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CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE
DIFFERENCES'

By Y.<S. Crow

Purdue University

1. Introduction and notation. Let (2, F, P) be a probability space. A stochastic
basis (F,, » = 1) is a monotonically increasing sequence of s-fields of measur-
able sets. A stochastic sequence (y., F., n = 1) consists of a stochastic basis
(F.,n = 1) and a sequence of random variables (¥, , n = 1) such that y, is
F,.-measurable. For a stochastic sequence (2, , F», » = 1), we put (here as
well as in following sections)

20 =0,F = {®,Q,dn = &n — Tag for n 21,8 = (Lo dd)}

¥ = SUpa 1 [a], d* = SUPa 31 |dal, 8§ = liMpes $a ,

and I, = indicator function of set A. If (2, , F.,n = 1) is a martingale, then
(dn, Fn,n = 1) is called a martingale difference sequence. For a given sto-
chastic basis (§., » = 1), a stopping time ¢ is an extended positive integral
valued measurable function such that [{ = n] ¢ &, for each n. For a stopping
time ¢ and a measurable function y, E.y is defined as f[¢<°°] y dP (or [i<a ¥,
in short), if it exists.

Let (2., 2, n = 1) be a martingale. Austin [1] recently proves that
if sups 1 Elz.| < ©,s < « a.e.; also Burkholder [2] proves that if Es < « 2,
converges a.e. and that if sup. 1 Elza] < «, then D ot i di converges a.e.
for every stochastic sequence (¢r, Fx—1, # = 1) for which sup.x1 s <
a.e.; Gundy [8] proves that if (d,, » = 1) is an orthonormal sequence such
that each d, assumes at most two non-zero values with positive probability,
and if the o-field generated by d; , - - - , d. consists of exactly n atoms, such that

inf, 53 min(P[d, > 0], Pld. < 0])/Pld. #~ 0] > 0,

then for every sequence a, of real numbers, Y ay a.> d,° < o if and only if
> e 1 Gn dy cOnverges.

Let (F,,n = 1) be a stochastic basis. If for each n, &, is generated by atoms
of §,, then (F,, n = 1) is said to be atomic. For a o-field § of measurable
sets and A ¢ F, a G-measurable cover of 4 is a set C' ¢ G such that P(A — C) = 0
and that if B ¢ G and P(A — B) = 0, then P(C — B) = 0. For 4 ¢¢, let
C.(A) be the F,-measurable cover of A. If there exists M > 0 such that
PC.(A) £ MPA for every A ¢ Fpu,n = 1,2, ---, then (Fo,n = 1) is
said to be regular.

Let (%, 5., n = 1) be a submartingale and E|z,| < « for each n. If (F,,
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124 Y. 8. CHOW

n = 1) is an atomic, regular stoachastic basis, then [3] z, converges a.e. on the
set [sup z, < o). In [7], Doob extends this result to the non-atomic cases: if
for K > 0, there exist M > K and 6 > 0 such that

P{[max; <o 2 < K] — ([P(2na 2 M | Fa) = 0] U [P(z01a = K |Fa) > 8]} =0,

then z, converges a.e. on the set [sup, »1 2, < KJ.

In this paper, we will give new proofs of those theorems mentioned above
and in some cases extend them, by method of stopping times. The results of
Gundy, Austin and Burkholder are unified into Theorems 3 and 5. Theorem 4
extends a result of Doob [6] 320, to regular stochastic basis.

2. Some new proofs.
TaroreEM 1. If (2., §», n = 1) is a martingale with difference sequence d,
satisfying

(1) Et‘dtl é MK) E‘rx'r < °°,

for some M > 0 and every K > 1, where t = inf{n |z, = K% and
7 = inf{n |z, = K}, then s < « a.e. on the set [sup z, < »].

Proor. By a proof of Doob ([6], 322), under the second condition of (1),
z, converges a.e. on [sup z, < «]. Hence we need only to prove that s < «
a.e. on the set A = [z, converges].

