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ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM
FOR NON-NEGATIVE RANDOM VARIABLES!

By . Wavrer L. Smrta

University of North Carolina

0. Summary. Let {X,} be an infinite sequence of independent non-negative
random variables such that, for some regularly varying non-decreasing function
A(n), with exponent 1/8,0 < 8 < o, asn — o,

P{Xy 4+ --- + X./A(n) £ 2} — K(2)

at all continuity points of some d.f. K(x). Let A(x) be the function inverse to
A(n), let R(x) be any other regularly varying function of exponent a > 0. Then,
if N(z) is the maximum k for which X; 4 --- 4 X = z, it is proved that, as

Tr— @,
ER(N(z)) ~ I(aB)R(A(2))
where
I(ef) = [5u™ dK(u)
and this latter integral may diverge.

1. Introduction. Let X;, X;, --- be an infinite sequence of independent,
non-negative, random variables. Write S, = X; + --- 4 X, and let N(z) be
the maximum suffix k& such that S; < z. The simplest elementary renewal theorem
states that, when the {X,} are identically distributed &{N(z)/z} — 1/8X., as
z — . Let ¥(z) be an unbounded, non-decreasing function of regular variation
(Feller (1966), p. 269). A more general theorem of Smith (1964), (1966) allows
the {X,} to be non-identically distributed and shows that if S,/n tends in proba-
bility to a finite limit p as n — oo (that is, the weak law of large numbers holds)
then &y(N(zx)) ~ ¢(z/u) as £ — oo. This result has been carried further by
Williamson (1966) who showed that if there exists a proper distribution func-
tion K(z) such that P{S,/n < z} — K(x), as n — «, at every continuity
point of K(x), then EN(x) ~ xfff udK(u) asz — . However, Williamson
found it necessary to assume that certain extra conditions were satisfied, and
his theorem is not as strong as the one of Smith for the case when K(z) is de-
generate (and a weak law of large numbers holds). In the present paper we
shall prove the following theorem.

TuroreM 1. Let {X,} be an infinite sequence of mutually independent, non-
negative, random variables. Let N(z) be an unbounded, strictly increasing, and
continuous function of regular variation with exponent 1/8, 8 > 0. Let A(x) be
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140 WALTER L. SMITH

the function inverse to \(n). Suppose there is a proper distribution function K(x)
such that, as n — .

(L1)  P{Xyi + Xo + -+ XW)/Mn) = 2} — K(z), K(0+) <1,

at every continuity point of K(x).2 Then, if R(x) is any regularly varying function
of index o > 0,asc — o,

ER(N(z)) ~ I(aB)R(A(x)),
where
I(ag) = [¢u™ dK(u).
The integral I(aB) may be divergent, in which case it is to be understood that
ER(N(z))/R(A(z)) — +® as z— + .

Note that the inverse of a regularly varying function is a regularly varying
function and that, consequently, A(x) is regularly varying with index 3. We
also remark that it will be seen later that I(eB) is necessarily finite when a
condition “®(04) > 07, to be explained later, is satisfied.

The special case of Theorem 1 when the {X,} are identically distributed,
non-negative random variables is not uninteresting. Feller (1966), p. 424,
Theorem 2, provides an appropriate convergence theorem. Unfortunately, as
he gives it, it does not give results when his exponent has the value unity. From
the material he provides, however, one can prove quite easily the following.

TueoreMm A. Let { X} be an infinite sequence of mutually independent, identically
distributed, mon-negative random variables with distribution function F(x). Let
A(z) be a continuous and non-decreasing regularly varying function with exponent
B,0 < B = 1, and suppose that, as x — o,

(1.2) a7 [5{1 — F(u)} du ~ 1/T(2 — B)A(x).
Let \(n) be the regularly varying function which is inverse to A(x). Then, asn — o,
P{(X;+ -+ + X)/Mn) £ 2} - G(x)

at all points of continuity, where G(x) is the stable distribution function with
Laplace-Stieltjes transform G*(s) = e,
Incidentally, when 0 < 8 < 1 (i.e. 8 ¥ 1), the condition (1.2) is equivalent

to the simpler
{1 —F(z)} ~1/T(1 — B)A(x).

