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1. Introduction. Let m , m; , - - - , m denotek populations (¢ = 2) in which we
may observe the independent random variables 2,22, - - - , 24, respectively, where
x;is N(uj, ") forj = 1, .-+, k. The k 4+ 1 parameters p, --- , i, 0" are as-
sumed unknown. We denote the ordered p-values by pm = ug = -+ = um,
and if p; > pp-1 we refer to the population = with u = ug; as the best popula-
tion. Our goal is to select the best population with prabability at least P* when-
ever um — up—y = 0°; here P* and 6° are preassigned constants with
1/k < P* < 1 and * > 0. In other words, letting CS denote correct selection
and letting ©; be the set of all vectors @ = (u1, + -+ , m,0") With ppy — pp_y = 8,
we wish to obtain a procedure for which

(1) P(CS) = P* forall we.

If o were known we could proceed as in [1]. Take a fixed number n of independent
observations on each of the k random variables, and denote by Z;(n) the sample
mean of the n observations on z; (j = 1, -+, k). If £4(n) = Zi(n) for all
i=1,---,k, select 7o .

Let @ denote the cdf of a N(0, 1) random variable. From (1], for all © &€ & and
n=1

() Py(08) 2 [%@"(y + n'6%/0) d2(y),
with equality when py = s = = sp—y = s — 6. Define for 8* > 0
(3) ¢ = c(k, 8*) = (8%)/1’,

where for given k, h = h(k, P*) is the solution of
JZ 2" (y + b) do(y) = P*;
for P* > 1/k it is clear that & > 0 and hence ¢ > 0. Then from (2) it is easily
seen that (1) is satisfied provided = is chosen so that
(4) o < en.

Treating n as a continuous variable we denote by n* = ¢’/c the minimal fixed
number of k-tuples of observations. Tables of  for various values of P* and k

are given in [1].
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Clearly, when ¢” is unknown no fixed sample size procedure will work for all
o & Q. A two-stage procedure for this problem has been studied [2]. This pro-
cedure, while guaranteeing (1) for all o € @y, is inefficient, since it utilizes only
part of the sample to estimate o°. Accordingly, we consider here a more fully

Sequential Procedure. Let x.; denote the ith observationonz; ( = 1, --- , k),
and define for r = 2

ur = (k(r — 1)) i D i (i — z(r))%

Sampling proceeds sequentially, where at the rth stage we make a single observa-
tion on each of the k random variables z; and compute a fresh estimate u, of ¢”.
We terminate sampling at the Nth stage, where the random variable N is the
least odd integer n = 5 such that

(5) Un S on. ) (cf. (4).)

If « is the smallest j such that £;(N) = &,(N) forall¢ = 1, --- | k, we select
7o . (We require that sampling may be terminated only with an odd number of
k-tuples of observations in order to simplify the later computations of the prob-
ability distribution of N.) Certain aspects of a similar procedure have been con-
sidered by Srivastava [8].

2. Some properties of the procedure. As in 6], [9] we note that for each fixed
n the vector 2(n) = (%i(n), -+, &x(n)) is independent of the event {N = n}.
Accordingly, since the selection procedure depends only on X(N), we have from
(2) for all fixed 8* > 0, 0 £

P(CS) = >, P(CS|N = n)P(N = n)
(6) = > . P,(CS)P(N = n)
2 2. [2.8"(y + n'"/0) dB(y)-P(N = n) = B(\), say,
where
(7 A = o/8%.

That the procedure is asymptotically satisfactory as §* — 0 follows from [3], [5].
Let o be fixed and let 8* — 0. Then n* — o, N — o as., N/n*—1
a.s., EN/n* — 1. Since therefore

(8) N*%*/c — h  in probability,

from (6) it follows that

(9) lim inf P(C8) = [2®"'(y + h) d®(y) = P*, oe.

In fact, all these results hold without the assumption of normality provided only
that the z; have 0 < ¢® < .
‘As a measure of the cost of ignorance of o* we define

I=1I(\) = EN — n*.
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This cost is negligible, as may be seen from the following
TrEOREM. For all §* > 0,0 < ¢* < =,

(10) I <5
Proor. Define .

Ur = D50 Dt (i — ui)%

then forallr = 1,

(11) k(r — Du, S U, = Uprys.

Since from (5) for all odd N > 5, ¢(N — 2) < ux_z, we have from (11) for odd
N > 5,¢(N — 2) < Uy/E(N — 3). Thus for all odd N = 5,

(12) ckN(N — 5) < Uy .

Taking expectations on both sides of (12) we obtain by Wald’s lemma
ckE(N(N — 5)) < ¢" kEN; hence (EN)* — 5EN < EN* — 5EN < (¢°/c)EN,
and EN < o’/c 4+ 5 = n* + 5.

In our proof we tacitly assumed that EN < « s0 as to be able to apply Wald’s
lemma. We may eliminate this assumption by the following device. Define for
each m > 5 the random variable N,, = min (m, N) and deduce as above that
EN, < n* + 5. Letting m — o we have EN,, 1 EN < n* 4 5. Thus (10)
holds whatever the distribution of the z; , provided only that ¢* < .

