The Annals of Mathematical Statistics
1968, Vol. 39, No. 1, 76-87

ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS
DENSITY?

By B. LS Praxasa Rao
Unaversity of California, Berkeley

1. Introduction and summary. Chernoff and Rubin {1] and Rubin [5] in-
vestigated the problem of estimation of the location of a discontinuity in density.
They have shown that the maximum likelihood estimator (MLE) is hyper-
efficient under some regularity conditions on the density and that asymptotically
the estimation problem is equivalent to that of a non-stationary process with
unknown center of non-stationarity. We have obtained here similar results for
a family of densities f(z, #) which are continuous with a cusp at the point ¢. In
this connection, it is worth noting that Daniels [2] has obtained a modified MLE
for the family of densities f(z, #) = C(\) exp {—|z — 9"}, for X such that
1 < X\ < 1, where C()\) is a constant depending on X and he has shown that this
estimator is asymptotically efficient. In this paper, we shall show that the MLE
of ¢ is hyper-efficient for the family of densities f(z, ) given by

(1.1) log f(z, ¥) = e(z, |z — 9 + g(z,¥) for |a] < 4
= g(z, &) for [z > 4
where A is a constant greater than zero,
(1.2) e(z,9) =) if z<4d
=) if z>4d,
(1.3) 0<A<$% and
(14) de(a,b) where —A4 <a <b <4,

under some regularity conditions on f(z, ¢#) and we shall derive the asymptotic
distribution of the MLE implicitly.

Section 2 contains the regularity conditions imposed on the family of densities
f(z, ). Section 3 contains some results related to the asymptotic properties of
the MLE. The estimation problem is reduced to that of a stochastic process in
Section 4. The asymptotic distribution of MLE is obtained in Section 5.

2. Regularity conditions. We shall assume that the following regularity
conditions are satisfied by f(z, ¢).
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LOCATION OF THE CUSP OF A DENSITY 77

(2.1) For each & # & ¢ [a, b], there exists a 8(&, #) > 0 such that
Es, [Sup {log f(z, ¢) — log f(z, %) :le — 9| = 8(8, do)}]
is less than zero.
(2.2) For every &, & in [a, b], dg(x, ¢)/89, 8°g(x, 8)/88" exist,
Es,[|[0g(z, 9)/08)s=s,]] < © and Ey[|8%g(z, 3)/85"|] £ Ki(d) < =,
for some constant K;(d) depending on Jy .
(2.3) For every & ¢ [a, b], Es,{[d log f(z, ¢)/3Fs=s,} = O.
(2.4) For every do¢[a, b, |f(x, %) — f(So, %o)| < Ka(So)|z — &
for all z e [—A, A], where K,(&) is a constant depending on & .
(2.5) B(¢) and y(#) are differentiable twice at all
¢ with bounded second derivatives.

3. Some asymptotic properties of MLE. Since our interest centers around
obtaining the limiting distribution of the MLE of ¢, we can assume, without loss
of generality, that the true value of ¢ is ¢y = 0.

Let K;(¢) = K; and Kp(d) = K,. Let z;, 1 £ 7 £ n, be independent ob-

servations from f(z, 9). Let &, denote the MLE of & .

Lemma 3.1. 3, 4s strongly consistent under the condition (2.1).

Proor. Let Sy denote the interval (& — 85, & + 8s) where 6 = 8(3, 0) is
given by (2.1). Let

(3.1) Le(8) = D log f(z:, 9).
Choose any 4 > 0 and define @ = [a, b] n [#:|9] = 7]. Since @ is compact and
U{Ss:¢ ¢Q} D Q, there exists a finite set ¢, s, -+, 9y in Q@ such that

1£.8; D Q@ where S; = S, .
It follows from (2.1) by the strong law of large numbers that for any ¢ > 0
there exist integers N (&;, €) such that for 1 £ 7 £ M, and n = max; N(d, €),

(32)  Puf Uszn { 227 {supses; (log f(2;, 8)
—logf(z;,0))} <0}] >1— ¢M.
Now
Py Uiza (1] 2 )]
< P Uiz {supsea Le(9) > Li(0)}]
< Y LP Ui >n {supses; Li(3) > Li(0)}]
, S M-¢/M = ¢ from (3.2).

