/aa, sy, aao,,«_l(tk>/6a]’.

Further, let
Wo = naB((g — V)(g — V)").

AssumpTioN A. Assume that T admits continuous first partial derivatives,
with respect to all ¢i(¢;) (=0, -+ ,r — 1;5 =1, .-, k).

TaeoreM 5.1. If T(q) is a consistent estimate of o satisfying Assumption A,
then we have the following:
v (1) T(V) = o

(1) nio(T(q) — a) is asymplotically normally distributed with mean zero and
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variance v Wor, where
7 = [9T/daw(t), -+, 0T/da0,-1(tr), -+ , 8T/3a0,,(t)]';

(iii) a sufficient condition for: T(q) to have a minimum variance is that
7 = Co 'V Wy '; moreover, the minimum variance is Co " where Co = Vi Wy 'V, .

Proor. Expanding 7'(q) by Taylor’s series about the point V up to first
order terms, we have

(51) T(q) = T(V) + 2::(qty) — aot;))0T/3q(t:)]aseceyy

where ¢."(t;) & (qi(t;), aoi(t;)).

Part (i) of the theorem follows from (5.1) since T(q) is a consistent estimate
of a5 gi(2;) converges in probability to ay:(¢;) asne tends to infinity and 87 /dq.(i;)
is a bounded function of g.

It follows from Rao [3], Section 5e, that n( T(q) — a) is asymptotically
normally distributed with mean zero and variance 7' Woyr since the asymptotic
distribution of ¢ is a multivariate normal. This proves part (ii) of the theorem.

Differentiating T(V) = o with respect to «, we get 7' Vo = 1. Let Ty(q) be
any estimate of a which is consistent and satisfies Assumption A, and let

7o = [0T0o/da0o(tr), - -+, 8To/da0,r—1(t1), -+ , 3To/da0,—1(t:)] .
Then (1o — 7)Wo(7o — 7) is non-negative and
(1o — 7)'Wo(ro — 7) = 70 Wore — 10 Wor — 7 Wore + 7 Wor.
= 7¢ Woro — Co 'rd WoWo Vo — Co Vi Wo  Woro + 7 Wor
= 170 Wore — 7 Wor.

This proves part (iii) of the theorem.

It is easy to check that the minimum variance is Cy '. Thus we have obtained
a lower limit to the asymptotic variance of a consistent estimate satisfying
Assumption A. Hence the efficiency of the MSCF estimate is given by
(n0Coo”(a) )~ where ¢*( ) is defined by equation (4.6).

6. Remarks. The method of estimation used in this paper is based on the
general technique of estimation by the method of moments. Since in the classi-
cal setting, the maximum likelithood method is generally preferable to the method
of moments from the point of view of asymptotic properties of the estimates, it
seems natural for anyone to ask whether one would not prefer the maximum
likelihood approach in this problem.

The maximum likelihood estimate of the parameter a based on k& observations
N(t), - -+, N(&) can be obtained in a number of ways.

(a) We may obtain the maximum likelihood estimate of a by maximising the
joint probability of N(t), ---, N(&). As is shown in [6], the conditional dis-
tribution of N(#) given N(#) is rather formidable and the algebraic details
are hopelessly complicated. This can be done for & = 1.
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(b) It is shown in [6], Theorem 4.3, that under certain conditions the joint
distribution of N(¢), ---, N(&) converges to a multivariate normal distribu-
tion whose mean and covariance matrix are rather complicated functions of the
parameter «. In this case also the algebraic details are intractable.

(¢) One can observe the points ¢, , £, - - - at which a transition occurs, that is,
the points at which a phage attaches itself to a bacterium and then can construct a
density on the sample functions following a general approach due to Albert
[1] and obtain the maximum likelihood estimate of the parameter «. Since the
number of bacteria and phages in an experiment are of the order of 10° or 107,
such a method will not be useful in application.

Thus we see that except for k¥ = 1 the method of maximum likelihood estima-
tion does not lead to any simple solution. Hence for simplicity, it is decided to
apply the present technique for estimating the parameter «. Even in this case,
the formula (2.3) for computing the MSCF estimate & of a and also the formula
(5.1) for calculating the (asymptotic) relative efficiency of the MSCF estimate
must be programmed for any application. Numerical examples illustrating the
application of this method and also the method of maximum likelihood for the
case k = 1, together with the programs will be considered in a subsequent paper.
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