For 6 > 0 and K > 3, put

go=1, g.=I[f 1+ d/K) for n=1

t=tg=inf{n||ga) = 14+5 or |z, = logK}.
Set by = gmin(e.m - Then

hal < (1 4 )Itsm + (1 + 8)(1 + |del/K) I 1e<m -

For every stopping time ¢’ < inf {n | 2," = K%, the first condition of (1) im-
plies that E,/|dy| < MK. Therefore E;|d| < M log K. Hence ER* < o and
(ha, Fu, n = 1) is a martingale. By Doob’s martingale convergence theorem
([6]; 319), h, tends to h, a.e. and in L. Hence fA heo = fA ho + € = PA

+ €,,x + €., where lim, e, = limg enx = 0.

PA+ex+en= faho= [atcas gt + [ttt hw
< (14 6) [apsca (1 + |del/K) + (1 4 8)PA[t = », hyy, > 0.

Let € > 0. Since E;|d;| < M log K £ €K for all large K, (1 + 8)PA[t = =,
he < 0] £ 8PA + (2 + 6)e. Since z, converges on A, it follows that lim,
gn = g exists on A4, limg, PA[tx = ©] = PA,andon 4, g, > 0 if and only
if s < . Hence PA[g,, < 0] < 6 + 2¢ and PA[s = =] £ 6 + 3¢, if K is
large enough. Therefore s < « a.e. on 4.

If (2., F.,n = 1) is a martingale with sup Elz.| £ M < «, then (1) is



CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE DIFFERENCES 125

satisfied, since for every K > 1,t = inf {n | ," = K%, and r = inf {n | 2, = K},
E|dy| =lim, [1e<m |4t S lima [1e<o (J2e] + |2em]) < M + K < Kmax (M, 1),
Bz, £ limg Etnines| S lim, Elz|.

Hence Theorem 1 implies Austin’s result [1] mentioned before. If (x,,%, . n = 1)
is a martingale with E d* < «, then (1) is satisfied and hence s < = a.e. on
the set [sup 2z, < «]. The last result is due to Burkholder [2], and his proof is
based on Austin’s theorem. (With a slight modification, Burkholder’s proof
yields Theorem 1 also.)

The following theorem is suggested by a recent work of Gundy [9] on the
decomposition of L;-bounded martingales.

THEOREM 2. Letr = 1 and (dn , Fn , n = 1) be a martingale difference sequence
satisfying E|d,| < . Put )

(2) o= (27 dD)M".
Then for every K > 0, we can decompose
(3) dn = @n + ba + €, n =1,
where a, , b, and c, are martingale difference sequences satisfying
(4) EXYT|an|" < 2Emin (6, K) £ 2K 'Eoc for r = 1,
E Y Y a’ = Emnin (6,K) < KEs for r=2;
(5) E 2.7 |ba] < 2E d* < 2Eo;

(6) [*>0lclo>K], Plc*>0]=<Es/K, E(Q rlea])"" £ Eo.
Proo¥. Put o, = (2 7 |di|")"". Then lim o, = o a.e. For K > 0, define
(7) t = inf {n|on > K}.

Put a, = an[z>n] — E(an[¢>n1 ‘ 57,._.1), b, = an[t=~n] — E(dnl[,ﬂn] lifn_l) and
€= dnljt<ny . Clearly, (3) is satisfied, and a,, b, and ¢, are martingale differ-
ence sequences. Then forr = 1,

E 3% laal” £ 2 220 Eldu| Tiom
< 2E D {7Yda|
< 2'FE min (s, K)",

andforr = 2,E > 7 a. £ 2 x EdIyse < E Y i7'd, < E min (o, K)? which
yield (4). Now

E 27 bl £ 2B 2.7 |dullyp=m < 2E d* < 2Eo,
[¢*>0]c o> K], Pl¢*> 0] < Plo =2 K] £ Eo/K,
E(2 el = B(2ST |da)™ = Eo.
Therefore (5) and (6) hold and the proof is completed.
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CoroLLARY 1 (Burkholder [2]). Suppose that (2, , T, n = 1) is a martingale
with difference sequence d, and thal (gn, Fae1, n = 1) 4s a stochastic sequence
such that g* < o a.e. (i) If Ed* < «, x, converges a.e. on [s < «|. (ii) If sup
Elza| < ©, D ga dn converges a.e. _

