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1. Introduction and summary. Let X;, ---, Xy be independent normal p-
vectors with common mean vector £ = (&, - , &)’ and common non-singular
covariance matrix =. Write NX = D> 7 X,, 8 = 2.7 (X; — X)(X: — X),
blZ] for the i-vector consisting of the first # components of a p-vector b and C[¢]
for the upper left-hand ¢ X ¢ sub-matrix of a p X p matrix C. Let § = N 7'
(=0). We will consider here the problem of testing the hypothesis

Hoop = - =§=0
against the alternative
Hyt = =§=0, o= A,

where £, 2 are unknown, ¢ < p and X\ > 0 is given.
The problem of testing H, against Hy remains invariant under the group G of
p X p non-singular matrices

Jn 0
1. =
(10) g (!]21 922>

where gu is a ¢ X g sub-matrix of g. A maximal invariant in the space of (X,8)
under G is B = (R;, R,) where

R+ R, = NX'(8 + NXX')7'X,
Rl = NX'[q](S[ql + NX[O]XEq])_IX[q] H

and a corresponding maximal invariant in the parametric space of (£, ) under
GisA = (8, &), where
o1

(1.2) 8 + 8 = NEZT%,
8 = Ntk

(see Giri (1961)). Giri (1962) has shown that for testing H, against the alterna-
tives

(1.3) H %= - =¢ =0, 8> 0,

(1.1)

the likelihood ratio test of significance level « is given by
(14:) ¢(X1, “‘,XN) = 1, lf Z = (1 - Rl _ Rz)/(l i R;[) é C,

= 0, otherwise;
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172 N. GIRI

where the constant C is chosen in such a way that Ex,¢ = « and under Hy, Z
has central beta distribution with parameters (N — »)/2, (p — ¢q)/2. It follows
from Giri (1961) (also from (2.3) in Section 2) that with respect to @ the likeli-
hood ratio test for testing H, against H,  is not uniformly most powerful invariant
and that there is no uniformly most powerful invariant test for this problem.
However, for fixed p, this test is nearly optimum as the sample size becomes
large (Wald (1943)). Thus if p is not large, it seems likely that the sample size
occurring in practice will usually be large enough for this result to be relevant.
However, if the dimension p of the basic multivariate distribution is large, it may
be that the sample size must be extremely large for this large sample result to
apply, for example, there are cases where N/p’ is large. The only satisfactory
property of this test procedure known to us at this writing is that the difference
of the powers of this test and the best invariant test with respect to G is O(N ™)
when p, ¢ are both O(N), § is O(N%) and N becomes large (Giri (1967)).

In this paper it will be shown that the likelihood ratio test for this problem is
neither locally minimax as A — 0 nor asymptotically minimax as A — . Thus it
will be established here that it can not be minimax for every A for this problem.
Attempts are also made to find test procedures based on R which are locally
and asymptotically minimax. It is easy to see that the power function of any
test procedure based on R is constant on each contour § = \. It will be shown in
Sections 2 and 3 that the test (hereafter called ¢*) which rejects H, if By +
(N — @)Ry/(p — q) = C4, where C, is chosen so that Ex,¢* = a, is locally
minimax as A — 0 but not asymptotically logarithmically (sometimeswill be called
asymptotically only) minimax as A — o and the test (hereafter called Hotell-
ing’s test) which rejects Ho if By + R = C.” (C4” depends on the size o of the
test) is asymptotically minimax as A — < but not locally minimax as A — 0.
Furthermore for this problem no invariant test (under @) is minimax for every
A. This includes the likelihood ratio test, Hotelling’s test and ¢*. It may be
pointed out here that none of these last two test procedures is derived following
after any well known statistical theory. They are derived so as to possess the re-
quired local and asymptotic property stated above.

2. Locally minimax tests. We may restrict attention to the space of minimal
sufficient statistic (X, S) of (¢, 2). It is well known that the Hunt-Stein theorem
can not be applied to the group G which leaves the present problem invariant,
operating as (X, S; ¢, =) — (¢X, gS¢’; g¢, g=¢") for g £ G. For a discussion of the
Hunt-Stein theorem in this context the reader is referred to Giri, Kiefer and
Stein (1963). However the theorem does apply to the smaller group Gr of p X p
non-singular lower triangular matrices (zero above the main diagonal) which is
almost invariant under G» and hence, in the present problem, there is such a test
which is invariant (see Lehmann (1959), p. 225) and which maximizes, among all
level « tests, the minimum power over Hy . Whereas R was a maximal invariant
under @ with a single distribution under H, and H) respectively, the maximal
invariant under Gr is a p-dimensional statistic B = (Ry, -+, R,) (R: = 0,
12 =1,---,p) defined by (Giri, Kiefer and Stein (1963)).
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(2.0) 2iR; = NX{4(8 + NXwXta) "X, i=1,-,p;
2AR; = Ry, 2IR; =R+ Ry,

with a single distribution under Hy and with a distribution which depends con-
tinuously on the (p — q¢ — 1)-dimensional parameter (6 = 0, ---, §, = 0,
Og41, *°* 6,,),5,' = 0,7, = q+ 1, L, D 25,' = B,underHll.Let

