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THE BIG MATCH!

By Davip BrackweLL aNp T. S. FERGUSON

University of California, Berkeley and Los Angeles

1. Introduction. Extending Shapley’s work on stochastic games [2], Gillette [1]
has studied the following situation. We are given three non-empty finite sets
S, I, J, a real-valued function a defined for all triples (s, %,7),seS,1el,j¢eJ,
and a function p which associates with each triple (s, 7, 7) a probability distribu-
tion p(- | s, %, j) on 8. These five quantities S, I, J, a, p define a two-person
zero-sum game, played as follows. We start with some initial state s £ S, known
to both players. Player 1 chooses 7 ¢ and, simultaneously, player 2 chooses
j € J. Player 1 is then awarded a(s, 7, j) points, and the game moves to state s’
selected according to p(- | s, 7, 7). The new state s’ is announced to both players,
who then choose 7', j', giving player 1 a(s’, 7', j') points, and causing the game to
move to the state s” selected according to p(- | ¢, ', 5'), ete. The payoff to player
1 from the infinite sequence of choices is

lim supn.w (@1 + -+ + a@.)/n,

where a., is the point score 1 obtained on the mth round. Whether such games, the
finite stochastic games, always have a value is not known. In this paper we con-
sider one interesting example of Gillette, the big match, and show that it does

have a value.

The big match is played as follows. Every day player 2 chooses a number, QO or 1,
and player 1 tries to predict 2’s choice, winning a point if he is correct. This con-
tinues as long as player 1 predicts 0. But if he ever predicts 1, all future choices
for both players are required to be the same as that day’s choices: if player 1 is
correct on that day, he wins a point every day thereafter; if he is wrong on that
day, he wins zero every day thereafter. The payoff to 1 is

lim Supr.e (a1 + -+ + as)/n,

where a,, is the number of points he wins on the mth day. The big match is the
finite stochastic game with

S =1{0,12, I=J={01},
a(2,1,7) = 645, a(s,1,7) =s for s=0,1,
p(2,0,5) = 35(2),  p(2 1,9 =),
p(s,1,7) = 8(s) for s = 0,1, and initial position s = 2.
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2. Solution of the big match.

TurorEM 1. The value of the big maich is 3. An optimal strategy for player 2 is to
toss a fair coin every day. Player 1 has no optimal strategy, but for any non-negative
integer N he can get

V(N) = N/2(N + 1)

by using strategy N, defined as follows: having observed player 2’s first n choices
Zi, ', %, n = 0, calculate the excess k, of 0’s over ’'s among 2, , « -+ , Zn , and
predict 1 with probability p(k, + N), where p(m) = 1/(m + 1)

Proor. Clearly if player 2 tosses a fair coin every day, player 1’s expected
payoff is %, no matter what he does: if he ever predicts 1 his payoff is equally
likely to be 0 or 1, and if he predicts 0 forever, the strong law of large numbers
gives him payoff 1 with probability 1.

Next, notice that strategy N predicts 1 with certainty whenever the excess is
—N, i.e. whenever N more 1’s than 0’s have occurred. Suppose we have verified
that strategy N produces expected payoff at least V(N) against every sequence
of 0’s and 1’s which eventually achieves an excess of —N, and consider any se-
quence w = (21,22, - - -) which never achieves an excess as low as —N. We show
that strategy N yields at least V(IN) against w. Denote the number of observa-
tions after which player 1 first predicts 1 by ¢ (so t = oo if he never predicts 1)
Define

o},
p(m) = P{t < mand .1 = 1},
A

Am) = P{t < mand x;qy

lim e AN(m), g = limp.e p(m).

Player 1’s expected income is at least
b+ (=N = w3,
since the sequence w, never having excess as low as — N, satisfies
(T4 - +2)/n < %5+ N/2n, foralln
so that 1’s income when ¢ = <, which is
lim sUprow ((1 — 21) + -+ + (1 — 2,)) /7,

is at least £ (this would be true even with lim sup replaced by lim inf).

To show that u + (1 — X — p)(3) = V(N), consider player I’sincome from
strategy N against the following strategy for 2: choose 21, - -+, Zm, and toss
a fair coin thereafter. With probability 1, the resulting sequence will eventually
reach excess — N so, by assumption, player 1’s expected income is at least V(N).
But his expected income is exactly

w(m) + $(1 = Mm) — u(m)),

which therefore is at least V(N). Letting m — « completes the proof that it
suffices to study sequences w which eventually achieve an excess of —N.
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Take such an w = (21, 22, -+ ), let player 1 use strategy N against it, and
denote by ¢ the number of observations after which he first predicts 1. Define

Em) ={tzm, or t<m and @pn=1}, m=12---.

We show, inductively on m, that
) Py(E(m)) = V(N), forallN.

(a) m= 112y = 1, Py(E(1)) = 1> V(N) = N/2(N + 1). If z; = 0,
Py(E(1)) = Py{t =2 1} = 1 — p(N) = N(N + 2)/(N + 1)* = V(N).

(b) Suppose Px(E(m)) = V(N), forall N.If z; = 1, Py(E(m + 1)) =
p(N) + [1 —p(N)] Py(E(m)) 2 p(N) + [I — p(N)IV(N — 1) = V(N),
where Py_3(E(m)) = V(N — 1) by induction since using strategy N against
w = (1, x2, 23, -+ ) is equivalent to predicting 1 initially with probability
p(N) and, with probability 1 — p(N) predicting 0 initially and thereafter using
strategy N — 1 against o' = (22, 3, - -+ ). Similarly, if z, = 0,

Py(E(m+1)) = [1 — p(N)]Pysa(E(m)) = [1 — p(N)]V(N + 1) = V(N).