This establishes the strong consistency of &, . []
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Let us now consider the log-likelihood ratio
La(8) = La(0) = 221 [e(s, Do — o] — e, 0)[af']
+ 2l lg(zi, 9) — gz, 0)]
where »_* denotes that the sum is extended over those z; for which |z £ A.
We shall now prove some lemmas which lead to the calculation of Ey[L.(d)

- Ln(O)]’ Va'rO [Ln(g) - Ln(O)] and V&I’o [Ln("}) - Ln(¢)]
Let us define

(3.3) V(z, ) = e(z, )|z — 3" — ez, 0)|z* for |z| < 4
=90 for |z| > 4,
(34) B =p8(0), v=70), f=f0,0),
(3.5) ®(z, 9) = Me(z,0) Sgnz |z[*" for |z| < 4
=0 for |z| > 4,
and

(36) C =T+ 1)TE — VR FAEN + DB ++° — 28y cos m\].

Specifically, we shall prove the following results about the log-likelihood ratio

LemMmaA 3.2.
(3.7) EfLa(8) — La(0)] = —nCflo/* {1 + o(1)]
where 0(1) s in & and in general for any & ¢ [a, ],
(38) EJLa(3) — La(0)] £ —nH[s|™"
where H 1s a constant independent of & and n.

LemwMma 3.3.
(3.9) Var[L.(¢) — L.(0)] = 2nCf|8|>[1 + o(1)]
where o(1) 1s in & and in general for any & and ¢ ¢ [a, b]
(3.10) Van[Lo(9) — La(e)] S nQld — o™

where Q s a constant independent of &, ¢ and n.
We shall now prove some results which lead to the above two lemmas.

LeEMMA 3.4.

(3.11) Ef¥(z,9) — ¥(z, 9)I = 208 — o[*™[1 + o(1)]
as ¢ — 0 and |¢| — 0 and in general for any ¢ and ¢ in [a, ],
(3.12) Ef¥(z, 8) — ¥(z, 9)I" < B¢ — /"

where B is a constant independent of ¥, ¢.
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Proor. Let us assume without loss of generality that ¢ > g andlet n = & — .
Now

(3.13) Ef¥(z,d) — ¥(z, o)’
= [2i{e(z, 9)la — 3 — e(z, 0)|w — o'}f(=, 0) da.
Let us now define
(3.14) Ti = [2i{e(z, 9|z — 9" — e(z, 0)|z — ¢'IF(0, 0) da,
(3.15) T» = [2i[e(z, 9)|e — 9" — e(z, o)z — o|'Tf(z, 0) — £(0, 0)] da,
(3.16) Ts = [Z,[e(x — m, )]z — 3" — e(z, ©)|& — ¢|'I'|2] da,
(3.17) Ty = [2ile(x — 1, ¢) — (2, 9w — 3 al* dz,
(3.18) Ts = [2ile(z — n, 0)le — 9" — e(z, 0)le — ¢'T" f da,
(3.19) Ts = [2i[e(z, ¥) — e(z — n, o)z — 9™F(0, 0) da.

Since ¢ belongs to a finite interval [a, b] and since 3(#) and v (&) have bounded
derivatives, it follows that

(3.20) T, = 770(1), Ts = 7°0(1).
Let us now consider 75 . We have
Ty = fo™* [20, [e(ny — n, @)y — 3/0] — e(ny, )y — o/1'T dy
= [Ble(nz + 0 — m,0)le — 1" — e(nz + ¢, o) 2|12 d2
where B, = —(4 + ¢)/n and B, = (4 — ¢)/n,
= " [Zoh(z = Dle — 1" — h(2)|of'T de
— ™ 2 h(z — Dz — 1 — h(2)[o]'] de
— ™ 5 h(z — Dle = 1" = h(2)[o'T d2
where
h(z) = B(p) if 2<0
=y(p) if z2=0.
It was shown in Prakasa Rao [4] that
JZa iz = Do = 1" = h(2) | dz = 2C(p)
where
Cle) = TN+ DTG — M2 + DI
18'() +7'(¢) — 26(e)x() cos .
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Therefore,
(3.21) Ts = 2C(o)fn™™ — ™ [EL [h(z — 1)|e — 1|* — h(2)|2|')* d2
— P[5 [h(z — Dz — 1 — h(2)[e[) de.