(21) A={(a=0,-,8,=0,0041, " ,08,);0: 20, ¢=¢g+1, -, p;
> P.18; = & = \under Hy}

where

(2.2) 2185 = Nt th k t=1-,p

2ie=8, 2le=5+5"

From Giri and Kiefer (1964), the Lebesgue density of R on H = {r:r; > 0,

1 24 =p, 202r; <1} under Hy is the function f»*¥, given by

(23) Aa*(r) =« "T(N/2)(1 = 28 )"/ T((N — p)/2) TTE v

exp {(6/2)( =1 4 2 r; + ZZar; 2isi (8:/8)}

JI2a ¢((N — 5+ 1)/2, %, r:6:/2)
where ¢ is the confluent hypergeometric series (sometimes denoted by 1F1)
(24) $(a,b,z) = 1 + 2.7 T(a + j)T(b)z’/T(b + j)T(a)j!

From Giri (1961), the Lebesgue density of B on the set {7:7; > 0,7 = 1, 2,
1 7 < 1} under Hy' is the function f4 , given by
fa(7) = [L(N/2)/T((N — p)/2)T((p — ¢)/2)T(¢/2)]
(2.5) (1 = Fy — fy) NP 2 a2
-exp {(8/2)(—1 + 7)} (N — ¢)/2, (p — ¢)/2, 728:/2).

Because of the compactness of the reduced parameter spaces {0} and T\ =
{0, -+ ,0,8042, - ,08p); 8 =0, Z;’H 8; = A} and the continuity of f,* in A
(see Wald (1950)) we conclude that every minimax test for the reduced problem
in terms of R is Bayes. Furthermore, every test based on R with constant power
on T’ is minimax for testing H, against H, if and only if it is Bayes. In this sec-
tion we will show that whereas the likelihood ratio test and Hotelling’s test are
not locally minimax, the test ¢* is so as A — 0.

The theory of locally minimax tests has been developed by Giri and Kiefer
(1964). We will outline here only the basic steps needed for this development.
For each point (8, n) in the parameter set & (where 6§ = 0), let p(-; 8, 1) be the
probability density of X with respect to some o-finite measure u (the range of
n may depend on §). Throughout this section such expression as O(1), O(h(}))
ete. are to be interpreted as N — 0. For each point o, 0 < a < 1, we will con-
sider critical region of the form B = {X:U(X) = C,} where U(z) is bounded,
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positive and has continuous distribution function for each (8, ), equi-continu-
ous for § < some & and where
(2.6) Py, (R) = « P)\,,?:(R) = a + h(N) + q(\, »),

where g(\, 7) = O(h()\)) uniformly in n with 2(\) > 0 for X > 0 and A(\) =
0(1). We shall also be concerned with probability measures £, , £,1 on the sets
8 = 0 and & = X respectively, for which

27) [ pla; ), m)aaldn)/ [ ple; 0, n)éoa(dn)
=14+ rMN)g\) +r(N)U(2)] + Bz, N)
where 0 < C; < 7(\) < C; < o for \ sufficiently small and where g(A) = O(1)
and B(z, A) = O(h()\)) uniformly in z. The following theorem is proved in Giri
and Kiefer (1964).
TueoreM 2.1. If U satisfies (2.6) and for sufficiently small \ there exists &, and

&1 satisfying (2.7), then U 1s locally minimaz of level o for testing Ho:6 = 0
againsl the alternative Hy:6 = \ as A — 0, that s,

(2.8)  limn,o [(inf, Pr,,(R) — a)/(SUpgcqa Inf, Px..{¢ rejects Ho} — a)] =1

where Q. s the class of tests of level .

RemARK 1. It is easy to conclude that if the test U(x) = C. satisfies (2.6)
but does not satisfy (2.7) for some & and £x , then U is not locally minimax in
the above sense.

