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SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION
OF STOCHASTIC PROCESSES!

By Paur W. HoLrAND

Harvard Unwversity

0. Summary. Heller’s (1965) concept of a stochastic module is examined with
the purpose of seeing what are the algebraic implications of various probabilis-
tic properties of discrete time, finite state processes. kth order Markovity, recur-
rence, stationarity, and ergodicity are given characterizations in terms of the
stochastic module.

1. Introduction. Heller (1965) introduced the concept of a stochastic module
associated with a stochastic process in order to obtain a characterization of
those processes which are functions of Markov chains. Briefly, he associates
with every finite state, discrete time stochastic process (hereafter referred to
simply as a process) a certain algebraic object which he calls a stochastic module.
He then examines how certain stochastic properties of the process are reflected
by corresponding algebraic properties of the stochastic module. The object of
this paper is to pursue this program in a limited way and to examine some
additional properties of processes and their corresponding interpretation in
terms of associated stochastic modules. Due to the novelty of Heller’s approach,
in this section the basic ideas and elementary results of his paper will be stated
to provide the necessary language requirement for the rest of this paper. The
reader is referred to Heller’s article for the proofs. I deviate slightly from his

notation.
Let {X,,n = 1} be a process as defined above and S be its (finite) set of

states. Now suppose we can find (i) a real vector space L, (ii) a linear functional
gon L, (iii) an element e ¢ L and (iv) a set of linear operators on L into L, {7, ,

x ¢ 8}, such that forallzy, --- ,z, e Sandn = 1,2, - --
(1) PlXy =z, , Xy =24} = q(Tey Ty -+ - Tre).

The friple (L, g, e) is called a stochastic S-module associated with the process
{X,} and we identify T, with 2 ¢ S, i.e. we writezl for Tl for [ ¢ L. Heller shows
that every process has a stochastic S-module associated with it. Actually there
are many stochastic S-modules associated with a given process so that to obtain
a unique one they must be restricted further. Herein we shall call them simply
S-modules. Because we shall be viewing the states of the process as linear opera-
tors on some vector space and because one may naturally consider linear combi-
nations of products of linear operators we shall want to do the same thing with
the elements of S. Hence we let A, be the free associative real algebra generated
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by S, i.e. the set of all formal linear combinations of formal products of elements
of S. We identify 4, with the algebra of operators generated by {T., z ¢ S} in
the natural way. The empty product is denoted by 1 and the special linear com-
bination ) ..sz by o. The vector space L may be viewed as a module over 4, ,
consequently the name. We let U, © A, be the set of all products of elements of S.

It is easy to verify that if (L, ¢, €) is an S-module associated with a process
then

(a) gq(e) =1,
(b) g(we) = 0, e U,,
(c) g(¢(c — 1)e) =0, EcA,.

Conversely if (L, g, e) is a vector-space—linear functional—vector triple and L
is acted on by a finite set, S, of linear operators and if (&), (b), and (¢) are satis-
fied then via

(2) PXi =1, , Xo=aa} = q(x1 -~ 200)

a process { X, } is defined with state space S and (L, ¢, ¢) is an S-module associated
with it. Any such triple (L, g, e) satisfying (a), (b), and (¢) for some set, S, of
linear operators will be called an S-module, and the process {X,} defined by (2)
its induced process.

We say an S-module is reduced if

(d) L = Age,
(e) q(A4d) =0=1=0 forall leL.

Furthermore two S-modules (L, ¢, ¢) and (L, ¢, ¢') are homomorphic if there
is a linear map ¢: L — L’ such that ¢(¢) = ¢ and ¢ = ¢’ o ¢. They are isomorphic
if ¢ is an isomorphism. Homomorphic S-modules induce the same process. Heller
shows that up to isomorphism there is one and only one reduced S-module associ-
ated with every process. Sometimes it is convenient to use S-modules which are
not reduced but which still induce a particular process. From such an S-module
one can always construct a reduced S-module inducing the same process by
replacing L by 4.e and then forming the quotient space of this by its largest sub-
space N for which A,N € N and ¢(N) = 0. Then e is replaced by its equivalence
class [e] and ¢ is replaced by the factor map of ¢ under the natural map I — [I].
T, is defined by the usual maneuver since it does not split these equivalence
classes.

Since to every process there can be associated essentially one and only one
reduced S-module it follows that every property of the process is reflected by
some corresponding property of its reduced S-module. For example a state z ¢ S
is prohibited if it can never be achieved by the process. In the reduced S-module
(L, g, e) this is equivalent to

zL = 0.
Similarly, {X,} is a 1st order Markov chain if there is a map ¢: § X S — R such
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that
PiXy =2, , Xn = 2, Xnp1 = Tnpa}
= (@0 s T )) PI Xy =21, -+, X = .
Heller shows that in the reducea S-module this is equivalent to
zL = Rxe forall z e,

that is, the image of L under each operator in S is at most one dimensional.

