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1. Introduction. Suppose one may observe a stochastic process Y(-) having
the form

Y(t) = 2 iaBifi(t) + X(1), telo,1]

where the 8;’s are unknown parameters, the f;’s are known functions and X(-)
is a stochastic process with mean function zero and known covariance kernel R.
Under minor conditions on the regression functions f; and the kernel R, one may
for a suitably large finite observation set 7', give expression to the best linear
estimate (BLE) Bof 8 = (B, -- -, Bs)" and to the covariance matrix of this
estimate, say A .

In a previous paper [2], we treated the following design set-up for the case J = 1
above;if D, = {T|T = {ti, -+ ,t},0 =t < -+ < t, £ 1}, an optimum de-
sign in D, is a set T which minimizes A7 " over D, (here A7 " is simply the
variance of the BLE of 8; based on the observation set 7'). In [2], we discussed
the question of existence of optimum designs and, under certain restrictions, we
produced sequences of designs (T.*}, T.* ¢ D, , asymptotically optimum as
n — . The necessity of pursuing such an asymptotic theory is discussed at some
length in the introduction to [2].

In the present paper, we consider the cases J > 1. The fundamental difference
here is, of course, that A, ' is a J X J matrix. Since one cannot expect the
minimum of A7 to exist over D, (minimum in the sense of the ordering of non-
negative definite matrices), our current problems arise from the attempt to
minimize certain one-dimensional measures of the size of Ay '. The criteria
treated below include, for example, the variance of §'8 (viz. 0’Ar'0) where 0 is a
fixed vector, the maximum variance of 8’8 with the maximum taken over a com-
pact set 91 of vectors, and the generalized variance det Az . We also con-
sider certain regret criteria where regret is measured relative to what could be
achieved through use of the observation set [0, 1].

Our basic assumptions are stated in Section 2 together with various formula-
tions of the optimality of designs and the asymptotic optimality of sequences of
designs. The necessary asymptotic results for this study are presented in Section 3
and, in the final section, they are applied to find asymptotically optimum
sequences of designs for a variety of criteria. The asymptotically optimum
sequences found are all, what we call below, regular. That is, the (n + 1)st de-
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sign set in a given sequence is a set of n-tiles of some fixed absolutely continuous
distribution function with support in [0, 1]. Thus, asymptotically optimum
sequences are generated by suitable densities on [0, 1] and our results are phrased
in this way. .

It should be noted that we have not pursued the question of existence of opti-
mum designs here. In fact, most questions of this nature are rather easily
answered by reference to Section 2 of [2].

2. Assumptions and preliminaries. We suppose that observations may be
taken on a stochastic process Y (f) of the form

(2.1) Y(t) = 2iaBfi(t) + X(1),  telo,1],

where the 8;’s are unknown parameters, the f;’s are known funections, and X( -)
is a process with mean functions zero and covariance kernel R on the unit square.
The restriction to [0, 1] in (2.1) is solely for convenience.

Associated with R is a reproducing kernel Hilbert space § of functions on
[0, 1]. Much of our analysis concerns the inner product in this space and we denote
it by(,) with {f, f) = ||flI*. The assumptions we make about R are the same as
made in [2] and we repeat them here for convenience. These assumptions are
discussed at length in [2].

AssumpTION. A. R has continuous partial derivatives up to order two at every
(s, t) in the complement of the diagonal in the unit square. At the diagonal, R has
right and left hand derivatives up to order two.

AssumpTioN B. a(t) = Ry (§,t) — Ra'(t,t) defines a continuous function aon
(0, 1) which can be extended to a strictly positive continuous function on [0, 1].
Assumprion C. For each ¢ € [0, 1],R% (-, ¢) is in § and

SUPo<z<1 “R;Z.*_( %y t)“ < oo,

We will deal only with f’s , which are of the form

(2.2) fi(t) = [oR(s, )os(s)ds, tel0,1], j=1,2---,J,
where ¢, , - -+, ¢s are continuous and linearly independent functions on {0, 1].
From the assumption (2.2), it follows that each f; ¢ § and
(2.3) (i, 8 = [ofd)ot)ydt, 154, <J.

ReMARK 2.1. Our results will also apply when (2.2) is generalized to
(2.4) Jit) = f(lx R(s, t)oi(s) ds + Dk CuR(-, ti)

where the C’s are real numbers, the ¢;’s are points in [0, 1], and the K;’s are
integers. The method described in Remark 3.3 of [2] for such an extension is also

applicable here.
Lemma 2.1. If Assumptions A, B and C are satisfied and (2.4) holds with
i, -, ¢s continuous and linearly independent, then fy , - - -, fr are linearly inde-

pendent over [0, 1].
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Proor. If f;, - - -, f; are not linearly independent, there is a eontinuous func-
tion ¢ which is not identically zero on [0, 1] such that

(2.5) JoR(s, t)(s) ds = 2ok CuR(Y, 1)

for some real numbers Cy , - -+ , Cx and numbers 4 , - - - , tx all in [0, 1]. Since the
left side of (2.5) is differentiable at every ¢t & (0, 1) (Assumption A) and the
right side of (2.5) is not differentiable at # if # £ (0, 1) (Assumption B), it must
be that

(2.6) [oR(s, t)o(s)ds = aR(t, 0) + bR(t, 1) = aR(0, t) + bR(1, t).

Let f(¢) denote the left side of (2.6). From Assumptions A and B we can differ-
entiate f twice and obtain (see (3.6) of [2] and Assumption C)

(2.7) () = —a(t)(t) + (BRR'(+, 1), f).
Differentiating the right side of (2.6) twice yields
aRx(0, t) + bRu(1, 1) = (RL'(-, 1), aR(-, 0) 4+ bR(-, 1)) = RH'(-, 1), ).

This, together with (2.7), implies that a(¢)¢(t) = 0 for all ¢ £ [0, 1] and so contra-
dicts the fact that ¢ is not identically zero inasmuch as a > 0. The lemma is thus
proved.

CoROLLARY. Under the conditions of Lemma 2.1, A = {(fi, fi), 1 £ 4,5 < J} is
a positive definite mairix.

Proor. A is non-negative definite. If 0 = > . ; AN (fi, fi) = || 2oi Nfill’, then
;A is identically zero and Ay = --- = A; = 0.

Henceforth, for convenience, positive definite matrices will be called positive
and non-negative definite matrices will be called non-negative. If B and C are
non-negative, we will say B > C if B — C is positive and B = C if B — (' is non-
negative.

