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AN EXAMPLE OF LARGE DISCREPANCY BETWEEN MEASURES
OF ASYMPTOTIC EFFICIENCY OF TESTS!

By R K. Tsvrtakawa
University of Chicago

1. Summary. Two statistics for testing that the mean of a normal distribution
is zero are compared to show that the measures of asymptotic relative efficiency
proposed by Pitman (cf., e.g., [5]), Hodges and Lehmann [4], and Bahadur [1],
[2] do not always agree, even locally for alternative means near zero.

2. Example. Let X;, X;, - - - be a sequence of independent random variables
with common normal distribution having mean 6 and unit variance. Consider
testing the hypothesis § = 0 against the alternatives 8 £ 0. For the first pro-
cedure consider the sequence of test statistics

(1) T,” = n' X,

n =12 -, where X, = >} X,/n. Now let p be a constant, 0 < p<l1,
and let k, equal the integral part of np. In the following, we assume 7 so large
that 1 < k., < n. For the second procedure consider the sequence of test sta-
tistics
(2) T, = (n—1k)Z, if ¥.20

=—(n—k)Z, if V.<0,

where ¥, = 2.5 X;/k, and Z, = D ju,11 Xj/(n — k,). The second proce-
dure is to be interpreted as splitting n observations into two samples and per-
forming a one-sided test with the second sample, using the first sample to de-
termine the direction. (This is a special case of a more general problem of data
splitting suggested to me by W. H. Kruskal.) Large values of 7,,'” will be con-
sidered significant, ¢ = 1, 2. “Efficiency’” will henceforth refer to the efficiency
of T,® relative to T, ; this convention is appropriate since T, is an optimal
statistic under most circumstances.

3. Asymptotic efficiencies. We shall first define a basic non-asymptotic effi-
ciency, say e, and express the Pitman, Hodges-Lehmann, and (exact) Bahadur
efficiencies, say e, ez, and e; , in terms of e.

Choose and fix e and 8, 0 < o < 1 — B8 < 1. We will construct tests from
each statistic which have size « and power 1 — 8 against a given 6 = 0, and com-
pare the requisite sample sizes. For each 7, let £,'”, ¢ = 1, 2, be constants such
that P(T,"” = .0 = 0) = o Then £, = K. and t,” = K., where
®(K.) =1 — efor0 < e < 1, ® being the standard normal distribution func-
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tion. Choose and fix 6§ ## 0. By symmetry it is enough to take 6 > 0. For each
i, let M; = M(a, B, 8) be the smallest n such that 1 < k, < n and P(T,"” 2
t.” 16) = 1 — B. We define e(a, 8, 6) = My(e, B, 6)/M,(e, B, 6).

In the present case e; cannot be expressed by “Pitman’s formula”; however,
as in typical cases, it may be expressed as e, = limgge(e, 8, 6). An alternative
method of obtaining e; is to apply Pitman’s arguments to the present case; we
use the latter approach in the following paragraph.

For given a, n, and 8 # 0, the power of the critical region {7, = ¢,%} is

(3) 1 — 8. = &(—Kop — 0%0) + &(—Kap + 0'0)
and the power of the region {T,* = ¢,%} is
4) 1 — B2 = &(—kl0O)®(—Ka — ju'0) + ®(k.'0)8(—Ka + 7a'0),

where j, = n — k.. Now consider the sequence of alternatives, 6, = »/n},
n = 1,2, ---, where », is such that, for each n, 8,'" = B at the alternative
6 = 60, . For each n, let m = m(n) be the smallest sample size such that B2 =B
at the alternative 6 = 6, . By definition, e, = lim,. n/m(n), provided the limit
exists. In the present case, it is easily seen that

(5) 6 = lim9—>0 e(a) ﬂ, 0) = (VI/V2)2)
where », satisfies

6) 1 — 8 = &(—pw)d(—Ka — ¢'n) + ®(p'n)®(—K. + ¢'n),

TABLE 1
Pitman efficiency of the split sample test
1—power
Size
107! 102 10 10t 10~

p=.3
1071 779 .730 .620 .543 .300
102 .781 .763 .737 .696 .300
104 .748 .740 732 .728 .300
10-¢ -.732 728 .723 .720 .300
10~ .700 .700 .700 .700

p=.5
10 .639 .604 .575 .562 .500
102 571 .555 .542 .536 .500
10~ .535 .529 .523 .520 .500
10-¢ .523 .520 .516 .515 .500
107° .500 .500 .500 .500

p=.7
101 .391 .363 .345 .337 .300
102 .343 .333 .325 .322 .300
10— .321 .317 .314 .312 .300
10-6 .314 .312 .310 .309 .300

107® .300 .300 .300 .300
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where ¢ = 1 — p. It is curious that ¢, is not independent of a and 8 (cf. Table
1). This is because some of the regularity conditions of Pitman’s theory (in
particular conditions C and D, as well as D', in [5]) are not satisfied.