Writing
(2.9) ni=0/8, i=1,---,p; ham=1
we get from (2.1) asé = A — 0

(210)  fa(r)/fan(r) = 1+ (\/2) (=1 + &7,

+ X2l 2ein 4+ (N — j + D+ B(r, 0, \)
where B(r, 7, \) = O()\) uniformly in r and ». Also from (2.5) when & = § =
A—0
(211) fay(7) = fao(F)L + OW/2)(—=1 4+ 7+ (N — @7/(p — @) + B(F, \))
where B(7, A\) = O(\) uniformly in 7. The set § = 0 is a single point 3 = 0.
So % assigns measure 1 to the point n = 0. The set 8 = X is a convex (p — ¢)-
dimensional Euclidean set wherein each component 7; is O(h(\)). Any proba-

bility measure can be replaced by the degenerate measure £ which assigns
measure one to the mean of £ ) (see Remark 1 of Giri and Kiefer (1964)). Hence

[ B ea(dn)/ [ fon(r)Eor(dn)

S+ OW/D=1+ 7+ 2Zari( Xsin+ (N =7+ 1)n)]

(2.12) + B(r, N, n)} &1a(dn)

L+ =1+ 7+ Z2ard 2o’ + (N =7+ D'l
+ B(r,\)
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where B(r N) = O(h(\)) uniformly in » and & assigns measure one to (7941,
-, o). Let us now consider the rejection region Ry given by

(213) Rx = {X: U(X) = Rl + KRZ = Ca}

where K is chosen such that (2.12) is reduced to yield (2.7) and C, depends on
the level of significance « of the test for the chosen K.
Now choosing

=[(N—-7j—-1)--(N—=p)/(N—-j+1)--- (N —p+ 2)
(2.14) AMN=@/(N=p+1)(p—9)], j=qg+1,---,(p—1),
=(N—-q/(N—-p+1)(p—9),

s0 that 2 o>y 0 + (N — 7+ D)’ = (N — )/ (p — Dforj=g+1,- 0.
We see that the test ¢* with the rejection region R’

(2.15) R ={X:UX)=fn+ (N —qf/(p—q) = Cd

with Poa(R') = o satisfies (2.7) as X\ — 0. Furthermore, it is easy to check
that any region Rx of structure (2.13) must have K = (N — ¢)/(p — q) to
satisfy (2.7) for some £ . For the invariant region R', P ,(R’) depends only on
A and hence from (2.6) ¢()\, ) = 0. From (2.5) it is easy to conclude that the
test ¢* is locally most powerful invariant 28 A — 0 (see Lehmann (1959), p. 342).
Hotelling’s test does not coincide with ¢* and hence it is locally worse. It is well
known that the power function of Hotelling’s test, which depends only on 8, has
positive derivative everywhere, in particular, at § = 0. Hence the test ¢, being
locally most powerful, satisfies the same condition at A = 0. Thus from (2.6),
with R = R', h(A) > 0. Hence we have

THEOREM 2.2. For testing Ho against Hy' the test given by the test function ¢,
which is easily shown to be locally most powerful tnvariant under G, is locally mini-
mazx.

Hotelling’s test and the likelihood ratio test are also invariant under @ and
therefore their power functions are functions of 8 only. However it follows from
above theorem that neither of these tests maximises the derivative of power
function at & = 0. So Hotelling’s test and the likelihood ratio test are not locally
minimax for this problem.

3. Asymptotic minimax tests. In this section we will treat the setting of Section
2 as A — « and expressions such as O(1), O(H()\)) are to be interpreted in this
light and will show that when A — o the likelihood ratio test and the test ¢* are
not asymptotically minimax but Hotelling’s test is so. We are here interested in
minimaxing a probability error which is going to zero. This notion has been de-
veloped in Giri and Kiefer (1964). In short, suppose that the region R = {X
U(X) C.} satisfies (in place of (2.6)),

(3 1) PoofR} = o,  PiofR} =1 —exp {—H(M)[1 + O(1)}},
where H()\) — o with X\ and the O(1) is uniform in ». Suppose, replacing (2.7),
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that

(3'2) fp(x’ )‘, ﬂ)El,x(d"?)/f P(% O’ ﬂ)Eo.x(dﬂ)
= exp (H(N)IGON) + B\ U(2)] + B(z, M)}

where supx |B(z,A)| = O(H(\)) and 0 < €y < R(A\) < €y < .
One other regularity assumption is that C, is a point of increase from the left
of the distribution function of U/ when § = 0 uniformly in 5, that is,

(33) infy Poo{U(z) 2 (o — ¢ >

for every ¢ > 0. The following theorem is proved in Giri and Kiefer (1964).

Turorem 3.1. If U satisfies (3.1) and (3.3) and if for sufficiently large \
there exist o , &1 satisfying (3.2) then U s asymptotically logarithmically mini-
max of level a for testing Hy:6 = 0, against Hy:§ = N as N — =, that ¢s

(3.4) limy,., [inf, {—log (1 — Py,(R)N™*
(supgeq, inf, { —log [I — Pi,{¢ rejects Ho}]}) "] = 1.