As a consequence of (3.21), we find that for any ¢ and ¢ in [a, b],

(3.22) Ts = n”0(1)
and as ¢ — 0, and ¢ — 0,
(3.23) Ts = 201 + o(1)].
In a similar way, it can be shown that for any ¢ and ¢ in [a, b],
(3.24) Ty = 1270(1),
and as ¢ — 0, and ¢ — 0, by bounded convergence theorem, that
(3.25) Ts = 1" o(1).
Since |Ty* — Ti}| < T4, (3.20) and (3.22) imply that
(3.26) Ty = Ts 4 7*°0(1) 4 7°0(1).

Let us now consider the general case when ¢ and ¢ are any two numbers in
[@, b]. Now combining all the previous results, we have

Ef¥(z,d) — ¥(z, ) = T + T

Ts + 7°0(1) + 4°0(1) + 2K5(Ts + T)
P TP0(1) + 470(1) 4+ 0(1)]

— nz)\+10(1)

since 0 < A < % and 7 is bounded. This establishes (3.12). Let us now suppose
that ¢ and ¢ approach zero. Now

Ef¥(z,8) — ¥(z, o) = T1 + To
= Ts + »"0(1) + 7°0(1) + 5"o(1)
= 2Cf™ "1 + o(1)]
since 0 < A < %. This establishes (3.11). ]
Lemma 3.5. For any ¢ ¢ [a, b],
(3.28) Ef¥(z,9) + &(z, 9)] = —Cflof" (1 + o(1)]
+ [Lile(z, 8) — e(z — 8, 0)]lz — 9f(z, 0) du.
Proof of this lemma is omitted for the reason that it runs along the same lines

as that of the previous lemma and that it is too lengthy. Details can be found in

Prakasa Rao [4].
Proor or LemMMa 3.2. Let us assume that ¢ > 0 without loss of generality.

IIA

(3.27)

lIA

It
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We have
EqL.(¢) — La(0)] = nEylog f(x, ) — log f(z, 0)]
nE¥(z, 8)] + nElg(z, ¢) — g(x, 0)]
nE¥ (z, 3)] + ndEg’ (z, 0)]
+ n8Eolf5(1 — )g” (=, t) di]

where ¢'(z, 9) = dg(z, 9)/99 and ¢” (z, ) = 8% (z, 8)/95".
Let

(3.30) T: = E¥(z,9) + &z, 3)] — [24[e(x, F)
— ez — 8, 0]z — 9f(z, 0) da,

(3:29)

I

and
(3.31) Ts = Eidg’ (x,0) — &(x, ¢)] + [Aule(z, &)
— ez — &, 0)] |z — 8%(x, 0) da.
By the conditions given in Section 2,
(3.32) E[L.(¢) — L,(0)] = nT7 + nTs + n8’0(1).
Since Eo[d log f(x, #)/8¢]s=0] = 0,
20 (€ (z, 0)|z[* — Ne(z, 0) Sgn z |2 S (z, 0) dz
+ [%ug’ (z, 0)f(x, 0) dz = 0.
This implies that
(3.33) Ef9g'(x,0) — &(x, 8)] = —0[24¢ (2, 0)]zf(, 0) da.
Combining (3.31) and (3.33), we have
Ty = [2ufle(z, 8) — e(z — 3, 0)]lz — 8" — € (z, 0)[2["}f(z, 0) du
which implies that
(3.34) Ts = 9°0(1)

since ¢ is bounded and 8(¢), v(#) have bounded second derivatives.

(3.32), (3.34) together with Lemma 3.5 establish (3.7). (3.8) canbeestablished
using (3.7) under the condition 2.1. []

Proor or LEmma 3.3. Let us first compute Vary[L,(#) — L,(0)] for & ap-
proaching zero. Now

VarL,(¢) — L.(0)] = n Varglog f(z, #) — log f(z, 0)]
nElog f(z, 8) — log f(z, 0)I*
— n{Ellog f(z, &) — log f(x, 0)]}%
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It is easily seen from Lemmas 3.4 and 3.5 and conditions (2.2)-(2.5) that as
3 —0,

Eqlog f(z, 8) — log f(z, 0)I" = 2Cf|8|>"[1 + o(1)],
and

Edlog f(z, 9) — log f(z, 0)] = —Cf|8*[1 + o(1)].
Therefore we have for ¢ — 0,

Var[L.(¢) — L,(0)] = 2nCf|9|* 1 + o(1)].