From Theorem A and Theorem 1 we then have the following renewal theorem
for non-negative and identically distributed random variables:

;If K(0+) = 1 we get a trivial result.
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TrarorEM 2. Under the conditions of Theorem A, for any regularly varying func-
tion R(x), with exponent o > 0, as x — o,

8{R(N(z))} ~ [[(a.+ 1)/T(af + 1)]R(A(2)).

Notice that Theorem 2 does not provide information if 8 = 0. However, the
special case {8 = 0; @ = 1} has been discussed, to some extent, in an elementary
fashion already (Smith, (1961)). All we need to deduce Theorem 2 from the
earlier ones is the evaluation of I(aB) for the stable law G(z). We have:

[ew ™ dG(u) = [¢{[ce™\7/T(aB) d\} dG(u) = [5e™N\*"Y/T(aB) d\
I'(a + 1)/T(ap + 1), as claimed.

2. Proof of Theorem 1. We begin by mentioning certain results from ‘‘stand-
ard” probability theory which we shall use. Let {F,(z)} be the respective dis-
tribution functions of the variables {X,}. Then, denoting Laplace-Stieltjes
transforms thus: F,*(s), for s real and positive, we see that (1.1) implies

(2.1) 1= Fi*(s/n(n)) — K*(s), asn — o,
Let us write, for x > 0,
&, (z) = (Mn)) ™ 25w [ {1 — Fi(w)} du.

Then, plainly, ®,(z) is a non-decreasing function of z and it is not a difficult piece
of analysis to deduce from (2.1) that

®,%(s) > s log (K*(5))™, n— w.

Therefore by the continuity theorem for Laplace-Stieltjes transforms (Feller
(1966), p. 410), there is a non-decreasing function ®(z) (possibly with a
jump at x = 0, which must be taken into account when calculating transforms)
and, at continuity points, ®,(x) — ®(z) as n — o. Furthermore,

d*(s) = s log (K*(s))™".
We can quickly determine whether ®(xz) has a jump at 2 = 0, since we must
evidently have
®(04) = limyae s log (K*(s)) 7"
Incidentally, it is not hard to show that, when ®(0+) > 0, I(aB) is finite for
all & > 0. If we define, for # > 0, non-increasing functions

Ma(z) = 25 {1 — Fi(a\(n))},

then ®,(z) = f oM.(u) du and so there must be a non-increasing function
M(x) such that M,(z) — M(z), at all continuity points, as n — . Further-
more, for any a > b > 0,

d(a) — &(b) = [§M(u).du,
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and so
d(z) = 8(0+) + [T M(u) du.
This implies

(2.2) K*(s) = exp [—s®(0+) — s [v e “M(x) da.

Because it has been so easy to derive these “classical” results for non-negative
random variables, we thought it worthwhile and convenient to do so and at the
same time introduce our notations. There is one further result we shall need
which does not lie quite so near the surface. It transpires that, if (1.1) holds,
K(z) cannot be any distribution function whose transform happens to have the
form (2.2). In fact K(z) must be of “Lévy class L”” which is the case if and only
if M(€%) is a convex function for —« < z < . A minor consequence is that
M(z) is continuous in 0 < z < . We refer to Feller (1966) or Gnedenko and
Kolmogorov (1954) for a treatment of this convexity property.

One further preliminary needs discussion. A minor irritation in our work is
that in various places we would wish a variable to be an integer and it may not
be. When we write S, and 7 is not an integer we shall mean by S, the partial
sum X; 4+ .-+ + X, where k is the least integer not less than n. If @ < b are
not integers we shall denote sums such as Za<,~§b u; more simply as Y ou;.
This will save some typographical problems.