Proor. (i) By Theorem 2, for K > 0 we can write d, = @, + b, + ¢, , where
Gn , b, and ¢, are martingale difference sequences such that > % Ea' < ©,
> L Elba] < » and [¢* > 0] C [s = K]. Hence z, converges a.e. on [s < K].
Since K is arbitrary, z, converges a.e. on [s < «].

(ii) By Austin’s theorem [1], s < o a.e. Note that without loss of generality
we can assume that |g,] = 1 a.e. for each n. Then D 7 gi’ di® < » a.e. For
K > 0, put ¢t = tx = inf {nl]x,.l = K}, e = Iiioumge de and 2, = E{L er .
Then (2, , Fa,n = 1) is a martingale and )7 &’ < « a.e. Since |e| < Ij; sl
— Zpa| £ 2K + |2llicer , E sup lex] < . By (1), >°% e converges a.e.
and hence ZT gr di converges a.e. on [f = «]. Since limg Pltx = «] = 1,
D1 gr di converges a.e.

The following corollary is due to Burkholder [2] in the case r = 2, and due to
Stout [11] in the case r > 2.

COROLLARY 2. Suppose that (%, , F. n = 1) is a martingale with difference
sequence e, . Let B, > 0 be @ sequence of constants such that Zf Brn < o and

(8) E(27 leal B Y < o for some 1 Z 2,

then z,, converges a.e.

Proor. Put d, = e,8,""*. Then d, is a martingale difference sequence and
E(2°7 |dal)Y" < . By Theorem 2, we can decompose d. = @, + b, + ¢, ,
where a,, b, and ¢, are martingale differences sequences satisfying (4), (5)
and (6). By a result of [4], (4) implies that 5 (enlion — E(enliiny | Fa1))
converges a.e. Now (5) implies that Y.y B | ealtn) — E(€nlitmny | Fua)]
< o« a.e. Hence D 1l|ealtmn) — E(enlten] | Fu1)| < @ a.e. Since

Plc* > 0] = P[sup |es|Tu<cny > 0] < Eo/K < ¢

for a given ¢ > 0 if K is large enough, z, converges a.e.
In [5], the following strong law of large numbers has been proved. If a mar-
tingale difference sequence e, satisfying

E Z;O |en|r n-—rl2—-l < o

for some r = 2, then lim, >°F er/n = 0 a.e. This result can be extended to:
CoRroOLLARY 3. Lel e, be a martingale difference sequence and r = 2. If

(9) B2 lea v < oo,

thenlim, Y .1 ex/n = 0 a.e.

ProoF. Put d, = e.n . Then (2) is satisfied. For ¢ > 0, according to
Theorem 2, we can decompose d, = a, + b, + ¢., where a,, b, and ¢, are
martingale difference sequences, > 7 b, converges a.e., Zf C, converges, except
on a set of measure less than ¢, and a, satisfies (4). Put a,” = a.n'"", b,/ =
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+1/ ’ 1, ' ’ ’ -
bt andl ¢ = can'™". Then e, = a,’ + by’ + ¢, 2op ban V" converges
0 —3i—1
a.e., 21 ¢. n " converges, except on a set of measure less than ¢, and

E Z;o Iamllrn—-r/2—1 < .

By the result of [5], lim Y7 a'/n = 0 a.e. Since by Kronecker lemma Lim ¥.7 (b,
+ ¢')/n = 0, except on a set of measure less than ¢, im Y1 ex/n = 0 a.e.

In [11], Stout gives a weaker version of Corollary 2 as follows: If e, is a mar-
tingale difference sequence satisfying (9), then lim, D7 (ex — e’)/n = 0 a.e.,
where

en = B(eal(jan2r snrey | Faa).