Suppose now that we have n observations Y(4), ---, Y(¢{.) where 0 =
h<t<---<t, =1 and suppose that 81, - -+, B; are all estimable. Let T =
{t, -+, t}, let Ry be the n X n matrix {R(¢:, ¢;)} which we suppose is
non-singular, let R, (¢;, t;) be the ijth element of R, ", let Ay be the J X J
matrix whose rsth element is > ;o fr(t:)Rs (t:, t;)f:(4;), and let n be the
J-vector whose rth coordinate is i fr(t:)Rs (¢, t)Y(#;). Then the best
linear estimate of 8 is given by A, 'y and has covariance matrix 4, . Put into
the language of reproducing kernel spaces we can say that, if 7' is a finite subset
of [0, 1] and P is the projection operator from ¥ onto the subspace Fr of § which
is generated by {R(-, t);t& T}, then Ar = {{Pf,, Pzfs)}. Of course, Ar as just
defined makes sense when 7' is an arbitrary subset of [0, 1]. The best linear esti-
mate of B is then obtainable as As 'y with the interpretation given following the
proof of Theorem 2.3 in [2] and the covariance matrix of the BLE of 8 is Ar .
When T = [0, 1], Pzf, = f, and we denote A1 by A. We note here that A = Ar
for T c [0, 1].
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The design problem we are concerned with can be crudely stated as follows:
ifD, ={T|T=1{t, - ,t},0=h< -+ <t, £ 1}, we wish to choose T' ¢ D,
so as to make A,y ' “small.” The first question is how to interpret “small.” To
this end we make the following definition:

DxerFINITION. A criterion ¢ is a continuous real-valued function defined on the
non-negative matrices with ¢(0) = 0 and ¢(B) = (C) if B = C. If
Y(B) > ¢(C) whenever B > 0,B = C and B # C, ¢ is called strict.

Given a criterion ¢ we can now formulate four ways of deciding when, for

=1 ¢

given n, a design makes Ar = ‘“‘small.”
(2.8) T* & D, is said to be yl-optimum in D, if ¢(A7+) = infrep, ¥(Ar ).
(2.9) T*eD,is said to be y2-optimum in D, if $(Az+) = supzren, ¥(Ar).

(2.10) T* & D, is said to be y3-optimum in D, if
Y(Azs — A™Y) = infrep, Y(Ar " — A7),
(2.11) T* ¢ D, is said to be y4-optimum in D, if

V(A — Agpe) = infrp, Y(A — Ar).

Generally these four problems will not be equivalent. There will be ¢’s for
which some of them are equivalent. For example, if (B) = det B then y1-opti-
mum is the same as ¥2-optimum. If M is a non-negative matrix and
Y(B) = tr (BM) (tr denotes trace) then y2-optimum is the same as y4-optimum
and y1-optimum is the same as y3-optimum.

The difficulties encountered in [2] about finding exactly optimum designs are
also present here. The existence of optimum designs can be handled pretty much
the same as in Section 2 of [2] by use of the ‘“‘simple present’’ condition imposed
there. The difficulties in calculation of optimum designs leads us, as in [2], to
introduce the notion of asymptotically optimum sequences of designs which we

define as follows:
A sequence {T,*} with T,,* £ D, is said to be asymptotically y1-optimum if

(2.12)  limyse [infrep, (A7) — (A DIW(AT) — YA = 1.

When
(213)  Timuee B(A) — supro, W(ADIW(A) — Y(Ar)]™ = 1,

then {T,*} is said to be asymptotically y2-optimum. When

(2.14) liMpeo infrep, [W(Ar ™ — A7) /Y(A7ee — A7) =1
then {T,*} is asymptotically y3-optimum, and when
(2.15) limy, e infrep, [W(A — Ar)/Y(A — Ar,e)] = 1,

{T,*} is asymptotically y4-optimum.
‘Let us now mention some specific criteria which will be of interest to us. If M
is a fixed non-negative J X J matrix, consider ¢ defined by ¢(B) = tr (BM).
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M may be written as M = [, 66’ du where  is a finite measure with support on a
finite number of points on the J-dimensional unit ball S;. Hence, we can also
write

(2.16) Y(B) = [s,6'Bodp.

A particular case is M = 66’ for some fixed vector 8, so one optimization problem
here is that of minimizing the variance of 6'4.

Our results concerning more general ¢ will hinge on representations in terms
of the trace functions above. For example, let  be a strict, continuously differ-
entiable criterion. Let B and C be non-negative matrices with B > 0, B = C and
denote the jkth elements of B and C by b;; and ¢j respectively. Then

W(B — C) = Y(B) — 2 74— (8¥/3bn)ci + o(|C])
where |C] = maxy <<y el If M = {8¢/0b, 1 < 5,k £ J},
(2.17) Y(B — C) = y(B) — tr (MC) + o(|C]).

Now if B is fixed and (2.17) holds for all 0 £ C =< B, the assumptions on ¢
insure that tr (MC) > 0 for all sufficiently small non-zero-C' and, consequently,
for all non-zero C = 0. Hence M > 0. For B = Ay 'and C = A; ' — A7}, we
have from (2.17)

(2.18) Y(Ar") — Y(A™") = tr M(A7 " — A7) + o(J477 — A7),

Use of (2.18) will allow us to show for instance, that a sequence {T',*} which is
y1 asymptotically optimum for ¢(B) = tr AB is also ¢1 asymptotically opti-
mum for ¢(B) = det B.

We shall also consider criteria of the form ¢(B) = supu.ogy tr MB where 9
is a compact set of J X J matrices (i.e., 91 is a compact set in the usual topology
of J(J -+ 1)/2-dimensional Euclidean space). Several standard criteria arise by
making suitable choices of 9. As two examples, consider 9N = { F@f) |0
<t < 1} with7(8)" = (fu(t), -+, f+(t)), and M = {66 | 2716/ = 1}. For this
kind of criterion also, we shall be able to relate asymptotic optimality to the
asymptotic optimality with respect to an appropriate trace function.

3. Basic asymptotic results. We shall suppose that Assumptions A, B and C
of Section 2 are in force and we shall only consider those f’s of the form

(3.1) f(t) = JiR(s, )(s) ds;  tel0, 1]

with ¢ continuous. If T = {to, * ,ta;0 S o<t < --+ <o = 1} then
(32) If — Pafll* = [o (f — Pap()s(2) dt.

Fori =0, ---,n — 1let W, be the symmetric kernel defined by

Wiz, y) = (2 — t:)(tin — ¥)/(tin — &) for tis xSy = i
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Lemma 3.1. If T is such that t, = 0 and ¢, = 1 then
(83) If — Pofl* = 22050 i+ [+ a(z)d(2)d(y) Wila, y) da dy
— 235 [ [i# 6(a)Ru( -, y), f — Pof))Wi(z, y) du dy.