Let us now consider the proof of Theorem 1. We begin by showing that if the
theorem is once proved for R(z) = z° a > 0, then it will follow for the general
case by a rather amusing trick. Indeed, we shall only need the theorem proved
for a arbitrarily small. Let us suppose, therefore, that the theorem has been
established when R(z) = z° Suppose L(z) is an arbitrary function of slow
growth and v > a. Let b(x) be a non-decreasing continuous function of x > 0,
taking integer values when z is an integer, and such that

b(z) ~ L)', & — .

Since v > «, b(x)/z is increasing and unbounded and we note that b(x 4+ 1) —

b(z) = b(x)/x.
Suppose {X,} to be a sequence of non-negative, independent random variables,

such that

Define a new sequence of random variables {Y,} as follows: If the suffix

= b(r) 4+ 1 for some 7 then ¥V = X,+1 (we can take b(0) = 1so ¥V; = Xj);
otherwise let P{Y, = 0} = 1. Let us define a continuous non-decreasing #(z)
such that #(n) = 7 for all integers n satisfying b(r) < n < b(» 4 1). It is not
difficult to see that ¢(x) varies regularly with exponent (/) and that

P{Y T Yi/A(8(n)) < ¢} — K(§), n— oo,

Thus {Y,} is a sequence of random variables to which Theorem 1 applies,
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with AM(&(n)) in place of M(n); we note that A(#(x)) varies regularly, with

exponent (a/Bv).
Now let M(z) be the maximum k such that ¥; + --- 4+ Y < z. Then,

noting that b(A(z)) asymptotically equals the inverse of A(#(n)), we have
(2.3) 8{[M(x)]"} ~ [A(=)]"L(A(%))I(Br).
But
(M)} = 2aaa(n® —n — 1)P{Yi+ -+ + ¥V, < x}
and, since so many Y’s are almost surely zero, we find this equation means
{IM(2)]"} = 227 (b(M)]* = b(r — D])P{X:1 + -+ + X, S 1}
= 8{[b(N(x))]"} = &R(N(=)),
if R(z) = x"L(xz). Thus, from (2.3) we have
ER(N(z)) ~ R(A(x))I(Bv),

as was to be proved.
Let us now consider the proof of Theorem 1 for the case R(z) = z%, a > 0.
For fixed ¢ > 0 and varying z > 0, set n = A(z/{). Thenn — o« asx — o,

and
(24) P{N(z) = Mz/7)} = P{S, = 2} = P{S. = IMn)} — K(¢), asz— =,
provided ¢ is a continuity point of K.

Since A(z) has exponent 8 > 0, we can write A(z) = z°L(z) where L(z)
is a function of slow growth.

Thus
A(z/8)/A(z) — {78, asx — o,
and so, from (2.3), we have
P{N(z)/A(z) 2 {7} — K(), as T — o,
or,
(2.5) P{N(z)/A(z) = u} — K(u"#), T — o,
But

&{IN(2)/A(2)]"} = a [Cu*""P{N(z)/A(z) Z u} du.
Thus we can infer from (2.4) and Fatou’s lemma that
lim inf,.. 8{[N(x)/A(x)]"} = « [T u* ' K(u"®) du = I(aB).

In the case when I(aB) = « the theorem is proved. From now on we suppose
I(aB) < ».By dominated convergence we see that, for any C > 0,

limeswa [0 u*P{N(2)/A(z) = u}ldu = o [§u ' K(u ") du.
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The proof will be complete if we can show that, for any ¢ > 0, we can choose
C = (C(e) so that

(2.6) [2u*""P{N(z)/A(z) = u} du < e

for all sufficiently large z.
For integer j, let us write G’(x) P{S; = 2} = P{N(z) = j}. Then (2.6)
may be rewritten

Za‘gcm) fﬁﬁﬁ%léf“” w*'P{N(x) = uA(z)} du < e,
which is equivalent to
2izone Gina(z) [GTR0 @ ™ du < e
Thus we see that our theorem will be proved if we can show that, for all large z,
(27) Tpere 1 Gi(z) < dA(2)]"

The proof that, when I(a8) < o, (2.7) must be true, is quite involved and
is given the following two sections.