Let us now compute Varg[L,(¢#) — L.(¢)] for any ¢, ¢ in [a, b]. Now by Lemma
3.4,

VarLa(¢) — Lu(¢)] = nElog f(z, &) — log f(z, ¢)I’
< 2nE ¥ (z, d) — ¥(z, o)’
+ 2nEdg(z, 9) — g(z, o))
2n[Bl3 — o™ + |8 — o['0(1)]

IIA

é nQ[z? _ <p|2)\+1

for some constant @ since 0 < X < % and &, ¢ belong to a finite interval. []

We shall now prove a theorem by means of Lemmas 3.2, 3.3 which enables us
to conclude that the probability, that the log-likelihood ratio L,(d#) — L,(0)
attains its maximum outside the interval [—sn™", n~"], approaches zero for
sufficiently large n as |7| — o where p = (1 4+ 2\)™. More precisely,

TuroreM 3.6. There exists n > 0 such that

(3.35) lim 1 lim sup, Po[sup;s;sem—of M (8)/n/8)>"} = —9] = 0
where
(3.36) M,(9) = L.(8) — Ly(0).

Proor. Since M,(¢#) is continuous in ¢, it is sufficient to prove that there
exists an 7 > 0 such that

(3.37) lim ;e lim sup, Po[SUp)oijeism=of Mo (Fix) /)82 = —9] = 0.

where the set {¢,;;} is dense in the set {#:]9] > ™ 7}.

Let 8. = 0 "2°%  for¢ > 0,7 = 0, and 0 < & < 2°. Obviously the set
{35} is dense in {&: |9] > +n”*}.

Let ¢ = 2\ + 1. Let us now define

(3.38) To(Siin) = Ma(Fin) — BEo[M,(3:1)] — nHo

‘where H is given by the Lemma 3.2. We observe that
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(i) EoTa(dw)] = —H72%,

(3.39)  (il) BoTa(dijoe1) — Ta(Piip)l = 0, for 0Sk<27—1
(iii) Var|T.(dw0)] = VarM,(%:x0)] < Qr°2%,
(iv) Var[Ta(d45041) — Ta(¥i-10)] < QrF(21log 2)'2°77",

The last two inequalities are obtained from Lemma 3.3 after some manipulation.
We now observe that for any 0 < < H,

(3.40)  Po[supsijism—e{ Mn(Si) /085 ) = —n]
< PO[Supﬂ,,L>m P{T (011k)/n0 00} —77]-

Let 0 < £ < H, p; = 279" where 8 is chosen so that0 < 8 < £(2"* — 1) and
let n =& — 6(2)‘/2 1)7". We notice that

Py[sups;jsm-o{ Tn(din) /0o Z —n]
< D PITa(9i) = —nidinl
+ X0 e 2 T PATa (B4 5m41) — Ta(Bi514) Z np oo}
QA —27H)TH — T+ §7(210g 2)5(2 — 2)7).

This inequality is obtained by Chebyshev’s inequality using (3.39) after some
manipulation. Therefore (3.40) implies that

1im, . lim sup, Po[Sups,;usm-e{ Ma(dii)/nd% s} = —nl = 0.
In an analogous way, one can establish that
lim,.,  lim sup, Po[sups, ;,<—sm—e{ Ma (i) /ndtp} = —n] = 0.
These two results together establish (3.37) which in turn proves the theorem.

4. Reduction to a problem in stochastic processes. We shall now
reduce the problem of determining the asymptotic distribution of the MLE O
to the problem of determining the distribution of the location of the maximum
of a Gaussian process.