So (1) is proved. Since ¢ < « with probability 1, letting m — o in (1) yields
Py{zen = 1} 2 VIN),

strategy N yields at least V() against every sequence, and the value of the

game is 3.
To show that 1 has no optimal strategy, consider any strategy o for him. If
o never predicts 1 with positive probability against «* = (1,1, 1, --- ), it wins

0 against w”* so is not optimal. If not, say m = 0 is the smallest initial number
of 1’s after which o predicts 1 with positive probability, say e. Player 2 can
counter ¢ by choosing m initial 1’s, then 0, and tossing a fair coin thereafter,
giving 1 an expected income of (1 — ¢)3.

The above argument that 1 has no optimal strategy is due to Lester Dubins.
We are indebted to him, David Freedman, and Volker Strassen for stimulating
conversations about the big match.

3. Other near optimal strategies for player 1. Let 0 < ¢ < 1, and let {a,},
n =0,1,2 ---, be a sequence of numbers satisfying the conditions

(a) an = appforn =0,1,2, -,

(b) (1 - e)an é Olp 41 fOI"ﬂ = 0, 1, 2, ey,

(¢) 20 an = 1.
(Automatically, an > 0 for all n.) For a given 0 < ¢ < 1 and {a,} satisfying
(a) (b) and (c), we define a strategy ¥ for player 1 by defining the distribution
of ¢, the time at which player 1 first predicts 1, via the functions

Yn(r, -, 2) = Plt=n-+ 1|z, -, T4} n=2012- ..

Note that ¢, represents the (unconditional) probability that ¢ = n + 1, whereas
in Theorem 1 we referred to the conditional probabilities, P{t = n + 1|t > n,

xl,--~,x,,}.
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The functions y, are defined inductively by letting Yo = eap and

Un(Z1, -+, &) = ea,, if deakj =1
_.1 .
=1-= 20 ¥z, -, x;), otherwise,
where k., as before, represents the excess of 0’s over 1’s among z;, - -+ , T

(ks = ZI‘ (1 — 2z;)), and where for j < 0, ; is defined equal to ap . We denote
by €. the class of strategies ¢ formed in this manner for some sequence {an)
satisfying (a) (b) and (c).

The main property of the class @, is as follows:

THEOREM 2. If e €., Do (1 — 2nit)¥n(21, -+ , Tu) < 3e

Proor. If 2, x5, --- is such that 28" e, = 1 (so that yn = eay,), there
is an integer M such that € 2 0" "o, = € 2o ox, — e If not, let M denote
the smallest integer for which D o e, > 1 (so that ¢, = eay, for n < M).

III eitllel case,
:E :30 ]- 2xn-l—l n (21 y Ty Tn = € 0 B 1 zxn 1)Ck €.
( )lp ( ) = 1( +. ) n +

Let J = k. We assume J = 0. (For J < 0, a similar argument obviously
works.) Let

It = {0 knya > maxocicnk;, ke <J, 0=n =M — 1},
L={n:2,=0 negl,, 0=n=<=M-1},
L={nz,u=1 0=n=M-—1}.
There is a one-to-one correspondence between I, and I;: If k; = J, 7 ¢ I3 is
paired with the smallest j ¢ Iy such thatj > and k; = k; — L. If k; > J,2¢ I;

is paired with the largest j ¢ I, such that j < 7 and k; = k; — 1. In this pairing,
ar; = (1 — €)oy; . Hence,

SN = 2War)an, = Dnan, t Lrpan; — donon S 14 € Do <2

completing the proof.
In the big match, the expected payoff to player 1 given z;, 22, - - - is, in terms
of the functions {¥.},

S8 Taatn(®1, -y xa) A+ (1 — 2gm(@y, -+, 2,)) lim sup (1 — Z,)

where Z, represents (z; + -+ -+ 2.)/n. Theorem 2 implies that for ¢ ¢ @, this
expected payoff is at least

IS (@, o, mn) — S+ (1 — 20 ¥a(1, -+ ,2a)) limsup (1 — ).

Hence, if lim sup (1 — &.) = 3, the expected payoff is at least £ — ($)e. On
the other hand, if lim sup (1 — Z,) < %, then k, is negative infinitely often so
that Yo Ya(1, - -+, ) = 1 for any ¢ € €. Thus, in any case, the expected
payoff is at least 3 — (2)e. In other words, every ¥ € C. is (£)e-optimal for the
big match.
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In closing, we mention a related problem, in which further restrictions are
placed on the strategies available to the player. We require of player 2 that he
choose a sequence w = (w1, 2, --- ) such that lim %, = 3, and we require of
player 1 that he choose a distribution of ¢ such that P{t < o |y, z,, - - - }=1
for all w available to player 2. The value of this modified game is still 1 as may
be seen from the following considerations. Player 2’s optimal strategy for the
big match is still available to him in the modified game, so the upper value is at
most 3. To see that the lower value is at least %, let player 1 play as follows.
He chooses a small § > 0 and produces a private random sequence, y; , 2 , e
of independent variables with P{y; = 1} = 6 and P{y; = 0} = 1 — 6. He defines
Zn = max (Za, ya) and uses any strategy in €. (or the strategy in Theorem 1),
pretending that 2’s sequence is 21, 2, - - - . Since &, — %, 3, — (1 + 8)/2, so
that £ < o with probability one. Then, P{z,;; = 1} > % — (%)e. But since
Plyiyn = 1} = 5, we have P{x,y; = 1} > & — (2)e — 5, showing the lower value
is at least %.
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