3. Completion of proof when #(0+) = 0.
Lemma 3.1. If ®%(s) = [T ¢ **dd(x) then, for all x > 0, ®*(1/z) < ®(z).
Consequently,
(T(aB))™ [T & @m0 P dz < 1(aB).
Proor. The argument depends on the convexity of M(e"). Thus, if z > 0
and y > 0,

2M(z) < M(zy) + M(xy™).

Evidently,
¥(27) — ®(z) = &' [T B(u) du — B(z) = [Te'[@(yz) — ®(2)]dy
=[S [P M(u)du}dy = J, — Jo, say,.
where
Ji = [T [ M(w) du} dy, = [0e¥{[5 M(u) du} dy.

If, in J,, we set u = z/v we find
=z [se ([T M(x/v)v dv} dy
and so, by the convexity of M(e"),
—J £z [ie [T M(aw)v™® dv} dy — 2xM(z) [se ([T v dv} dy.
But M(z) is non-increasing, and so

~Jy £ —aM(z) [e7(1 — y)dy = —zM(z)/e.
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Similarly, the monotonicity of M (z) yields
Ji < zM(z) [Ty — 1) dy = zM(z)/e.

Consequently J; — J» < 0 and ®*(z™") < &(z) as claimed. Thus

[5e @ P gr < I exp [—®*(1/z)/zla" P d = [T K*(1/2) /"¢ dx

= [¢ [ /a P de dR (u) = T(aB) [ou * dK(u).

This proves the lemma. Notice, by the way, that it has not used #(0+) = 0.

Lemma 3.2. Suppose ®(0+) = 0. Then, given any & > 0, one can find 0 < a <
b < 8, such that

1 1

_aﬁx -,

(d/dz)(®(z)/)

IIA

foralla £z £'b.

Proor. Let us set ¢(z) =  '®(z) = = [; M(u) du, and note that ¢(z)
is consequently differentiable and non-increasing. Suppose that for some § > 0
and almost all z = §,

—ay/(z) < of + 2.

By integration we have
¥(z) < ¥(8) + alog (8/z) + 28" — 2.
Thus
f Sov@ Py > exp [W(8) + 26%67° [ exp (2z))2 " da.

The integral on the right diverges and so we have a contradiction, in view of
Lemma 3.1. Thus, if E denotes the set of z-points where

—ay/(z) > af + o,

then the intersection E n (0, 8) must have strictly positive Lebesgue measure
for every & > 0. But —a¢/(z) = y(z) — M(z); and both M(x) and ¥(x) are
continuous. Thus —zy/(z) is continuous and so in any interval (0, §) there
must be a sub-interval (a, b), 0 < a < b < 4, such that

infre@py — o (z) = of + .

This proves the lemma.
LemMa 3.3. If ®(0+) = 0 then there exists a constant A > of, together with
e > 0 and 5 > 0, such that for all large n

(Mn)) 7 & M1 = Fi(n\(7))} = 4.
Proor. Choose p > 0,0 < v < 1. For any integer p and all n = v * define
Tan(pyv) = (\(@) 20777 [39 {1 — Fi(ou)} du
= (\m) TRV 5L = Fi(pu)} du
— (M) 20 [ {1 — Fi(ou)} du.
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We know that, for every ¢ > 0, asn — o,
()™ 254 [8 {1 = Fi(w)} du — &(¢).