In view of Theorem 3.6, the log-likelihood ratio M,(¢) has a maximum in the
interval [—+n~?, ¥n"‘] with probability approaching one for large 7. For any

b

such 7 > 0, let

(4.1) X.(t) = M,(tn™") for te[—m, 7]
and let X be the continuous normal process on [—7, 7] with
(42) (i) EX(1)] = —CflY,

(ii) Cov[X(h), X(t)] = Cfllal* + |6l* — | — &f'].

Let
(43) An(t) = X, (t) — E[X.(2)],
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and
(4.4) A(t) = X(t) — E[X(¥)].

Lemma 4.1. For any te[—, 7], An(t) is asymptotically normal with mean 0
and Variance 2Cf|t|’. o

Proor. Notice that A,(¢) = B.(t) + Ca(t), where
(4.5) Ba(t) = 2ia¥(Xi, 8) — nEf¥(X, )],
(46) Cu(t) = Xiaf{g(X:,9) — ¢(X:,0)} — nElg(X, 9) — g(X, 0)],
and & = tn~". It is easily seen that E¢[C,(¢)] = 0 and Var[C.(t)] — 0asn — o«
since 0 < A\ <31. In other words, C,(¢) converges to zero in probability as n — .
Let F,(z) be the distribution function of B,(t) and let #(x) be the distribution

function of standard normal random variable. By the normal approximation
theorem in Logve [3], it follows that

|Fo(z) — ®(x)| < nCof VardB. ()} ’EY — E(Y)[’

where Cj is an universal constant and ¥ = ¥ (X, ¢). It is known that Var[B,(t)]
= 2Cf|tI'I1 + o(1)] by Lemma 3.3 and it can be easily shown in a similar way
that

E|Y — E(Y)[ = CiJo/™"
for some constant C; independent of &. Therefore,
Fo(z) — ®(z)] < CCl™ ™20 (1 + o(1))} ™ *n ™M™,

Since the right hand term tends to zero as n — w, we have established that
B, (t) is asymptotically normal with mean 0 and Variance 20f4[*. Since C,(t)
converges to zero in probability, Slutsky’s theorem implies the required result. []
ReMark. It can be shown in a similar manner by normal approximation
theorem that for any collection a;, 1 < 7 < k,and &, %, - - , & in the interval
[—7, 7], 2= a;A,(t;) is asymptotically normal with mean 0 and Variance

CAY b Dbl + [tf° — [t — 3]

The next theorem shows that the processes 4, on [—r, 7] satisfy an equi-
continuity condition.
TuroreM 4.2. For any t, & in [—7, 7],

Eodn(t) — Aa(t)]* = Qltr — 8l

where Q is a constant independent of n, ty , ty and ¢ = 2\ + 1.
Proor. This theorem is an immediate consequence of Lemma 3.3, since

Eo|An(ty) — Au(t)|* = VardMa($h) — Ma(d)]
nQld — O
Qlt — &', g

IIA
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We shall now state a theorem due to Prohorov connected with convergence of
distributions of stochastic processes on C[a, b, where C[a, b] denotes the space of
continuous functions on [a, b]. Let us endow C[a, b] with topology generated by
supremum norm. We refer to Sethuraman [7] for a proof of the theorem.

TarorREM 4.3. Let X, be a sequence of stochastic processes on Cla, b] and X be
another process on Cla, b] such that

(i) for any t; € [a, b], 1 < ¢ = Fk, the joint distribution of [X,(ty) , -+ , Xn(&)]
converges weakly to the joint distribution of [X(t1) , -+ , X ()] and

(ii) there exists constants A; > 0, A, > 0, A3 > 0 independent of n, t, , and t;
such that

E|X.(t) — Xa(L)|* < Aslty — &'+,

Let un and u be the distributions induced by X, and X respectively on the o-field of
Borel subsets of Cla, b]. Then u, converges to u weakly. In other words X, converges
@ distribution to X.

In view of Lemma 4.1, Theorem 4.2, and the remarks made at the end of Lemma
4.1, follows that the processes A, on [—7, 7] converge in distribution to the
process A on [—7, 7] by Theorem 4.3 since the trajectories of the processes 4.,
and A belong to C[—r, 7]. Since E[X.(¢)] converges to E[X(¢)] uniformly for
t & [—1, 7], the following theorem can be obtained by an extension of Slutsky’s
theorem generalized to processes (Rubin [6]).