In the present case, e; and e; may be expressed as e; = limg,o e(a, 8, 8) and
e; = limg.o e(a, B, 6). In the next two paragraphs we will show directly that

(7 e; = min {p, ¢}
and
(8) e = ¢

for every 0 % 0. According to e, the best choice of p is 1+ but according to e;
it is 0.
Suppose 6 > 0. (The case where 6 < 0 follows by symmetry.) Then, asn — o,
(9) Bn? = ®(Kaop — n'0) [1 4 0(1)]
by (3). Also from (4), asn — o,
B = ¥(Ka — (ng)'0)[1 + o(1)]
(10) + &(—(np)'9)[1 + o(1)]
= U" + va" say.
It is easily seen (cf. [3], p. 166) that log u, — —q6°/2 and log v, — —p6’/2, as
n — . Thus the exact dual slopes of (T,*} and {T,®} (defined as the limits of
—2n 7 log B.P, i = 1,2, asn — oo, for fixed a and 8  0) are 6” and 6° min {p, g},
respectively. Hence the Hodges-Lehmann efficiency, the ratio of the exact dual
slopes, is given by (7).
It follows from (1) and (2) that, when 6 5 0 obtains,
(11) 20 e if =1
—glo| if i=2
with probability one as n — . It is easily seen that for 0 < t < «,7 =1, 2,
(12) —2n ' log P(T,” = nlt| 6 = 0) — £,

asn — «. Thus by [2] the exact slopes of {T,} and {T,®} (defined, e.g., as the
limits of —2n " log @,?, 7 = 1,2, asn — «, where a,” is the size of the 7th test
for given n, 8, and 6 > 0) are 6° and ¢6°, respectively. Hence the Bahadur effi-
ciency, the ratio of the two exact slopes, is given by (8).

4. Discussion. 1. The present example is in contrast to the comparison of the
sign test to the optimal test based on X, for one-sided alternatives, where it is
known (cf. [1] and [4]) that both the Hodges-Lehmann and Bahadur efficiencies
approach the Pitman efficiency as § — 0. Bahadur [1] gives regularity conditions
under which the “approximate” Bahadur efficiency, which in the present case
coincides with the exact one, approaches the Pitman value, as the alternative
approaches the hypothesis being tested. However, some of these conditions are
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not satisfied by {T,*}. (In particular the limits of (xii) in [1] cannot be inter-
changed and condition (xiv) in [1] is not satisfied.) As noted earlier, the Pitman
value does not exist (as a single number independent of « and 8) in the present
case.

2. It may be worthwhile to try to pinpoint the cause of the discrepancy be-
tween e; and e; by considering certain cases related to the present one in which
there is no discrepancy. If it is known that 6 = 0, and Z, is compared with X, ,
then

(13) 61(0[, B) = es(a, 0) = e(B,0) = ¢

for all @, 8, and @ > 0. If the sign of 6 is unknown, and |Z,| is compared with
|X.|, then again (13) holds. Suppose now that the sign of  is unknown, and we
are to compare a reasonable statistic based on |Z,| and W, = the signs of ¥,
and Z, , with the optimal statistic | X,|. Since the presént case is an intermediate
one as regards the information available to the user of (|Z,|, W,), it would seem
that efficient use of the latter statistic would have efficiency ¢. According to (8),
T,* is an efficient statistic based on (|Z.|, W), but according to (7) it is not
and -one would do better by ignoring W, and using |Z.,|.

It is easy to see the analytical reasons for the discrepancy under discussion.
If 6 > 0 then with probability one the sign of ¥, is correct, and hence the level
attained by T, equals the level attained by Z, for all sufficiently large n. (Cf.
[2] for the relation between levels attained and exact slopes.) On the other hand,
if & > 0 and if we look at powers with a held fixed, then in using T, rather
than |Z,| one has to take into account the probability of the sign of ¥, being
wrong; this probability — 0 but is asymptotically just as important as the prob-
ability of Z, being too small.

3. It may be noted that U,® = T, /n* and U,® = T,®/(nq)? are consistent
estimates of 6]; the asymptotic efficiency of U,® relative to U, can be com-
puted e.g. by the methods described in Sections 1 and 2 of [2]. It is interesting
that both the methods just cited lead to ¢ = e; as the estimation efficiency at
each 6.
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