We also know that A(n) varies regularly, with exponent 1/8. Thus, as n — =,

Mny”) ~ ¥"PA(ny ),

Ay @) ~ 42D\ (n).
Therefore
Hm infpaw Tap(p, ¥) 2 ¥" 57 '8(v%0) — v*"%07'%(p),
and so, for any large integer k,
lim infpaw 2 omt Twp(p, \) 2= di, 2y,
where
de = {2(v"0) /7" — #(p)p 7"} 2ot v
Evidently, as k — «, di — d. with
do = 71 — ¥ H@(v"0) /¥ — B(p)p '}

But, by Lemma 3.2, we can choose v and p in such a way that

—ay/(z) z af + 2’

for all z such that v"'%0 £ z < p. However, by the mean value theorem, there is
26,0 < 6 < 1, such that

¥(p) — ¥(ov"®) = p(1 — ¥")¥ (p — 8oL — +"]).
Thus
Y21 — YU — ¥()}
o PlaB/le — o1 — VOl + b — 6l — ¥ = ov"Plaslp + o7
= v"*aB + o}

We can choose v < 1 sufficiently close to unity to make Y {aB + p%} > of
without spoiling our argument. Thus d.. > o, and so there is a large k such that
dr > of. This means that, if we set ¢ = ~ME

Hm infpue (M) 20 [09 {1 — Fi(pu)} du > of.
However, for any small § > 0,
A AP (1 — Fi(pu)} du £ (Mn)) 20 [ {1 — Fi(pu)} du
= (P(n)) 208 [P {1 — Fi(w)} du.

v

Therefore
M SUPsow (A1) 2ot [0 {1 — Fi(pu)} du < ®(p8)/p,
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and the right member can be made arbitrarily small by choice of & (since
®(04-) = 0). It now follows that, for a suitably small 8,

lim infase (M) 7 220 [33s {1 — Fi(pu)} du > af.

But, since {1 — F;(z)} is a non-increasing function of z, this in turn implies
lim infy .o (AM(1)) ™ 228 MG{L — Fi(p8N(3))} > aB.

If we set # = pé the lemma is proved.
We are now in a position to complete the task of this section. Let Q(x) be a
non-decreasing function, 2(0) = 0, and let @(z) increase only through jumps

at the points ¢ = A(j), 5 = 1, 2, ---; the saltus at x = \(j) is to be
{1 — Fi(9\(7))}. Lemma 3.3 then shows that for some A > afand allz = z(A4),
(3.1) 2 [Lud(u) = A.

On the other hand,
()™ [&&n wd@(w) = (M(n))™ LA — Fi(i()))
< ((n) 228 291 — Fi(w)) du.
Thus,
lim supso @™ [2ud2(u) < &(n)/n < <,
and so there exists a finite B such that
(3.2) 7 [ud2(u) < B

forall z = .
From (3.1) we have, ify > z = o,

Jiu?{[euvd2(v)} dv = A log (y/2).
But, by Fubini’s theorem (or integration by parts),
[Pu? { [ vdQ(v) du = [2d2(u) + 27" [T u dQ(u)
—efad(u) — v [Tude(w).

Thus, fory > = = x,

[vda(u) = Alog (y/z) — B,
and so, if ¥ = yo, where

Yo = exp [2B/(A — aB)],
we shall have
Jida(u) 2 3(A + oB) log (y/z) = v log (y/x), say,
where » > af. Thus, if A\(n) = (z/9)yo and (z/7) = 2o,
2 hem {1 = Fi(\()} 2 vlog (\(n)/(z/n)),
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whence,
D kem {1 — Fi(2)} = vlog (Mn)/(z/1))
and, a fortiors,

(3.3) 20 {1 — Fy(z)} = vlog (Mn)/(x/7)).

From rather obvious probabilistic considerations we have
(34) Gu(z) = J[iwFi(z) S exp [-221 {1 — Fi(a))].

Thus, if A(n) = 2ye/n and if = 2, from (3.3) and (3.4) we find
Ga(z) = (x/9N(n))".