REMARK 2. If U satisfies (3.1) and (3.3) but does not satisfy (3.2) then U
is not asymptotically logarithmically minimax.
Since ¢(a, b, z) = exp {z(1 + O(1))} as z — « we have from (2.3)

(8.5)  fran(r)/fao(r) = exp {(V2) =14 1+ 22 ri 2izgi milll + B(r, 0, M)}
with sup,,, B(r, 7, \) = O(1) as A — . Also from (2.5) whené = 6 = A — o,
(3.6) T, (7) /f(F) = exp {(\/2)[—1 + 7 + &J(1 + B(7,\))}

where sup;|B(r, A)| = O(1) as A — . Since &, assigns measure one to the
single point # = 0, from (3.5),

J Ra(r)en(dn)/ J foa(r)Eon(dn)
(37) = [exp{(V2)[—1+ 71+ 2 or; 2iziml(1 4 B(r, n, \))}aa(dn)
= [exp{(M2l—1+ 71 + rga + 221 Doizini
(1 4+ B(r, n, N))}aa(dn).

As in Section 2, we will consider test procedures of level « based on R with
rejection region of the form Rx where K is chosen in such a way that (3.7) is
reduced to yield (3.2) and Rk , for this chosen K, satisfies (3.1) and (3.3). Letting
£, assigning measure one to the point ngyy = -+ = npy = 0, 7, = 1, we
see that (3.7) is reduced to (3.2) with U(z) = R, + R, . From (3.6) we get

(38) Py, (Bi+ B < C.) = exp{(3/2)(Ca" — 1)(1 4+ 0(1))}.

Hence Hotelling’s test region satisfies (3.1) with H(\) = (A/2)(1 — CJ"). It is
easy to check that Hotelling’s test satisfies (3.3). Furthermore, since the co-
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efficient of 7,43 in the expression inside the bracket in the exponent of (3.7) is one,
any rejection region Rx must have K = 1 to satisfy (3.2) for some & . Thus,
from Remark 2, a Bx with K 1 and which satisfies (3.1) and (3.3) can not be
asymptotically minimax as A — . The fact that Hotelling’s test is asymptoti-
cally most powerful invariant under G follows trivially from (2.5). Hence we have

TurorEM 3.2 For testing Hy against Hy,' Hotelling’s test which is asymptotically
most powerful invariant under G, is asymptotically minimaz.

RemARK 3. It has been shown in Giri and Kiefer (1964) that there are other
asymptotically optimum tests, not of the form Rg for this problem.

After some standard calculations, it is easy to see that

Py (R + R/(1 —C) = 1)
(3.9) =1 — exp{—(log X" — log ((1 — C)(1 + 0(1)))},
PraalBy + (N — )Bo/(p — @) = Ca)
=1 —exp{—(/2)(1 — C)(1 + O(1))}.

Thus the likelihood ratio test and the locally minimax test ¢* satisfy (3.3).
(3.1) in both cases is trivial. From Theorem 3.2 it follows that the likelihood ratio
test and ¢* are not asymptotically minimax for this problem.

4. Lack of minimax property of any invariant test under G for every choice of
M. We will investigate the minimax property of any invariant test under G for
every fixed value of 8, and show that no invariant test of H, against H) is mini-
max for every choice of . This includes Hotelling’s test, the likelihood ratio test
and ¢,

In order for an invariant test of H, against H) to be minimax, it has to be
minimax among all invariant tests. However, since for an invariant test the
power function is constant on the contour § = X, “minimax” simply means
“most powerful”’. The rejection region of the most powerful invariant test is
obtained from (2.5), by setting ratio of the density of 7 under H) to that under
H, greater than a constant, (depending on the size of the test). But the ratio

(4.1) Fa(7)/fuy(7) = expi(V/2)(—1 + A)((N — ¢)/2, (p — @)/2, 72\/2)}

depends non-trivially on X so that no test can be most powerful for every value
of .

REFERENCES

[1] Girt, N. (1961). On tests with likelihood ratio criteria in some problems of multivariate
analysis. Ph.D. Thesis, Stanford Univ.

[2] Gigr1, N. (1962). On a multivariate testing problem. Calcutta Statist. Assoc. Bull. 11 55—
60.

[3] Gimi, N. (1967). On a multivariate likelihood ratio test. Symposium Volume on Proba-
bility and Statistics, Banaras Hindu Univ.



178 N. GIRI

[4] Giri, N. and KierER, J. (1964). Local and asymptotic minimax properties of multi-
variate tests. Ann. Math. Statist. 356 21-35.

[5] Giri, N., K1EFER, J. and StEIN, C. (1963). Minimax character of Hotelling’s T-test in
the simplest case. Ann. Math. Statist. 34 1524-1535.

[6] LeamanN, E. L. (1959). T'esting Statisttcal Hypotheses. Wiley, New York.

[7] Wavrp, A. (1950). Statistical Decision Functions. Wiley, New York.,

[8] WavLp, A. (1953). Tests of statistical hypotheses concerning several parameters when the
number of observations is large. Trans. Amer. Math. Soc. 64 426-482.