Proor. As noted in (3.42) of [2], f — Psf vanishes on T and is twice con-
tinuously differentiable on (¢;, ¢;11). An integration by parts yields

(34) (f = Pef)(z) = — [+ (f — Pof)" () Wiz, y) dy.
Since, as noted at (2.7),
(3.5) (f = Pf)"(y) = —a(y)d(y) + Bul+,y),f — Pf)

we obtain the result of the lemma by using (3.4) and (3.5) in (3.2).
The essential properties of W; that will be used below are as follows:

(3.6) (a) For 0eLsft:, tia] define W = [{H 0(x) Wiz, -) da.
Then W, is a positive, bounded, symmetric linear transformation from

Loft: , tiya] = Loft:, tiya] and [W,0, 9] = f"*‘ f“*‘ 0(z)n(y)Wz,y) dr dy defines
an inner product.

(b) Wiz, y) £ (tig — t:i)/4forall z, y e [t;, teal.

() Jir [H Wiz, y) dedy = (tan — 1)°/12.

We will be concerned with sequences {T, ; n = 1} of designs with T, £ D,y
(see Section 2), i.e., Card T, = n + 1. The elements of T, will depend on 7 but
we shall usually suppress this dependence and write ¢; instead of ¢;, for an element.
of T, . Given a sequence {T',} we shall call {S,} an extension of {T,} if, for all n,

{0, 1} u T. 8. . Note that S, will often contain more than n + 1 elements.
For convenience we set f, = Pr.f and f, = Psf. Note that, since T, C S,

(3.7) If = £ll® = IIf = Fall®
If {T.} is a sequence of designs with {0, 1} C T, we put
(3.8) An(9) = [i [H+ a()d(2)o(y) W=, y) dz dy,

An(¢) = Z:.:Ol Ain(d’)‘
Lemma 3.2. If {0, 1} < T, for all n then there is a constant K, independent of &,
such that

(3.9) If = fal* < (1 + Ké,)A.(|8])

where 8, = SUPo<i<na (fiy1 — ti).
Proor. Let p,(y) = (Raa( -, y),f — fa)- Then, from Assumptions A, B, and C,

(3.6), and (3.8)
(Wb, pall < (Wi, $'1Wipn, pal’
< (Wb, oI IWaL, 11} [If — full supy [Re( -, )|
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so that
|20 W, pall < cllf — £ull 33 W, WL, 11
(3.10) < clf = £l 2 W, 61X W, 1))
< f = fall A2BI) (f (bia — )}
< 8 \If — fall A2(l9l)

where A,(|¢|) is obtained from Y, [W;¢, ¢] by first dominating ¢ by |¢| and then
inserting a(x) which is bounded below. From (3.10) and Lemma 3.1 we obtain

(3.11) If — full® < Aa(I8]) + ¢"8a [If — full A2(10])

and (3.9) follows easily from this. Thus Lemma 3.2 is proved.
Let h be a continuous density on [0, 1] and let T, be defined by

(3.12) férn(z)de =i/n;  i=0,---,m,

with the convention (in case of ambiguity) that {,, = 0 and f, = 1. In other
cases of ambiguity (which will arise if % is 0 on some intervals) take any ¢
which satisfies (3.12) e.g., the smallest such. The sequence {T» ; » = 1} so de-
fined will be called a Regular Sequence generated by h(RS (h)).

Lemma 3.3. If {T.} is RS(h) then

llm inf,._.eo nz ”f - fn”2 g % fh>0 a(a:)¢2(z)/h2(x) dz‘

Proor. Let ¢ > 0. Let I; = {2||¢(z)| > e and h(z) > e for all x ¢ [t:, ti]
andlet I, = {0,1,---,n — 1} — I,. Let S, D T, be such that

(3.13) (a) if 7¢I, then thereisan r such that s =&, 8 = tin,
(b) if 7eI, then there are s,, Sq1, -+, Sqm; such that s, = ¢;,
Srim; = tiv1 and Spgjtl — Srtj = 'y,,/n with Yu — 0.

Because of (3.7) it is enough to show that #* ||f — f.||* has the lower limit stated
in the lemma.

Denote by A;,(¢) the A; defined in (3.8) when S, is the design. If », 4 1 de-
notes the cardinality of S, ,let J1 = {j]s; = i, 811 = tiya for some 7 ¢ I} and
letJy = {0, -, s — 1} —J1.Forjedy

(3.14) 1/n = [+ h(z) dz = [+ h(z) dz = (V) (s — ) 2 (s — ).

Forjeds, sisn — 8 = 7¥a/n. Thus 8, = supj (sjy1 — 8;) — 0. For j £ J, there is a
constant ¢ such that

An(|8]) < c(sin — 8)° S cvan (sip1 — 85)
so that
(3.15) 7 D e Am(|]) = o(1) as n— w,

For j ¢ J1, the continuity of ¢ guarantees that ¢ is of one sign on [s;, s3] so0
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that A;.(¢) = A;x(|¢|). Thus, by Lemma 3.1, (3.10), and (3.15),

(3.16) 2’ |If — full® 2 n’Au(l8]) + o(1) — nleda |f — full Aai(l0)).

If lim inf,..n*4,(|¢|) > 0 then (3.16) together with the fact that 5, > 0
implies that C

(3.17) lim inf,.e 7* [[f — full* = lim inf,,on*A.(|¢]).

Thus, (3.17) holds generally.
As already observed

n'Aa(lo]) = n" 225 Ain(8]) + o(1).
The mean-value theorem, (3.6(¢)), and (3.14) give, forj e Jy,
(3.18) A;n(18]) = a(m)|o(ui)]-16(6:)|(si42 — ,)°/12

= a(u)|o(k)|-[6(6)|(H*(N)) " (8132 — 87)/12
for some u;, 6; € [s;, Sj41]. Thus
(3.19) lim inf n*Aa([6]) = 25 [1s15en>e 2(2)8"(2) (K(2)) ™ de

which upon use of (3.17) and the last remark in the first paragraph of the proof
yields
i infoe 2’ [f = full* Z &% Jis15ense a(2)'(2) (K(2)) ™ da.

Letting ¢ — 0 finishes the proof of Lemma 3.3

We can improve Lemma 3.3 by replacing the integral over the set {# >0}by
the set {A > 0 or |¢| > 0}. This results from

Lemma 3.4. Let m denote Lebesgue measure, B = {z | h(z) = 0, ¢(z) # 0}, and
let {T,} be RS (R). If m(B) > 0 then 0’ ||f — fu]|> — .