The inequality on 7 is equivalent to one of the form n = CA(z), for C sufficiently
large. Thus

(3.5) D nsore 1 Ga(2) £ (2/1)” Dnsorm 0 INR)T

At this point we need the following result on regularly varying functions.
Lemma 3.4. If Z(n) varies reqularly with exponent v and iof v + a < O then,

ast— oo,
=t Z(n) ~ L) /|y + o

This lemma is closely analogous to a familiar result involving an integral in
place of a summation (see Theorem 1, p. 273 of Feller (1966) where, however,
the proof of a vital lemma is incorrect, though salvable). For this reason no

proof of Lemma 3.4 seems necessary.
If, in (3.5) we let » = a8 + 88, § > 0, then the function

Z(n) = {Mn)}™"

varies regularly with exponent —(a + §). Thus we can appeal to Lemma 3.4
to find that, as z — oo,

Torsaaw T N0)]” ~ [CA(2)]"6 " NCA(2))]™ ~ [A(2)](8C’z") .
We then, finally, deduce from (3.5) that
lim Supz-e [A(z)]” Zn>CA(z) "' Ga(z) = ( a’Ch)
Since C can be chosen arbitrarily large, the theorem is proved for the case
&(0+) = 0.

4. Completions of proof when ®(0+) > 0. The following lemma, needed

here, generalizes a result buried in Smith (1964).
Lemma 4.1. Let {X,} be a sequence of independent, non-negative, random

variables with distribution functions {F.(x)}. Set, for x > 0,
®u(z) = ()7 2t [T {1 — Fi(w)} du.
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If, for some x > 0, ®n(z) is a bounded function of n and if there is a & > 0 such
that, for every x > 0,

(4.1) lim inf,. ®.(z) 2 3,

then, for any a > 0, € > 0, we can find C(e) such that for all large x, using estab-
lished notation,

Disaami N G(x) < dA(x)]%

Proor. Suppose that ®,(¢) < A < o« for all n and some fixed ¢ > 0. From
the fact that (4.1) holds we must be able to find an unbounded non-decreasing
function w(A(n)) such that, for all large =,

(N0)) D00 [3®M — Fi(w)} du = 6.

This inequality remains valid if we replace w()\) by a more slowly increasing
wi(N) = w(X). Thus, by Lemma 9 of Smith (1964) we may suppose that w(\)
is continuous, non-decreasing, and unbounded, and that A/w(}\) is an increasing
function of X\. Let us define I[(A\) = log w(\); evidently A/I(\) is also, for all
large N, an increasing function. Let us now set

t(n) = Mn)l(n)/w(n).
Then
t(n)/l(t(n)) = Mn) log w(n)/w(n) log w(t(n)).
However, for all large n, A\(n) = #(n); therefore
tn)/l(t(n)) 2 Mn)/w(n).
Thus, whenever A(r) = i(n), or, equivalently, r = A(¥(n)), we shall have
Ar)/UN(r)) 2 Mn)/w(n).
Therefore, for all large n,
(A(n)) 7 20350t RO (1 Fi(u)) du
+ @) ki [0 L — Fi(u)} du = 3,

that is, say, Ti(n) + To(n) = 6.

Choose a small » > 0. Since t(n)/AM(n) = I(n)/w(n) — 0, asn — «, we shall
have t(n) < y\(n) for all large n. Also, since w(A(n)) — « asn — o, we shall
have A(n)/w(Nn)) < {mA(n) for all large n. Thus

Ty(n) < (M(n))™ 24 [Er® (1 Fi(u)} du.

But A(n\(n)) ~ #’n asn — o, and so A(qA(n)) < 24 for all large n. There-
fore

Ti(n) < (M(n))™ 23" [§7™(1 — Fi(u)} du.
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However MN(27°n) ~ 2"%y\(n) as n — « and so \(2n ’n) > n\(n) for all large
n. Therefore

Tyn) < (\@)™ 24" [8™ (1 — Fyu)}du < M2r'n)(M(n)) 4.
We may then infer that
im supnse Ta(n) < 2"%pA.
Thus, since 7 is arbitrarily small, we conclude that
lim inf,oe To(n) = 68
and so there must exist some 8, > 0 such that, for all ia,rge n,
(42) (\@)) T 2P — Fi(w)} du 2 4.