The following corollary is due to Burkholder [2]. Gundy [9] has another
proof by applying his decomposition of L;-bounded martingales.

CoroLLARY 4. If (2., §., » = 1) is a martingale with difference sequence
d, satisfying

Es = B(2.7dS) < =,
then for X > 0,
AP[z* = \] £ 9Es.

Proor. By Theorem 2, for A > 0, we can write d, = a, + b, + ¢, , where
@ , by and ¢, are martingale difference sequences satisfying E Y1 a.’ < M\Es,
E Y7 |ba| < 2Es, and P[c¢* > 0] < Es/)\. Hence

Plz* = \] = Plsup, | 2.7 @l 2 /2]
+ P[>7 [ba] = M/2] + Plc* > 0] < 9Es/\.

3. Some preliminary remarks. In this section, we will make some remarks
about the assumptions in the following sections.

For a martingale (z,, ., n = 1) with difference sequence d, satisfying
E sup, d, < », Doob ([6], p. 322) proves that z, converges a.e. on [sup,z, < ]
in the following way:

For K > 0 define ¢ = inf {n|z. > K}. Then y, = ZTmine,»y forms a mar-
tingale and sup Ely,] < «. Hence y, converges a.e. and z, converges a.e. on
[t = ] = [sup z, £ K]. To insure that the stopped martingale y, have nice
properties, one is forced to assume some conditions on the sequence d, . How-
ever, if for every ¢ > 0, we have another stopping time ¢* such that ¢* < ¢,
f<tonfm <t < ] forsomem = 1, and P[t* <t = =] < ¢, then sup
E|Zmines,m| <  and hence z, converges a.e. on [{ = «|]. This approach leads
us to the following concept of “induced” stopping times.

Let ¢ be a stopping time relative to a stochastic basis (F,,n = 1) and (B,
n = 1) be a sequence of measurable sets such that B, ¢ &, for each n. Let C,
be the &F,-measurable cover of B,[t = n + 1]. Form = 1,2, - -- ,definer = r,, =
inf{n = m|w e Ca} and
(10)

t* = t,* = min (4, 7).



128 Y. S. CHOW

Then the stopping times ¢, are said to be “induced” by {t, (B.,n = 1), m}.
If lim, Plt,* <t = ] = 0, then the sequence B, is said to be ¢-regular.

Lemma 1. For a stopping time ¢ and a sequence (B, , n = 1) of measurable
sets such that B, € F, , let C, be the F,-measurable cover of B,[t = n 4 1] and define
* = 1,.* by (10). Then t* is a stopping time, t* <ta.e.,

Il

(11) *=t=klclt =kl — Bay
Jorm < k < o, and if

(12) P[C,,i.0.] = lim,P U, C, = 0,
then (B, ,n = 1) s t-regular, that s

(13) lim, Pt <t = »]=0.

Proor. Clearly, t* is a stopping time and * < tae. Since i > n] D C.,
r<tonl[r< o]l Form <k < ,ift"(0) = t(w) = k, w2 Ctex D Bt = k]
and w ¢ [t = k] — Bi—1 . If (12) holds, then

lim, Plt,* <t = »] < lim P[r, <t] =1lim P U;, C, =0,

which vields (13).

In most applications of Lemma 1, we put either B, = & for every n or B, = Q
for everv n. In the former case, (12) is automatically satisfied; in the latter
case, if (F, ,n = 1) is regular, (13) is satisfied for every ¢, since for some M > 0,

PUC, <= S°PC, <M > 2PBlt =n+ 1] £ MPln <t < =].

Therefore the sequence B, = & is t-regular for every stopping time ¢, and if
(5., n = 1) is regular, every sequence B, ¢ ¥, is t-regular for every stopping
time t. These are the trivial cases. In order to obtain some non-trivial examples
of t-regular sequences B, for a given ¢, we prove the following lemma first.
LemMA 2. Let G be a o-field of measurable sets and let C be the G-measurable
cover of a measurable set A. Then C = [P(A | g) > 0].
Proor. First,

P(A — C) = PA — PAC = PA — [ P(A|Q)
= PA — EP(A|g) =0.

