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VARIATIONS ON A RENEWAL THEOREM OF SMITH

By C. C. HEYpE
University of Sheffield

1. Introduction. Let X; ,7 = 1,2,3, - - - , be a sequence of independent random
variables with finite expectations u, = EX, such that

(m+pt - Fu)/n—>p as n— oo,

where p is finite and strictly positive. Write S, = X, m 21, M, =
maxi<k<n Sk and N, = maxi<r<n |Sk|. In the paper [5], Smith obtains results
on the asymptotic behaviour of certain sums of the form Z:=1 a, Pr (S, £ x)
as ¢ — . He goes on to mention, but not to treat, another line of enquiry
relating to sums of the type 2 a1, Pr (M, < z) which, as he points out,
differs from the former in some important respects. It happens, however, that
the results of Smith carry over quite readily, and with no change in the con-
ditions, from the case of the S,’s to that of the M,’s or the N,’s and it is the
object of this note to establish this for the key Theorem 1 of [5].

A fairly detailed discussion of the relation between Y -y, Pr(S, < z)
and D w_ya, Pr (M, £ z) has been given in [2] and [3] for the particular case
in which the X, are identically distributed and this note is directed towards
pointing out the existence of similar parallels in the general case. The random
variables N, do not appear to have been previously introduced in a renewal
theoretic context. The theorem which we shall establish is an important tool for
the study of the passage time random variables M(z) = max [k|M; = z]
and N(z) = max [k|Nir = z]. In particular, we note that

EM(z) = > aaPr(M, £ z), EN(z) = Sai.Pr(N, £ 2).

2. Results. In the following work we shall take G.(r) to mean either
Pr (M, = z) or Pr (N, £ z) (so that if a property holds for both Pr (M, =< z)
and Pr (N, = z) it holds for G.(z) and conversely). We shall obtain the fol-

lowing theorem.
TurorEM. Suppose the following conditions hold.
(T1) {X,} is a sequence of independent random variables with distribution

functions {F,(z)} and finite expectations p, = EX, such that
(m+pe+ - +p)/n—p as n— o

where u 1s finite and strictly positive.
(T2) For every e > 0,

2D ra{l — F(2)}dz—0 as n— o.
(T3) For some o > 0, v = 0, and some non-negative function of slow growth
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L(zx), the sequence of non-negative constants {a,} satisfies the asymptotic relation
Dt ~a(l —2)L((1—2)™) as z—>1—0.
(T4) D_%_ia, diverges.
Then, in order that
2 n=10,Ga(x) ~ aL(x)(T(1 + 7)) (/)" as z— o,

1t 1s sufficient that the following two conditions are satisfied.

(T5(a)) If k is any number such that a, = O(n®), then there is a distribution
Sfunction K(x) of a negative-valued random variable with a finite moment of order
(k + 2) such that K(z) = F.(x) for all n and all z.

('T5(b)) If —« is the first moment of K(x), then for some v > k and every ¢ > 0,

lim inf,., [$2%" 0™ S0, {U(z) — Fu(z)} de > (206 + 1)ve)?
where
U(z) =1, z =0,
=0, z <0.
For an explanation of the significance of the component parts of the theorem the
reader is referred to [5]. In particular, we note that the divergence of D n;an
ensures that the k of condition (T5(a)) satisfies £ = —1. The theorem generalizes
certain of the results of Chow and Robbins [1] and Heyde [2] and can be used
to generate asymptotic results on the moments of the random variables M (z) and
N(z).
As a preliminary to establishing the theorem we need the following two lemmas.
Lemma 1. {X,} is a sequence of independent random variables with finite ex-
pectations u, = EX, such that
(mtpt+ - tm)/n—p as n— o

where p = 0 s finite. If n 8y —ppasn — o, then n "M, —p pand n N, —p .
(“P” stands for convergence in probability.)