For a glven large « deﬁne r* = 7*(z) as the greatest integer such that
A IMrY)) £ 2. Let s = s¥(x) be the greatest integer such that As™)/
A (s*)) £ (1 + e)x. Choose a large C > 0 and consider the following three

cases.
(1) CA(z) < n < r*(z). By a familiar inequality (see e.g. Smith (1964)),

(4.3) Gu(x) = exp [Wa(8)], ¢>0,
where
(4.4) Wa(t) = to — t ) i [0 {1 — Fi(w)} du.
Let t = 1/x and truncate the integrals at z in (4.4) and we find
(4.5) Wa(z™) £ 1 — (ex)” 2jat [T{1 — Fy(u)} du.
Since M(7)/I(A(F)) S zforj =1, 2, ,n =< r*(z) we have from (4.2) that

2= [i{1 — Fi(u)} du > N(n)s,.

Thus, from (4.5),
Wa(z™) £ 1 — s\(n)(ex)™,

and so
(4.6) G.(z) < exp {1 — d\(n)(ex) '}, n < r

(ii) r*(z) < n £ s*(x). By combining inequalities (3.4) and (4.3) we have
that

(4.7) G.(x) = exp [R.(2)]
where

Ra(t) = bz — 323 [oe™(1 — Fiw)}du — 3227 {1 — Fi(z)}.
Thus, truncating integrals,

(48) Rax™) =3 — (2e) 20 [5{1 — Fiw)} du — 32 7 {1 — Fi(a)}.
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Let us set

vi = (OO Fiu)ldu, Ixz) = [3{1 — Fi(u)} du.

Then (4.2) can be rewritten
(4.9) NA vt oo+ > 8N(n).
If 7 > r* (s0 M(4)/UN()) > ), we have
[XDBO@D) 1 F)} du = v; — Ii().
Therefore
(4.10) (AG/UNG)) — 2)(1 — Fi(x)) 2 v; — Ii().
But, if j < s¥(x), then A(j)/I(A(F)) £ (1 + e)z, which means

MD/UNG)) — z) = ea.
Thus, from (4.10),

1= Fi(z) z (v — Li(=))(ex)™, 1" <j<s
From this result and (4.8) we infer
Ru(a™) <} — (20)7 247 — (2e0)7 Xioa I5(2)
(4.11) — (2e2)™ 2P (15 — (%))
=3 — (2@)" 217 < 3 — &\(n)(2ez)”,
by (4.2). Therefore, from (4.7) we have
(4.12) Ga.(z) < exp {3 — oA(n)(2ez)™"}, r*<n
From (4.6) and (4.12) we may thus infer that
D necamn 1 Ga(x) < €D oaw ™ exp [—(8A\(n)/2ex)].
< € D oam N (2ex/8\(n)),

*
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if we choose C sufficiently large so that the inequality ¢ < ¢ is valid for
¢ = (8M(n)/2ex). The argument used near the end of Section 3 will then show

that
(4.13) 1 SUPzoe [A(2)]™ 2 nsonw 1 Ga(x)
can be made arbitrarily small, by choice of C.

(iii) s*(z) < n. Arguments similar to those for ease (ii) show that (4.7)

holds with (4.8) replaced by
(414) Ru(&™) < ¥ — (2e)7 2077 — (2e)7 2tepnIi(x)

— 3 20 {(v; = Li(®)/ING/UNG)) = al}.