Now, let B ¢ G and P(A — B) = 0. Then P(A — ABC) = 0 and
PA(C — B) = 0.Hence [c_s P(A|G) = PA(C — B) = 0.8ince P(4 [ g) >0
a.e.on C, P(C — B) = 0. The proof is completed.

LemMa 3. Let (2, ,Fn, n = 1) be a slochastic sequence with difference sequence
d, , and for K > 0, let
(14) t = inf {n
If for some M =z K and 6 > 0,

(15) P(t>n] = [P(xpu=M|F,) =0 or P(zapnz K|[F,) 28] =0,

z, = K}, r =inf{n|s, = K}.
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then B, = [E(Ijpmnin(xe — M) | ) > 0] is t-regular; and if for some M = K
and 6 > 0,

(16) P([r>n] — [P(sp1 2 M |F) =0 or P(sann 2 K|Fa) 28]) =0,

then B, = [E(Itrmnin(sr — M) | F,) > 0] 75 m-regular.

Proor. We will only prove the first half; the proof of the second half is simi-
lar. By Lemma 2,
PC, = P[P(B,lt = n + 1]| ) > 0]

= Plt > n, P(#p11 2 K| F,) > 0, E(I iz, 2x1(%nn — M) | Fn) > 0]
< Pt > 1, E(I ey, zan(Saa — M) | 5) > O],
Since E|2,41] < «, by monotone convergence theorem for conditional expecta-
tions,
B(Ltznyy 20(Fns — M) | F0) > 0] C [P(Tua = M | F,) > 0.
Hence
PC, 2 Pl >n, P(xppu=M|F,) > 0]

SPt>n, P(xpuz K|F,) =38

= f[z>n]P(ﬂ’Pn+1 = K|%,)/8 = Pt = n + 1]/s.
Therefore as n — «,

P(U7C) £ 20PC S 6'Pln <t < »w]—0,

and B, is t-regular.

The condition (15) was first introduced by Doob [7]. He noted that if (.,
n = 1) is atomic and regular, then (15) is satisfied by every stochastic sequence
(Zn , Fn,m = 1).

4. Some extensions.

TuroREM 3. Let (2., Fn,n = 1) be a martingale, E|x,| < o and for K > 0,
put t = inf {n |z, = K}. If there exist a stochastic sequence y. = 0 and a sequence
B, ¢ &, such that B, s t-regular and that

(17)  Bn D [E(Jppensn(2: — ye) | Fu) > 0], Z;o f[t=kl-Bk_x y=M < =,
then

(18) Pls = «,supz, < K] = 0.
Proo¥. Let d, = @, — naforn = 1. Form = 1,2, .-+, define {* = t,,*
by (10) and 2z, = D7 dil(es»ry - Then (2, , Fo , m = 1) is a martingale and
w =K, if *>n or t>1" <n,
=z, > 0, if m<t-=t="FL=n,
Sldl 4 -0+ ldal, if F = m.
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Since
w1 [t £ 2omn [umiiome (B — y2) + y)
S M+ Yo Jos B(Tpan(®e — 1) | Fom) < M,
then sup Ez," < « and thus sup Elz.| < «.By Austin’s theorem,
D dipesy < ©  ae.

Therefore P[s = «,t," = ] = 0.Since B, is{-regular, im,P[t," <t= ] =0
and hence P[s = »,{ = «] = 0, which completes the proof.

Let (24 , §a,n = 1) be a martingale. If (i) sup Elz.| < , or (ii) E d* < o,
then (17) is satisfied with ¥, = 2z, and B, = ®. If (iii) (F,,n = 1) is regular
and E|z,| < o, then (17) is satisfied with y» = z, and B, = Q. Therefore
under the conditions (i), (ii) or (iii), s < « a.e. on [sup z, < «]. Hence The-
orem 3 combines some results of Austin [1], Burkholder [2] and Gundy [8].