TraEOREM 4.4. The processes X, converge in distribution to the process X.

For any z £ C[—1, 7], let us denote by g(z) the value of ¢ for which z(¢) is
maximum over [—r, 7]. It is easily seen that z, — z and z has a unique maximum
imply that g(z,) — g(z). Since the process X is continuous, the set of dis-
continuities of g has measure zero with respect to the measure induced by the
process X on the space C[—r, 7). Therefore, it follows from a theorem of Rubin
[6], that g(X,) converges in law to g(z). Hence we have the following theorem.

TraEOREM 4.5. The distribution of the location of the maximum of log-likelihood
ratio M, () over [—rn™", 7n"°] converges weakly to the distribution of the location of
the maximum of the non-stationary Gaussian process X over [— r, 7] defined in (4.2).

The next theorem proves that the Gaussian process X over (— », « ), with
mean function and covariance function given by (4.2), has its maximum in a
finite interval [—r, 7] with probability approaching one as |r| — . More
precisely,

THEOREM 4.6.

Pim sups 4o { X (7)/Cf| 7} = —1] = 1.
Proor. Define
(1) A(r) = X(7) + Ofl7l5,
(4.7) (i) Zo=sup{d(r):1 =79,
(i)  Z. = sup{A(r): 2" < r < 2™},
(iv) U =sup{lA(r) —A)]: 1=+ = 2.
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Since the process A is separable, Z,, Z, and U are random variables. Since 4 is
a continuous process with probability one,
(4.8) U = sup{T;:j = 0} as.
where o
(4.9) T, = sup{|A((s — 1)27%) — A(s279)|: 27 + 1 = s S 27},
Now foranya > 0,0 < r < 1,
PIT; > arll £ 220 PA((s — 1)27) — A(s279)| > ar)

= (2" — 2)P(JA(1) — A1 + 27%)| > ar}

< Ofa 2™,
Therefore,

PIU > a(1 — )71 £ X5= PIT; > ar]
< 20fa”*(1 — 2™

It can easily be seen from here that there exists a constant D > 0 such that
(4.10) P[U > a] = Da”

for any @ > 0, which implies that E(U) < «. Since |Zo = A + U, it
follows that E|Zo| < . Let E|Z,| = «. Now for any ¢ > 0,

S ® o PlZ, > 2] = X a0 PlZy > 2™

a1l — 277 < o,

2

and hence by the Borel-Cantelli lemma
P[Z, > &2"i0] =0

for every ¢ > 0. In other words P[lim sup Z,2™™ < 0] = 1. Since A(r)r*
< Z,2 ™ provided 2" £ 7 = 2" we have

P[lim sUpr.40d (r)7° £ 0] = 1.
Tt is easily seen from this result together with a similar result as r — — o that
Pllim supjri4e {X(r)/Cf e[} = —1] = L. 0

5. Asymptotic distribution of MLE. We have the following final theorem from
Theorems 3.6, 4.5 and 4.6.

TuroREM 5.1. Consider the family of densities f(z, ©) given by (1.1)-(1.4)
satisfying the regularity conditions ( 2.1)-(2.5). Let &, denote a MLLE of & based on
n independent observations. Let $o denote the true value of 3. Then n”“'”‘[@,. — %)
has a limiting distribution and it ts the distribution of the location of the mazimum
of “the nonstationary Gaussian process X with

23 +1

E[X(7)] = —C(30)f(30, Bo)[r[",
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and
Cov[X(r1), X ()] = C80)f (Do, 9o)[|[** + | — |7y — 7o™¥]
where .
C(%) = T\ + DTG — MR + D7 (%) + +(30)
— 2B(8)v (%) cos wA).

In other words, the MLE 3, is hyper-efficient estimator of ¥ when 0 < \
< i

REeMARE. It can be shown by analogous methods that Bayes estimators for
¢, for smooth prior densities, are also hyper-efficient and asymptotically the
Bayes estimation of ¢ is equivalent to the estimation of the location of center of
non-stationarity. The problem of hyper-efficiency of MLE when the cusp is of
order % is being investigated and we hope that the MLE is hyper-efficient.
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