However, when j > s*, M\(j)/U(A(7)) > (1 + e)z and one can infer that
AG/UNG)) —x) > ex
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and hence deduce that
(415) Ru(a™) < § — (2a)7 24" v — 3 2 0a lvi/NG/UNG)) — b}
Write
To = Sl v/ ND/ANG)) — o}
and T = v1 + v2 + -+ 4+ v;. Then
To = TaMn)/UNG)) — 2l — TelMs™ + DI + 1) — a]”
+ ZEATIRG/ING)) — o = DG+ DANG + 1) — o}
We may assume s*(z) to be large, so that T; > 8;\(5) for all j in the range. Thus
To > SA)N(n)/UM(n)) — a7 — Tel\(s® + AN + 1)) — o
+ 8 2295 MO NG /ING)) — ™ = NG+ 1D/ING + 1)) — 7}
= [a\(s* + 1) — TelNs™ + DANG" + 1)) — o
+ 86 252 (NG — MG — DIMD/UND) — o7}
If we use this last inequality in (4.14) we find
(4.16) 2R.(27) < 1 — SA(s™ + D™ + 1)/IN* + 1)) — «!
— (™ + 2)) 282 {(NG) — MG — DA}
If & — j] < 1 then AM(z)/A(j) — 1 as z and j increase. Thus
2 MG — NG — 1))/AG) ~ [Fend\(@)/Ne) = log (M(n)/N(s® +1).
Hence, for some 8, 0 < 8, < &, we have from (4.16) that, for all large z,
2R, (27") < 1 — SA(s® 4+ 1)A(™ + 1)/IN™ + 1)) — 2™
— 28I(\(s* + 1)) log (\(n)/A(s* + 1)).
We must thus conclude from (4.7) that, whenn > s*,
Ga(z) < (8™ + 1)/N)H e,
where
(417) ¥(2) = 3 — aA(s"(2) + 1)/2N(s" + 1)/IA(G" + 1)) — al.
For sufficiently large z, 85(A\(s*(z) + 1) > x > aB, and so
2 T Ga(e) < @ON(sT 4+ DI Lan T INm)T

But [N(n)]™* varies regularly with exponent —yx/8, and so, from Lemma 3.4 we
have, as x — o,

Dt n () F ~ B(s* + 1)Y/INT + DIF [x — aB].
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Therefore
(4.18) S 0u(z) = O((s* + 1)%@).
Since
As® 4+ D/ + 1))
= (A(s* - DA AN/ + 1)) (A™)/AAUM))
= (Ms™ + DA + o)z,
it is clear that for large
AGS* + DI + 1) = (1 + 2e)z.
Therefore, from (4.17),
(4.19) Y(z) < & — SN(s™ + 1)(4ex)™

Furthermore, if we represent A\(z) = z'’L(x), where L(z) is a function of slow
growth,

(420) (8" 4+ /MA@ = Ns" + 1)a L(A(2))/L(s" + 1).
But, from the familiar canonical representation of L(z) due to Karamata (1930),
L(z) = a(x) exp [[1 &(u)u™ du],
where a(z) — 1 and §(z) — 0 as ¢ — . Thus, for some finite 4; > 0
L(A(z))/L(s* + 1) = Ay exp {— [ 8(u)u™" du}
< A((s" + 1)/A@)7,
for all large = and arbitrary € > 0. Thus, from (4.20),
(4.21) ((s* + 1)/A(2)) 7% < A (N(s* + 1)/2).
From (4.18), (4.19), and (4.21) we then deduce
(4.22) [A(2)]7* 25 n T Gu(x) = O(lw(2)]™ "7 exp [—iw(x)/4e]),

say, where w(z) = Ms*(z) + 1)/z. But A(s* 4+ 1) > (1 + e)zI(\(s* + 1)),
and so w(x) — © asx — «. Thus we have, finally, from (4.22) that

[A(Z)] Doy 1 Gu(x) — 0, as z— oo,

This result, coupled with the arbitrary smallness of (4.13), completes the proof
of the theorem.
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