Proor. Let ¢ > 0 and define I; = {¢||p(z)| > efor all x ¢ [t;, t:11]} and let
L ={0,---,n —1} — I,. Let 8., J1, J2 be as defined in (3.13) using the
present definition of I; . Even though é, may not — 0(sups, (sj1 — s;) + 0) we
can conclude from (3.16) (which is still valid) that, for some positive ¢, ,

(3.20) W |lf — fall® 2 con®An([8]) + o(1).

If {nn} is a subsequence such that, along {n.}, sups, (sj1 — s;) — 6 > 0, then
there is {jm} such that (sj,41 — 8;,) — 6 and A, (|¢]) = ¢'€(sjp11 — 85,)° =
¢’ > 0 for all m large enough. Thus, by (3.20), if 8,, — & > 0,

(3.21) liMpsee B If = frnll” = .

Suppose that {n,} is a subsequence such that 8,,, — 0. Assume {n,} = {n} in
what follows. Let ¢ > 0 be such that m(k = 0, [¢| > €) > 0. Define, for 4 > 0,
Js = {j|h(z) < n,|o(x)| > eallz e [s;,8;11]} and observe that, with ag = inf a(z),

(3.22) 2iers Ain(|0]) Z o0€’ 2oy (sia — 87)°/12
aiid, since s; = &;, Sj41 = i1 for some tif je Js C Jy,
(3.23) In = [ h(z)dr < (sin — $5)
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for all j e J;. Thus ((3.22) and (3.23))
(3.24) 1A (l¢]) 2 1 i, Ain(l6]) Z Frowen ™ Ljess (8141 — 85)
and, since 8, — 0,
2oiers (81 — &) = m(h < m, |¢] > ¢) > m(h =0, [¢] > ¢) >0.

UsAing this in (3.24) and then letting n — 0 we obtain limm.e m Aa,(|¢]) = ©
if 6,,, — 0 and (3.20) and (3.21) then give the conclusion of the lemma.

The major fact that we would like to prove is that, if {7} is RS (%) then
(3.25) liMyw n” If — ful* = % [ @(2)¢*(2) ('(2)) ™ dz

for all continuous ¢ for which the right side of (3.25) makes sense where
é(z)/h(x) = 0if ¢(z) = h(z) = 0. We already know from Lemmas 3.3 and 3.4
that, if the right side of (3.25) is « then so is the left side. Unfortunately we are
unable to obtain such a result for all ¢ and any h. We have, however,

TaeoreM 3.1. Let {T,} be RS (h).

(A). If [ (K*(z))™ < o then (3.25) holds for all continuous ¢.
(B). If ¢/h is continuous (¢(z)/h(z) = 0 if ¢(x) = h(xz) = 0) then (3.25)
holds.
(C). If there is a K such that
(b — a) [SH(z) dz < K([oh(z)dz)®

for all [a, b] C [0, 1], then (3.25) holds.

Remark. (A), (B), and (C) all give (3.25) if & is never 0. This case was ade-
quately treated in [2]. (B) is true if h(z) = vo!(z)¢¥(x) which is the example
of principal importance for the context of [2]. (A) and (C) will be adequate for
handling many different examples of h’s which may have zeroes but are regularly

behaved near their zeroes.
Proor oF TuEOREM 3.1. Let us first prove (A). First observe that the con-

dition in (A) implies that m(h(z) = 0) = 0 so that, using a Hélder inequality,
(tin — ) = [ii Lda = [i+ B(2)(hi(2)) ™ do

< (Jir h(w) da)¥( [+ do/B ()}
or
(3.26) (tua — )" = 07" [457 (W(2)) 7 da.
Also since m(h(z) = 0) = 0 we must have 8, = supo<i<n— (tin — &) — O.
Define I = {i|h(z) > eforallz e [ti, ti]} and I, = {0, --- ,n — 1} — I, . In
the same way that (3.18) was obtained we get
(3.27) 0 Pier, Ain(|8]) = B [r>e a(2)9"(2) (K(2)) 7 da.

The uniform continuity of & and the fact that 8, — 0 implies that, for n large
enough, h(z) < 2efor x & [t:, tiya] for all 2 £ I, . Then, using (3.26), we have, for
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e Iz )
(3.28) Dir,W’Aun(|9]) S %’ sups a(z) sups 6°(2) D, (bua — t:)°

< ¢ T [ (4(2))? do = ¢ fra (K(2))™ d.
Thus ((3.27) and (3.28)) ‘

1im SUPnaw 7 4a([8]) < 7% [ive a(2)62(2) (B (@) " dz + ¢ [hce (B()) " dz
and, letting ¢ — 0, this yields
(3.29) lim SUp,.e 2°An(|¢]) < 1 [ a(z)¢*(z) (K (2)) ™" d.
Since 8, — 0, we can now use (3.29), Lemma 3.2, and Lemma, 3.3 to conclude (A).

For the proof of (B) let @, = {8 | 8 is continuous on [0, 1] and, for some e > 0,
6 = O on theset {h(x) < 2¢}} and let @, = {0 | §is continuous and 6 = 0 on the set
{h = 0}}. @ C €, and if we topologize @; by [|61 — 6] = supog=<1 [6:1(z) — 8(z)|
it is easy to see that @; is dense in @, .

For 0 £ @, with associated ¢, let ¢ = 6k and put Iy = {¢|h(z) > e for some
zelti,tonl}, 2 =1{0,---,n — 1} = I, I; = {¢| h(z) > eforall z ¢ [t;, t:1]},
I, =1, — I. Since 1/n = f[t;.t.~+1]ﬂ(h>e/2) h(z) dz it follows from the uniform

continuity of h that supicr, (41 — ;) = 61n — 0 as n — . Since ¢ vanishes on
[t:, tipa] if 2 € I, , the sums in (3.3) need only extend over ¢ ¢ I; . In the same way
that Lemma 3.2 was obtained we can conclude that

Dier, Wi, pu] < ia [If — full An(l8])
so that, since 81, — 0,
(3.30) 1m Supssee 0’ [If — full® < lim sups.w n’Aa([¢])
= lim SUPpae 7 D1, Ain(|8])-
Now, just as we obtained (3.27), we can obtain
(3.31) limpswe?’ Diery Ain(16]) = 5 [ive a(2)8"(2) (K(2)) ™" da
= 1% [0 a(2)¢’(z) (K(2))™" de.