We observe that since g(e) = 1, e # 0 and hence L is at least one dimensional.
In general L is at most countably infinite dimensional. If in the reduced S-module
L is finite dimensional the corresponding process is said to be of finite rank.
Finally, from (c) and (e) we see that for a reduced S-module se = e.

2. Independence and Markovity. We begin by asking the simplest question,
namely, when is the reduced S-module one dimensional? This means L = Re
since ReC L. The first theorem answers this question and the method of proof
is a good illustration of how (d) and (e) are exploited.

TuroreM 1. If (L, q, e) is the reduced S-module of {X,} then the process is a
sequence of independent and identically distributed random variables if and only

if L = Re.
Proor. Assume {X,} are independent and identically distributed, then

PlXs=m1,  , Xo =2, Xopg = Tag1, -, Xndm = Tnim}
=P{Xi =21, , Xn = 2} P{X1 = Tng1, -+, X = Togm)-

Then for all =, =’ ¢ U, we have
(3) g(rr'e) = q(me)q(n’e).
Let ¢ = g(x'e) ¢ R, then (3) may be written

g(x(x’" —c)e) =0 forall =eU,
so that

g(As(x" —c)e) =0
or
e = ce ¢ Re.
Hence A,e € Re or L C Re. Conversely suppose L = Re. Then if y ¢ S
ye = c,e for some ¢, ¢ R

q(ye) = cg(e) = ¢, = P{X; = y}.

Induction yields

(1 -+ Tae) = P{X; = o} P{X1 = 2} -+ P{X1 = 2a}. 0



ALGEBRAIC REPRESENTATION OF STOCHASTIC PROCESSES 167

The next question we ask is what does kth order Markovity imply about the
S-module? More precisely we say { X} is a kth order Markov chain if there is a
map ¢: 8¥ X S — R such that

PiXy=21, -, X,,+,,+1‘=-' Tniri)
= HTny1, o Togt 5 Tagpr) P{Xs = 21, -+, X = Taga}.
In terms of (L, ¢, ¢) this may be expressed as
(4) q(mrmyre) = t(m ; x)q(mmee)

for all =, m, € Us , x € S where m is a product of length k. The next theorem gives
the generalization of Heller’s characterization of 1st order Markov chains to kth
order chains. Its proof follows from Theorem 5 in Section 3.

TreorEM 2. If (L, q, ) is the reduced S-module of {X,} then the process is a kth
order Markov chain if and only if for all ,, -+ , 2z € S

xl...ka=Rx1...xke.

The notion of a prohibited state may be naturally generalized to that of a
prohibited sequence of states. A sequence of states z; , - - - , €, is prohibited if it is
impossible for the process to ever consecutively occupy i1, - - - , Z» . In terms of
(L, q, €) this is g(7zy - - - x.e) = 0 for all = ¢ U, . Using the type of argument
illustrated in proving Theorem 1 the following characterization of prohibited
sequences may be proved.

TaroreM 3. If (L, q, ) is the reduced S-module for {X.,} then the sequence of
states 23 , + -+ , Tn 18 prohibited if and only if

-2, L = 0.
Using this we may give a slightly more detailed version of Theorem 2.
TaroreMm 4. If (L, q, e) is the reduced S-module for {X,} then the process is a
kth order Markov chain if and only if for every xy, --- , & € S which is not pro-
hibited
dim (xl ce ka) = 1.

Theorems 1 and 2 yield the following interesting hierarchy of conditions for
Markov chains

L = Re Oth order chain,
(5 zL = Rxe 1st order chain,

T -+ . L = Ry - -+ z,¢ nth order chain.

Finally we observe that being an nth order Markov chain for some 7 implies
that the reduced S-module is finite dimensional because e, ze, 2i%q¢, - - ,
2%y - - - zpeforallay, - -+, 2, € 8 will span L although they need not be linearly
independent.
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3. Recurrent sequence of states. In this section we examine the structure of
Markovity a little more closely. We say a sequence of states x; , - - - , xn is recur-
rent if given that the process has just executed the sequence ; , - - - , x, any other
past information is irrelevant for the probability of an event occurring in the
future. More formally in terms of (L, g, ¢) this may be written as

(6) q(w'z - zame)/q(m'Ty -+ - Tae) = q(m' 1 - -+ Zame) /q(n" 21 - - - Tne)

for all =, 7', «" & U, for which ¢(x'z; - - - z.e) and g(n"xy - -+ xqe) are positive.
Letting p = 21 - - - & (6) may be rewritten as

(7 (' ome)q(r"pe) = q(x” pre)q(’pe)

which is trivially true if either g(x'pe) = 0 or q(7"pe) = 0. This leads us to define
a recurrent sequence by:

DErFINITION. p € U, is a recurrent sequence if for all =, x, 7 & U, equation (7)
holds. This definition allows prohibited sequences to be recurrent but this pre-
sents no difficulty and from vacuity considerations they should be recurrent.
The next result gives the impact of recurrence on the reduced S-module.