TuroreEM 4. Let (2, ,Fn,n = 1) be a martingale, Ez,” < », and for K > 0,
put t = inf {n |z, = K}. If there exist a stochastic sequence y, = 0 and a sequence
B, & F, such that B, 1s t-regular and that

(19) B, D [E’(I[t=,,+n(xt2 — y) | Fa) > 0], Z;’ f[t=k]—B;¢_1yt =M < «,

then

(20) P27 E(din | %) = », a° <K]=0,
(21) Plz, diverges, Y3 E(dps1|Fr) < »] = 0.
Proor. Let d, = 2y — Zuqyforn = 1. Form = 1,2, ---, define t* = ¢,*

by (10) and 2, = 2.7 dils i1 - Then (2., Fn, n = 1) is a martingale and
2. < K, if *>n or t>t"<n,

= |2, if m<t*=t=kzZn,

Sl + oo 4 ldal, i S
As in the proof of Theorem 3, we have

2wt [z’ S Dot Jumtise_ (@€ — ye) +y0) £ M;
hence sup Ez," < «© and E D5 di’Iesiy < . Therefore
> F E(dil | Foa) sy < o a.e. and
PIY7 E(di? | Faa) = ©, ta' = ®] =0.

Since B, is t-regular, lim,, Plt,” <t = ®] = 0 and hence (20) holds. In ([6];
320), Doob stated that if (2., 5., n = 1) is a martingale and E(d*)* < «,
then 2, converges if and only if D 3 E(dis | %) < . However, his proof of
the “if”’ part requires only the assumption that E(diyy | 51) < o a.e. for each
k. Hence (21) is a special case of Doob’s theorem. The proof is completed.
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Let (2, F., n = 1) be a martingale. If E(d*)* < «, then (19) is satisfied
with y» = 2,’ and B, = ®. If (§,,n = 1) is regular and Ez,’ < «, then (19)
is satisfied with y, = .’ and B, = Q. Hence Theorem 4 extends the above
cited Doob’s theorem to regular stochastic basis.

THEOREM 5. Let (2, , Fn,n = 1) be a martingale, E|z.| < «, and for K > 0,
pul t = inf {n |s, = K}. If there exist a stochastic sequence y, = 0 and a sequence

B, ¢S, such that B, 1s t-regular and that

(22)  Bn DIE(Ipmniu(se — ¥2) | Fa) > 01, 225 [temmi—sp_ o = M < o,
then

(23) Plx, diverges, s < K] = 0.

Proor. Let d, = 2, — a1 forn = 1. Form = 1,2, -+, define * =t
by (10). Put ex = dipl(se 513 and 2, = 37 ex. Then (2, ,Fn,n = 1) is a martin-
gale, and

*

E(D¢ 31«2)% = f[t‘>n]8n + f[t‘gm]sm + Dma f[t‘=k§t]3k
SK+Esp+ 2omn Jtstemse .
As in the proof of Theorem 3, '

Dot Jurmeamise < Dot Jrmi—pe_i (8t — Yo + ye) £ M.

Hence E( ZT e;f)* < o, and by Corollary 1, z, converges a.e. Hence Plx,
diverges, t,- = ] = 0. Since B, is t-regular, lim,, Plt,* <t = »] = 0 and
hence (23) holds. Thus we complete the proof.

Let (2, , 5, ,n = 1) be a martingale. If (i) E d* < «, then (22) is satisfied
with y, = s, and B, = ®. If (ii) (F.,n = 1) is regular and Elv,| < =, then
(22) is satisfied with y, = s, and B, = Q. Therefore under the conditions (i)
or (ii), x, converges a.e. on [s < o«]. Hence Theorem 5 combines some results
of Burkholder [2] and Gundy [8].

5. Application and corollaries.
TaEOREM 6. Let (&, , Fn, n = 1) be a martingale with Elz,| < .
(1) If (Fn ,n = 1) is a regular stochastic basts, then except on a null set
(24) § < o,
(25) T, converges,
are equivalent, and if Ex,} < o, then except on a null set, (25) is equivalent to
(26) Y B(dia | 54) < .