(The last equality follows because ¢ = 0 on {h = ¢}.) For n large enough we
have, forall< e I, h(z) < 2¢forall z ¢ [¢;, ti4a] so that ¢ = 0 on [¢;, ¢ia]. Conse-
quently A:(|¢|) = O for < & I, . This together with (3.30),(3.31) and Lemma 3.3
gives the result that, for ¢ = 6k with 6 € @, , (3.25) holds.

To extend the result to ¢ = 6h with 6 € @, let 6. ¢ @, with || — 6] < e and
put ¢. = 6h and let f. be the associated f (3.1). Then, according to the triangle

inequality,

(3.32) If = fall £ 1If = fe = (F = Sl + [lfe = Fenll-

Since 6. ¢ C; we know that

(8.33) 1My’ [|fe — faull” = 7% 3 2(2)0(2) dz = 75 [5 a(2)6*() do + .

where 7. — 0 as e — 0. Since § — 6. € C; we have
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An(lo — o) = ¢ 2207 (taa — &) [E7 [+ (0 — 0.) ()
(3.34) (6 — 6.)(y)h(2)W(y) dz dy
< cllo = 0P n™ 2205 (b — ) = en? 10 — 6|
so that by Lemma 3.2 o
(3.35) Lm supnsw 2°llf — fe — (f — fo)ull* < il — 6.
(8.32), (3.33), and (3.35) yield, upon letting ¢ — 0,
1 supno 0’llf — full* £ 25 [5 a(2)8"(2) (K(2)) ™ de

for ¢ satisfying the condition in (B). Now apply Lemma 3.3 to obtain (B).

For the proof of (C), let € = {§]6 = 0 if A = 0 and [36°(x) dx < oo}.
@, is dense in @; with the topology on @; being the L,:topology. The proof just
given for extending the result of (B) from @, to €, can now be employed provided
we can verify something like (3.34). The condition stated in (C) yields, for
¢ = 6h,

n’An([8]) < ¢ 2205 (tm — )[4+ l6(2) [h(x) dal’

= n Co £ i=0 (t.;.,.l - ti) f t+ h2<x) dx f:"“ 02(21) dx
< n’Keo 2150 [[ 1+ h(x) dal’ [+ 6°(x) dw
= Kalll*

where || || is now the L, norm. But this is exactly the version of (3.34) needed
and this gives (C) and finishes the proof of the theorem.

Taeorem 3.2. Let fi, -, fp be p functions of the form (3.1) with associated
¢, -, bp. Letay, -+, ap be positive numbers. If {T,} is any sequence of designs
then
(3.36) lim infpe 1’ D Pt aallfi — finll®

2 H([sod(0) (X adi(2)) do)” = (120°) " (say).

If Wz) = 7o () (227 aupi(2))} and of {T.*} is RS(h) then
(3.37) limn-»oo n2 ZIZ.J ak”fk - fltn“z = (12773)—1

(fin denotes Pr,fs).

Proor. For the proof of (3.36) we may as well suppose that {0, 1} C T, since,
otherwise, we can adjoin {0, 1} and reduce the left side of (3.36). We will follow
the ideas in the proofs of Lemmas 3.2, 3.2, 3.4. First put ¢(z, y) =
> P axpr(x)d(y) and let I; = {3|¢(x, y) > e for all z, y & [t:, ti]} and let
I,=1{0,---,n — 1} — I,. Define S, , J1, and J; as in (3.13) using the present

I,. Let
Bin(#) = [ 3+ a(2)¥(z, y)Wils, y) dedy,
Cin(9) = [3* [3it yY(x, y) Wiz, y) dzdy,
Bu(¢) = 2 Bin(e).
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As in the verification of (3.15) we have

(3.38) (@) 0 Xjer, Bin(¢) = o(1),  (b) 7* Yjes, Cin(9) = o(1).
When jedJi, ¢(z, y) > 0 for all T, ye [si, siwa] so that

(3.39) aCin(9) < Bin(9) < aalan(8);  jelu,

where ay = inf a(z), &y = sup a(z). Put Q" = 2 allfs — funl* and use the
methods in the proof of Lemma 3.2, (3.38) and (3.39) to conclude that

(3.40) n*Bu() — Cibin@un’Ba(s) + o(1)]} < n'Qu°

Yvhere 3, = sup; (sjy1 — ;). From (3.40) we can conclude that whether or not
0, — 0

(3.41) n’Q.° = cn’Ba(9) + o(1).

Now just as was done in the parag&raphs following (3.20) we can conclude that
if {nn.} is a subsequence such that é,, — & > 0 then

(3.42) liMpsco M Q, = 0.
If 3,,,,, — 0 then (3.40) can be used to obtain
(343) nszim ; nsznm(d’) + 0(1) as m — .

Let us work as if {n,} = {n}. Since, for j e J1, ¥(z, y) > 0 for x, y & [s;, $j1]
we have, using the mean-value theorem and a Hélder inequality,

(344) X5 Bin(9) = 191”2 sor, @ (0085, 1) (8511 — 85)°

T (Xier, A0 (05, 1) (s — 8))Y/( Ly 1)
where 6; , p; € [s;, siil. Since sup (s;41 — 85) — 0, ¥(0;, pi) = ¥(6;, 6;) + o(1)
= Z{’ ardi’(8;) + o(1). Also, Z,l 1 £ n. It follows then from (3.44) that, if

Onm B
(345) T’ D ovn Binn(0) = 7( [ rarsrzr>e oA(2) (X adi’(2)) dw)® + o(1)

asm — «. (3.42), (3.43), (3.45), and the arbitrariness of ¢ yield (3.36).

(3.37) is obtained from (B) of Theorem 3.1 by observing that ¢x(x)/k(z)
is continuous since hi(z) = copr (z) for a positive constant c,. This complete
the proof of Theorem 3.2.

RemARK. When p = 1 Theorem 3.2 is the same as Theorem 3.1 of [2]. There

is a gap in the proof in [2] when ¢; can have zeros. Theorem 3.2 fills this gap.

v

—0

4. Asymptotic optimality. In this section we will deal with the criteria of
optimality discussed in Section 2. In Section 3 we have developed the necessary
machinery for obtaining asymptotically optimum sequences of designs for
several different criteria. We suppose, as usual, that we are in the context of
Section 2 so that (2.1), (2.2), ete. are in force.

Let us put ¢'(¢) = (¢1(t), -+, ¢s(t)) so that ¢(¢) is a column vector. We
shall also let f'(t) = (fi(2), -+, fs(2)).
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TuEOREM 4.1. Let ¢(B) = tr (BM) with M a non-negative J X J matriz.
Let B*(t) = na*(t)(¢'(t)Me(t))} where n is such that [3h*(¢) dt = 1. If {T.*}
is RS(h™) then {T,*} is asympiotically ¥2 and Y4 optimal.