TueoreM 5. If (L, g, e) is the reduced S-module of {X,} then p = 21 -+~ Zais @

recurrent sequence if and only if pL = Rpe.
Proor. We first suppose p is a recurrent sequence. If p is also prohibited then
pL = 0 = Rpe, so we suppose there exists m & U, for which g(mpe) > 0. By

recurrence, for all =, =’ & U, ,
q(n'pme)q(me) = q(mopme)q(w’pe),
or

gl’ (g(mope) pm — q(mopme)p)e]l = 0

The usual argument gives g(wope)pre = g(mopme)pe, so that pre & Rpe forall
7 ¢ U, and hence pL © Rpe. Conversely suppose oL = Rpe. If q(x'pe) = 0, then
equation (7) holds tr1v1ally for all =, =" & U,, so suppose g(v’'pe) > 0. Now
for any = & U, , 7 pre = cr pe, where ¢ ¢ R and depends only on ,

= q(«’ pme) /q(’ pe) for all weU,.
Hence for any =" ¢ U,
" pre = [q(xpme) /q(n’pe)]n" pe,

from which (7) follows. []
In a kth order Markov chain any sequence of length k is recurrent so that

Theorem 2 follows from Theorem 5.
4. Stationarity. A process {X,} is stationary if forall @1, -+-, 2n, 7 and ¢
P Xpu=o1,  , Xegn =2} = P{Xs=m, -+~ , Xy = x4}
In“terms of (L, ¢, €) this says that forall 7 e Us;and ¢ = 1, 2, -
q(o're) = g(me),
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which is equivalent to
(8) g(ote) = g(ge) for all ted,.

Equation (8) may be rewritten as ¢((¢ — 1)L) = 0. In general (¢ — 1)L
is a subspace of L but it need not be a submodule of L unless

(9) A(c — 1)L € (¢ — 1)L.
If (9) does hold then the usual argument implies that for such a stationary process
(10) ol =1 forall lelL.

This is an interesting condition on the S-module, what does it mean for the
process? If (10) holds then for all =, =" ¢ U, ,

(11) q(mor'e) = g(xr'e).

This means that not only is {X,} stationary but conditional on X;, ---, X,
{X:4a} is also a stationary process for every ¢. These “hyperstationary” processes
may be interesting in their own right. I mention them because the program of
asking what types of processes follow from imposing conditions on S-modules
may lead to interesting new classes of processes.

5. Ergodic processes. The type of ergodic theorem proved for processes such
as chains of infinite order (see for example Suppes and Lamperti (1959)) sug-
gest the following definition of ergodicity. {X,} is an ergodic process if for all

Tiy, 5 Tay, Y1, 0 3 Ym

Iim,.,wP{XnH_H = Y1, " ,Xn+t+m = ylel = X1,y ° 0, Xn = x,,}

=P, 5 Yn)
uniformly in «;, « -+ , 2, and n. In terms of (L, g, ¢) this means that for every
w e U

limy,e 9(7"/0'”7"3)/9(7"’6) = p(r)

uniformly in «’ for which g(x'e) > 0. As yet S-modules have no topological
structure with which to describe a convergence property like ergodicity. How-
ever, a norm may be quite naturally defined on a reduced S-module which is
relevant to the present discussion. It is given by

(12) ”l” = SUP7rev,,q(me)>0 IQ(TZ>/Q(76)I'

There are a couple of details that require the reduced nature of the S-module
for their veracity. First [|I]| < o foreveryle Lsincel = & = o Camat, Ca € R,
ma € Uy and ||| £ D |cal < . Secondly if ||I]| = 0 then g(xl) = 0 for all
x & U, for which ¢(we) > 0. But if g(we) = 0 then ¢(«l) = 0 so we
have ¢(4d) = Oorl = 0.

Henceforth all convergence in a reduced S-module will refer to the norm
convergence in ||-|| which we call the ergodic- or E-norm. Since an S-module
is of at most countable algebraic dimension, L will be complete in the E-norm
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if and only if it is finite dimensional, in which case all norms are equivalent.
We summarize some obvious facts about the E-norm as follows.
THEOREM 6.

(a) ell-=1
(b) |« = IIZH forall weU,,
(c) latlf = Il2]].

By restating the definition of ergodicity in terms of the E-norm we obtain

Tuarorem 7. If (L, q, e) s the reduced S-module of {X,} then the process is
ergodic if and only if for every | ¢ L there is ¢; € R such that lim,,» c"l = cie.

If we let K, = {l: 6"l — 0} then K, is a linear s-invariant subspace of L such
that K, n Re = {0}. Re is also a o-invariant subspace of L. It is a straightfor-
ward matter to prove the following fact.

TuaroreMm 8. If (L, g, e) s the reduced S-module of {X.}, then the process is
ergodic if and only if L = Re @ K, .

As a corollary for processes of finite rank we obtain:

CoroLLArY. If dim (L) = n then the process is ergodic if and only if
dim (K;,) =n — 1.

The only way a ‘“hyperstationary” process of Section 4 can be ergodic in the
present sense is if it is a sequence of independent and identically distributed
random variables.
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