Proor. Firstly we shall establish the result for M, . Using Lévy’s inequality
(Lotve [4], 247) we may write for arbitrary ¢ > 0,

Pr [maxick<a |Sk — kp — med {Si — Su + (n — k)u} | = ne
= 2 Pr (|S. — ny| = ne)
and therefore, since 7S, —p ly
(1) Prmaxicica|Se — kp — med {Sx — S» + (n — k)u}| = ne — 0
as n — o,

However, the condition n_l(S,, — np) —» 0 ensures that ™" med {Sy — S. +
(n.— k)u} — 0 as n — o, s0 we obtain from (1) that for arbitrary ¢ > 0,

(2) Pr [maxi<i<n [Sk — ku| = nel >0 as n— .
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Now,
M, — np = MaXi<k <, Sp — np < Maxi<i<n (Sp — kp) = maxi<e<a [Se — kul,
so that )

Pr (M, = (s + )] < Pr (mamigszn [S — bul Z ne) >0 as n— o

by condition (2). The result n "M, —» p then follows immediately upon noting

that for e > 0,
PriM, £n(u—&]=Pr[S, Enlp—¢€¢]—0 as n— «.

Now let us examine the case of N,,. We have for arbitrary ¢ > 0,
Pr(N, = n(p + ¢)]
(3) =Pr(Nazn(s+e);Na=M)+Pr(Na2znlu+ e Na> M)
SPr(M. 2 n(p + €] + PrimimgnSe = —n(p + 6],

and Pr[M, = n(u + ¢)] — 0 as n — o since n "M, —p p. Furthermore, from
condition (2) we see that for arbitrary n > 0,

(4) Prminicrcn (Sx — kp) = —ng]l >0 as n— o,

and since min; <x<n (S — kp) =< min<x<n Sk we have from (4) that

Pr [mincx<n Sk £ —n(p + )] = Prminicpgn (Sp — k) = —n(p + e)]—0

as n — o,

Thus, returning to (3), we see that Pr [N, = n(p + ¢)] — 0 as n — . The
result 7 'N, —» p then follows as it is easily seen that for ¢ > 0,

PriN, £ n(p — ¢)] S Pr{Su] £ n(p — €] =0 as n — oo,

This completes the proof of the lemma. We remark that in Lemma 2 of [5] the
result n 'S, —p u is established when the conditions (T1), (T2) and (T5(a))
with k = —1 are satisfied. Hence, our Lemma 1 shows that n M, — u and
n N, —p p under these conditions.

LemMma 2. Under the conditions (T1), (T2) and (T5(a)) withk = —1,

0= [Pl — Gu(na)]dz—0 as n— .
Proor. The obvious inequality
0SPr(N.Zy) =Pr(M.=sy) =1
yields
0= [Pl —Pr(M, £ n2)lde £ [J[1 — Pr (N, £ nz)]de,

so in order to obtain the required result it suffices to show that

il = Pr(N, £ nz)ldc—0 as n— .
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Integrating by parts, we have
(5) n'EN, = [¢[l — Pr (N, £ nx)]dz
= [t — Pr(N. £ nx)ldz + [0l — Pr(N. < nx)lda.

Now from Lemma 1 and the comments following it we see that n'EN, — p
as n — o and that Pr(N, £ nz) —> 0 asn — « for 0 < z < p. Hence,
f61 — Pr(N, < nz)]dr — pasn — « and from (5) we deduce the required
result that ff [l — Pr (N, < nz)]dz — 0 as n — . This completes the proof

of the lemma.
Proor or TeeorEM. Having obtained the above lemmas we may use exactly
the analysis of Smith [5] in his proof of his Theorem 1 and obtain for 0 < 7 < g,

(6) WT(1 + 7v)/CL(H() —> a as t— o,
where )
Hy(2) = D ne10.Ga(z)U(z — nn).
Furthermore,
(7)  TraaGu(z) = Hyz) + 2iaaG(2){l — Uz — nn},
and

Z:)=lamGn(x){1 - U(.’B - nﬂ)}
< Y2 e Pr (M, £ mn) £ D ne1as Pr (8. £ nn).

This last sum is shown to be finite under the conditions of our theorem by Smith
in his Section 4. Thus, from (6) and (7),

limgse [WT(1 4+ ¥) /L8] Dona1 @nGa(z) = @,

since the divergence of > % _ia, implies the divergence of {"L(t) as t — oo.
This establishes the result of the theorem.
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