Proor. For this choice of ¥, ¥2 and ¥4 optimality are the same. From (2.16)
and (3.36) we can write, for some vectors 6;, ---, 6, in Sj, A1, - -, A, positive
numbers, and any sequence {T,} of designs,

n’tr (A — Ar,)M
(4.1) =" 2 I N (A — Ar,)0: = 0 2P NJI6SF — (61).°
2 2 ([o ()27 M(8/0(2)) T dt)® + o(1)
= 2[5 () (¢ ()M(2))* dt)® + o(1).

Applying the other half of Theorem 3.2, namely (3.37), finishes the proof of

Theorem 4.1.
We note in passing that if #* is as defined in Theorem 4.1, and 6 ¢ Range (M)

then
(4.2) lim,on’0' (A — A7)0 = 7% [3a(8)(68'6(2))(h*(¢)) ™ dt.

This is a consequence of Theorem 3.1 (B) which is applicable because
o(D)I/B (1) = [(Mp, $)I/B* < (Mo, ) (Mp, 0)'/ (M3, ¢)}
which approaches 0 as (M¢, ¢) approaches 0 so that |6'¢|/A* is continuous. We

also have, if N = 0 and Range (N) C Range (M),
(4.3)  limp,on’tr (4 — Ar,«)N = & [Sa(8)¢'(1)No(t) (R*(¢)) ™" dt.

TurEoREM 4.2. Suppose ¢ s a strict and continuously differentiable criterion so
that $(A) — Y(Ar) = to ((A — Ar)M) + o(|A — Ag|) with M > 0. Then
R¥(t) = 1a’(£)(¢' (1) Me(2))? generates a RS (h*), {T*}, which is asymptotically
¥ 2-optimal.

Proor. Since ¢ is strict and M > 0 we need only consider sequences {7}
such that |4 — Az, — 0. Ifn’|A — Ar,|isnot O(1) asn — « then

lim SUPs.e n’[tr ((A — Az,)M) + o(|A — Ar,)])]
2 co lim supp.en’tr (A — Ag) = »

so that lim supp.. n’Y(4) — Y(Ar,)] = « and such sequences {7,} can be
ignored since, as we will see, n’[y(4) — ¥(Ar,+)] has a finite limit. In fact, from
Theorem 4.1 we have lim, ., n’ tr (4 — Az )M = (124°)™" < « and from (4.2)
we obtain [A — Ags = O(n™®). Hence lim,... n’[Yy(4A) — ¢(Ara)] =
(1295)™" < . For sequences {T,} with [A — Ar| = O(n™?), we have with the
aid of Theorem 4.1, that

(4.4) lim infp.en’Y(4) — ¥(4z,)] Z (124°)7

Since there is equality in (4.4) when {T,} is replaced by {T,*} we have finished
the proof of Theorem 4.2.
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CoROLLARY. If ¥(B) = det B then h*(t) = na’(t)[¢’(t)A7"6(¢)]' generates
a RS, {T,.*}, which is asymptotically Y2-optimum.

Proor. Theorem 4.2 and (2.17) with ¢(B) = det B.

TreEOREM 4.3. Let 9N be a compact set of non-negative matrices and put
Y(B) = minygey tr (BM). Let M™ be such that the minimum over S of [3 o}(t) -
[o' () Mo(t)1 dt is attained at M*. Then

R*(t) = nal()[e' (1) M*s(8)]

generates a RS {T,*} which is asymptotically Y4-optimal.
Proor. For any {T,}, we obtain from Theorem 4.1,

(45) n'tr (A — Ap)M
= H([120)[¢' () Me(t)) dt)* + o(1) = (129°)™ + o(1)

for each M & 9. It is not hard to show that the o(1) term is uniform for M ¢ 9.
Consequently,

(4.6) 7 infyen tr (A — Ar)M = (127°)™ + o(1).
On the other hand, by Theorem 4.1,
(47) nlinfuantr (A — Ar )M S n’tr(A — A )M* = (129°) 7 4+ o(1).

(4.7) and (4.6) imply the conclusion of Theorem 4.3.

We will use Theorem 4.3 to establish asymptotic y4-optimality when
Y(B) = det B, First we need the following lemma.

Lemma 4.1, Let {T,} be any sequence of designs and let N, denote the smallest
eigenvalue of n*(A — Anz,). Then lim inf, .o\, > 0. Furthermore, there is a se-
quence {T,} such that the largest eigenvalue fin of n’(A — As,) satisfies

lim suppaw fn < .

Proor. Let @, be an orthogonal matrix such that, putting g.(t) = first co-
ordinate of Qu(F(2) — fu(2)), 7’| g |l> = Na. If lim infs.eAs = O then there is a
subsequence {n;} and an orthogonal matrix @ such that A,, — 0 and
| @, — Q| — 0. Then, by Theorem 3.2 (with p = 1),

= limyw ]| gug [I* = 515 o () (Qo(2))at del’.

Thus 0 = (Q¢(¢))1 = D.1quei(t) for all te[0, 1] which contradicts (2.2).
Thus lim inf, . A, > 0.

For the other part of Lemma 4.1 note that u, < n’ tr (4 — Az,) and by
Theorem 4.1 (with M = I) there is a {T',} with n® tr (4 — A#,) bounded for
all n. This finishes the proof of Lemma 4.1.

TueoreM 4.4. Let Y(B) = det B. Let 9 = {M | M > 0,det M = 1} and let
M* be such that [§a}(2)[e' ()M (1)1 dt is minimized over 9T by M™ (4t is shown
in the course of the proof that such a mintmum exists even though N is not compact).
Then h*(t) = na'(8)[6 ()M *e(t)]* generates a RS {T»*} which is asymptotically
Y4-optimal.
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Proor. If B > 0 then
(4.8) J(det B)"Y = mingy tr (B.M)

(ef [1], pg. 131). Let s, up denote the smallest and largest eigenvalues of B-
It is easy to verify that if 0 < A < A5 < us < uo < o then the M which mini-
mizes the right side of (4.8) must satisfy Ay = No/uo -

For the sequence { 7'} of Lemma 4.1 we have g, < ¢; so that det (n*(4 — Az,))
< &’ < « and we may therefore limit ourselves, in establishing asymptotic

Y4-optimality, to sequences {T,} with
(4.9) lim sup,..det (n’(A — Ar,)) < ¢’

For any sequence {7T.}, A» = co(say) for all n large enough so that, for any
sequence {7} satisfying (4.9), u. = C; for all n large enough. Hence by (4.8)
and the discussion following (4.8) we can write, for {T,} satisfying (4.9) and
some ¢ > 0,

(4.10) Jldet n*(4 — Az )Y’ = mingy, tr (n’(4 — Az,)M)

where M, = {M | M > 0,det M = 1, Ay = ¢}. Applying Theorem 4.3 with 97,
(which is compact) we obtain M.* such that

lim inf,.. J[det n%(A — Ag )"’

1%

lim,/[det (n*(A — Arp*))]"”
= &[5 (O ()M F6(2)]} dtf

where 7, is generated by M.* in the same way T, is generated by M* in
Theorem 4.3.