We further observe that the inequality (10) cannot be sharpened since our
procedure requires that N = 5, and accordingly (from (3)) I — 5 as 6* — .

3. Small sample performance. We have established that the sequential pro-
cedure is asymptotically consistent and efficient (in the sense of [3]) and that
the cost of ignorance of ¢” is of little consequence when the sequential procedure
is used, for all 8* > 0,0 < ¢® < «. It remains to verify that P(CS) is approxi-
mately = P* for all o & Q.

Let {vi (+ = 1,2, .-+ ) be independent random variables, each with a chi-
squared distribution with & degrees of freedom. By Helmert’s transformation
we can write for all n = 2

(13) k(n — Dua/o® = D05 v
Let n = 2m + 1; then from (5) N is the least integer m = 2 such that
(14) Ugmr = ¢(2m + 1).

From (13) (recalling the definition (3) of ¢) we may rewrite (14) in the form
v £ k(2m 4+ 1)2m/B\

The random variable w = (»1 + »)/2 is the sum of £ independent standardized
exponential random variables, so N is the least integer m = 1 such that
Wy + -+« + Wn = @my1, where the w’s are independent and distributed as the
sum of k standardized exponential random variables and where the constants
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{an.} are given by
a; = 0, am = k(2m — 1)(m — 1)/B°N° for m = 3,4, ---.

Thus for values of the parameter N\, 0 < X < oo, the probability distribution p,,
of N is defined for m = 1, 2, - -+ by

pm()\) =P)\<N=2m+1) =P)\(zl>a2722>a37"’zm—~1>amyzméam+1)

whereform = 1,2, = wi + - + Wn -

The followmg recursive scheme, which generalizes [6], [9], gives a method for
computing p,(A) (m = 1,2, --- ) for given values of the parameter \.

Define fora = 0,1, --- , k — 1,

WP@) ="k — 1 — &)l
and form = 2, 3,4, ---

hoi () = 22750 ZM — @) (Gl + B8 — &) ) TRE-pi(an).
Let ¢ = ¢ = 1, and form = 3, 4, - - - define
Cm = € " 3”:01 Ek——O h(m—a)k(am)§

then forallm = 1

Pm = Cm — Cm+l .

TABLE
Values of 8 and EN for P* = .95
. k=2 k=3 k=4 k=35
n .
EN B EN B EN B8 EN B

2 5.02 99539 5.01 .99763 5.00 .99840 5.10 .99879

4 5.63 97223 5.45 .97509 5.46 .97636 5.42 97710

6 6.88 .95503 6.87 .95598 6.86 .95682 6.86 .95759

8 8.44 .94620 8.56 .94734 8.64 94918 8.70 .95099
10 10.17 94217 10.42 .94431 10.57 94713 10.67 .94956
12 12.01 .94065 12.37 .94376 12.56 .94708 12.67 .94964
14 13.92 .94043 14.25 .94420 14.57 .94760 14.69 .95000
16 15.87 .94084 16.36 .94497 16.59 .94821 16.70 .95033
18 17.86 .94155 18.38 .94576 18.60 .94872 18.71 .95055
20 19.87 .94236 20.40 .94648 20.62 94911 20.73 .95068
25 25.00 .94428 25.46 94779 25.65 .94969 25.74 .95079
30 30.00 .94576 - 30.49 .94853 30.67 .94993 30.75 .95077
35 35.07 .94680 35.52 .94896 35.68 .95003 35.76 .95072
40 40.12 .94751 40.53 .94921 40.68 .95009 40.76 .95066
45 45.16 .94801 45.55 .94937 45.69 .95011 45.76 .95061
50 50.20 .94835 50.55 .94947 50.69 .95012 50.76 .95057
60 60.24 .94879 60.56 .94961 60.70 .95012 60.77 .95049
70 70.26 .94904 70.57 .94969 70.70 .95012 70.77 .95043
80 80.28 .94921 80.57 94974 80.70 .95011 80.77 .95039
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Thus from (6), for any fixed value of the parameter A,

(15) P(CS;\) = 2oma [Ze®(y + (2m + 1)Y/)) d8(y) -pa(d) = B(N)

for all g1, --- , u for which @ & @ . Moreover, the expected sample size EN =
E\N is defined by o
(16) EN = 21 (2m + Dpna(N) = 2 2o mpn(N) + 1.

Exact computations of the functions 8 and EN defined by (15) and (16) have
been carried out (for a number of values of \) when P* = .95, k = 2, 3, 4, 5,

and are presented in the accompanying table. The values of the fixed sample size

n* = ¢*/¢c = h*\* which would be used if ¢* were known are included for compari-

son with EN.

We have no proof that the minimum value of the lower bound 8 of P(CS) is
attained in the computed range n* = 2, - - - , 80, but this appears to be the case.

ReMARKS. 1. The procedure discussed above is not fully sequential in the
sense that it does not discard obviously unwanted populations (i.e. those with
small means) as sampling proceeds. We are now studying a procedure based on
results in [4] which has this desirable feature.

2. The method used in proving (10) can also be applied to obtain an upper
bound on the expected sample size for the problems considered in [3], [5], [7],
and [9].
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