(i) If E¢di < o« for every stopping time t of the form t = inf {n | |z.| Z K},
then, except on a null set, (25) and (26) are equivalent.

¢iii) ForK > 0,putt = inf {n |z, = K} and 7 = inf {n | s, = K}.If Esw: < o,
then P[s = «,sup 2, < K] = 0, and if Es. < o, then P[z, diverges,s < K] = 0.
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In particular, if E,|d,| < o« for every stopping time o, then, except on a null set,
(24) and (25) are equivalent.

(iv) ForK > 0,putt =inf{n|z, 2 K}land r =inf{n|s, =2 K}.Lee M = K
and 6 > 0. If

(27) P{lt > n] — ([P(@pa = MlliFn) = 0lu [P(#n1 = K |Fn) 2 8]} =0,
then Pls = o, supz, < K] = 0, and #f
(28) P{[S > n] - ([P(8n+l g M l iFn) = O] U [P(8n+1

v

K|%.) z oD} =0,

then Plx, diverges, s < K] = 0.

Proor. (i) Put y, = 0 and B, = Q. Then B, is t-regular for every stopping
time ¢t and (17), (19) and (22) are satisfied. .

(ii) Let A = [sup |z.| < K|, ¢ = inf {n | |z,| = K} and 2, = Zminc.n) - Then
2, is a martingale, A C [t = =], and Bz < 2(K® 4+ E,d}) < ». Hence
DY E(d | Fea) sy < o a.e. Therefore D 7 E(dy’ | Fry) <  ae. on A.
Since K is arbitrary, (25) implies (26). Conversely, Doob’s proof of ([6];323) im-
plies that (25) holds when (26) is true (even without the condition E, d,” < ).

(iii) Assume that E.x; < «.Put ¥y, = max (0, z,) and B, = &. Then B, is
t-regular and (17) is satisfied. By Theorem 3, P[s < «, supz, < K] = 0.

Assume that E.s. < «.Puty, = s, and B, = ®. Then B, is r-regular and (22)
is satisfied. By Theorem 5, Pz, diverges, s < K] = 0.

(iv) Put y, = M and B, = [E(Iy=nsqj(x; — M) | F,) > 0]. Obviously (17)
is satisfied. By Lemma 3, and B, is t-regular. Hence the first part follows from
Theorem 3. Similarly, the second part follows from Lemma 3 and Theorem 5.

As an application of the ‘“induced” stopping times, we prove the following
submartingale convergence theorem, which includes, by Lemma 3, a result of
Doob [7].

THEOREM 7. Let (%, Fn, n = 1) be a submartingale, El|x,| < «, and for
K > 0, definet = inf {n |z, = K}. If there exist a stochastic sequence y, = 0
and a sequence B, ¢ F, such that B, is t-regular and (17) s satisfied, then Plx,
diverges, sup z, < K] = 0.

Proor. Letd, = z, — &,y forn = 1. Form = 1,2, - -, define t* = t,,* by
(10) and 2z, = 2 v dil t*2k . LThen z, is a submartingale. As in the proof of
Theorem 3, we have sup Ez,” < o. Since Bz > —o, sup Efz,] < ». By
Doob’s submartingale convergence theorem, z, converges a.e. Hence Plx, di-
verges, t,* = ] = 0. Since B, is t-regular, lim,, Plt,* <t = o] = 0. Therefore
Plz, diverges,t = «] = 0, which completes the proof.

If (5, ,n = 1) is a regular stochastic basis, then B, = Q is ¢t-regular and (17)
is satisfied trivially. Hence we have a simple proof of the following corollary.

COROLLARY H. Let (2., Fn, n = 1) be a submartingale and Elx,| < «. If
(Fn,n = 1) is regular, then x, converges a.e. on the set [sup x, < «].

.Under the condition that (F,,n = 1) is regular and atomic, Corollary 5 has
been proved in [3] and [7] by different methods.
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