Now, for M ¢ 9 — M, and {7} a RS generated by h = na'(¢' M)t we have,
using (4.10), (4.11) and Theorem 4.1,

Hlf (6’ MS)T = limp.w tr (n*(A — Ar)M) = &t (¢’ M5 )

so that M. minimizes fa*(rb’M(ﬁ)% over 9. This and (4.11) gives the con-
clusion of Theorem 4.4 and finishes the proof.

TuroreM 4.5. Let $(B) = tr (BM), M non-negative. Let B*(t) = na'(¢)-
(6" () AT M A $(8)]) and let {T,*} be RS (B*). If T™* = supportof hand Ay = Aps
is non-singular then {T,*} is asymptotically ¥1 and ¥3 optimum.

Remark 4.1. The non-singularity of A« is clearly essential in order for
Theorem 4.5 to have meaning. If M is positive then Ay« = A (which is non-
singular) because the 2* of Theorem 4.5 is the same as the A* of Theorem 4.1
with M there replaced by A7'MA™ and since n’ tr (4 — Agp+) A7 MA™ =
n?tr (MPAT (A — Arqe)A7'M?) is then bounded, it must be that A =-
' lim,,_m ATn' = A.

If support of 1* = [0, 1] then, obviously, 4+ = A which is non-singular. If
fi, o+, frare linearly independent over 7™ (e.g., if they are linearly independ-
ent over every interval of positive length) then A is non-singular.

(4.11)
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Proor oF THEOREM 4.5. If Ar, is non-singular for n large enough then,
for such n,
(4.12) A7: — A7 = A7NA — Ar)A7 + A7NA — Ar)ATH(A — Ag)A”

> AN(A — Ap)AT.
Hence, by Theorem 4.1,
n’tr (Azs — AHM
(4.13) >0 tr (A4 — Ar)A7'M) = n* tr ((A — Ar)ATMA™)
= (124)7 + o(1)

and

(4.14) ntr (A — Ar A7 MA™ = (129)7 + o(1).
Observe now that if B is positive then

(4.15) tr CBC' < up tr C'C

where ujp is the largest eigenvalue of B. Also, if B > 0,

(4.16) (Bo, Bo) < (B%, ) tr (B)

where (, ) denotes the usual Euclidean inner product. Let A7MAT =
> 66, with 6, ¢ Range (AT'MA™") so that by (4.14) and (4.2)

(4.17) 8/(A — Are)0; = O(n’).

Now apply (4.15) with C = MA™A — Ar.), B = A" and then (4.16) with
B = A — Ay, to obtain, with the use of (4.17),

r [MPAT(A — Ar DA (A — Ag) ATMY
I»‘A:l Zz((A - AT"')Bi, (A. - ATn.)Gi)
é #A:l tr (A - ATn.)O(n_z)

so that, letting n» — o« in (4.18) we obtain MA7H(A — Ay) = 0 or
Ay 'M = A7'M. Then

tr (Aze — ATYM = tr (A7pe — A M

(4.18)

IIA

and we can replace A by A, everywhere above. We may as well assume then
that A = A4 so that AT"- — A. It follows that tr (4 — AT,, ) — 0 so that the
weft side of (4.18) is o(n™*) and remains so even with Azse in place of A
But this together with (4.12) and (4.14) yields

nPtr (A7le — ATHM = (12¢°)7 4 o(1)

so that by (4.13) {T,*} is asymptotically y1-optimal. Since, for the criterion of
this theorem, ¥1 and ¢3 optimality are the same, we have finished the proof of
Theorem 4.5.
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THEOREM 4.6. If ¢ s strict and continuously differentiable so that Y(Ar ') —
YA = tr (A7 — A™M + o(|Ar " — A7) for some positive M then
RE(t) = nd(8)[¢' (1) AT M AT ¢(2)) generates a RS {T,*} which is asymptotically
Yl-optimal. o

Proor. M is positive so that, by Remark 4.1, lim, .. Az« = A. Using Theorem
4.5 and following the proof of Theorem 4.2 we obtain Theorem 4.6.

TaeoreM 4.7. (A) Let 9 be a compact set of non-negative matrices and Y(B)
= tr (BM). Let M* minimize (over 9) [5’[6’ A" MAT'$]'. Then h*(t) =
1} (8)[¢' () AT M*A79(t)]} generates a RS {T,*} and of lim Ap. = Ay ds
non-singular then {T,*} is asymptotically ¥3-optimal.

(B) If w = {M|M > 0,det M = 1} and y(B) = det B, then there is an
M* e M which minimizes [o o’l¢’ A7 MAT'S] over M and B*(t) = 5al(t)-
[0/ ()ATM* A7 p(1)] generates a RS {T,*} which is ‘asymptotically ¥3-optimal
(and, comparing with Theorem 4.4, Y4-optimal).

Proor. Follow the arguments of Theorems 4.3 and 4.4, and use Theorem
4.5.

TueoreM 4.8. Let 9N be a compact set of non-negative J X J matrices and
let 9" denote its convex: hull. Let ¢(B) = maxyqy tr (BM) = maxg+ tr (BM).
Let M™ maximize (over 90" [§a}(¢' M) and let h*(t) = na’(t)(¢'()M*(1))*.
If, for all M ¢ 9m,

(4.19) P tr (A — A )M = 25 [a(t)d' () Me(t)(K*(t)) ™ dt + o(1)

where the o(1) term is uniform in M then {T,*} is asymptotically 4-optimal.
A comment about (4.19) will follow the proof of Theorem 4.8).
Proor. From Theorem 4.1 we have, for any sequence {7},

(4.20)  n’ maxgr tr (A — Ag)M = maxg+ &0foa} (¢’ M) + o(1)
(1297 + o(1).

If M = M*let g(\) = [38¢'(AM + (1 — \)M™)g]* for A £ [0, 1]. Then g is
continuous and has a maximum at A = 0. For0 < A < 1

d\) = 3[dl¢'Me — ¢’ M*$ll¢'N\M + (1 — NM¥)e] Hdt

and
lim infa.og’(N) = 3 [ ap'Mo/h™ — 3 [ ap'M¥¢/n™.
Since g has a maximum at 0, lim infy.og'(A\) = 0 and, therefore,
(4.21) [ad'Mo/h™ < [ad’M¥e/h™ = 77°
so the right hand side of (4.19) is finite for all M ¢ 9n*. Now (4.19) and (4.21)
imply that
lim SUpPpswn’ supg tr (A — Ar)M = (129°)7"

ahd use of (4.20) yields the theorem.
Remark 4.2, Conditions guaranteeing the validity of (4.19) can be obtained
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from Theorem 3.1. Thus, if M™ is positive, then ¢'Mé/h** is continuous and
(B) of Theorem 3.1 will give (4.19). Also, if 1™ satisfies (A) or (C) of Theorem
3.1 then (4.19) will hold.

CoroLLARY. If Theorem 4.8 holds for T = {A7'MA™ | M e} then T,* is
asymptotically ¢3-optimal for the criterion Y(B) = supgy tr (BM) provided
A7+ is non-singular.

ProorF. Use Theorems 4.5 and 5.8.

For the criterion of Theorem 4.8 we wish to establish asymptotic ¢1 and ¢2
optimality. Let 9" be the convex hull of the compact set 91 and let 91, =
(M e | supgn+ tr (AM) = tr (AM ")}. Let {T.} be any sequence of designs
and let M, be any element in 9" such that supgg+ tr Ar,M = tr Ar, M, . Then,
if M 0& My s

supgy tr (AM) — supgy tr (A, M)

(4.22) = supgy+ tr AM — supg+ tr A, M
= tr A(My— M,) +tr (A — Ar,)M,
= tr(A — Ar,)M,

and

supgy tr AM — supgy tr Ar, M
(4:23) = infMogfml [tl‘ (A —_ AT”)MO + tr AT,.(MO d ]lln)]
=< infagen, tr (A — Az,)M,.

As we shall see below there are sequences, {7} for which the left side of (4.22)
is O(n™?) so that we can limit ourselves to such sequences and conclude from
(4.22) that tr A(Mo, — M,)— 0. But this means that infuen, |[M, — M| — 0.
Fore > 0let M (¢) = {M & 9 |infyan, [M — N| < ¢. Then, for n large enough
using Theorem 4.3,

(4.24) n’tr (A — Ar)M, = infyg 0" tr (A — Az, )M

= 1 infaame (f3 2} (0) (@' (Me(1))}dt)* + o(1).
First let n— o and then let ¢ — 0 and obtain from (4.24) that
(4.25)  liminf,..n’tr (A — Ar,)M, = i infa, ([} (¢'Me)*)™

Now let M™* be any element of 5211 (which is compact) which minimizes the
right side of (4.25), let h* = 5a’(¢'M¥$)}, and let {T."} be RS (h*), and
apply Theorem 4.3 to the right side of (4.23) and obtain

(4.26) n’ infyg, tr (A — Are )Mo = (127°) 7 + o(1).

(4.26), (4.25), (4.22) and (4.23) yield

TuroreM 4.9. {T,*} as defined following (4.25) is asymptotically ¥2-optimal
for the criterion (B) = supgy tr (BM), where 9 is a compact set of non-negative
J X J matrices.
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By use of Theorem 4.5 we can obtain a corresponding result for ¢1 optimality.
We omit the details.

The conclusions of Theorems 4.3, 4.4, 4.7, 4.8 and, to a lesser extent, 4.9 are
not as satisfactory as those of the remaining theorems of this section. To apply
these theorems, one must find & matrix ™ which maximizes or minimizes
fa%( o' M) (or fa%(d)'A'l MA™'$)") over some compact set of non-
negative matrices M. Even more, some of these problems require a knowledge of
A7" when A is more readily available (see (2.3)). We give two examples here
to indicate some of the difficulties which are present.

Suppose R(s, t) = exp [—|s — t|], f;(t) = 2¢,7 = 0,1, -+, J, and, without
loss of generality, suppose the interval of observation is [—b, b]. We then find «
is constant, ¢;(¢) =t —j(j — )% j=0,1,---,J, and

Ay ="+ D) + 0+ (/6§ 1))
(4.27) if 7 4 7 is even
=0 ifi +jisodd, 0 < 4,5 < J.

Consider the problem of minimizing the maximum variance of the BLE of
an estimable function with limiting variance 1, i.e., consider 1 (or ¢3) optimality
for Y(B) = supsa-i.—1 & Bx. We would expect to find an asymptotically op-
timum sequence of designs by maximizing [ ( &AM A9)? over the set
ot = {M = 0|tr A'M = 1}. Equivalently, we could try to maximize
[ (¢'M ¢)} over the set MW" = {M = 0|tr AM = 1}. For the special cases
J = 0 and J = 1, the uniform density generates asymptotically optimum
sequences for all b > 0, but this is no longer true when J = 2. We show below
that if b is large, J is arbitrary and M™*(b) is a maximizing matrix, then
(o' M*( b)¢)% is approximately uniform on [—b, b]. Since for large b the cor-
responding density will be positive, we may appeal to Theorem 4.7 and say that
the sequence of designs it generates is asymptotically ¢1 optimum for the prob-
lem posed above.

First let us note that if m¥;(b) denotes the #th entry of M*(b),0 < 4,7 < J,
then m¥;(b) = 0 for ¢ 4+ j odd. If this were not the case, we could find M **(b)
in I with mi7 (b)) = mis(b), ¢ + 7 even, and w5 (b) = —mi3(b), i + 7 odd.
But then 11/7(b) + M **(b) is also in " and

[ (&' (BM*(b) + 2 M**(0))¢)' > 3 [ (¢’ M*(b)$)' + 1 [ (¢'D™(D)o)’
= [(¢'DI*(b)e)}

which contradicts the maximizing property of M *(b). The side condition on
M*(b) is
(4.28) 1 = tr AM*(b)

= S BB+ G+ 1) 4 0+ GG+ G — 1)

where Y denotes the sum over ¢ + j even. It follows from (4.28) that mi;(b)
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= 0" asb — o so0 let (b)) = b ¥i(b). Suppose along a sequence
of b’s, we have 7;;(b) — ;. Then

(4.29) 1=+t MH = ) (i +7+ 1)

Along the sequence of b’s, let us.now compute as follows:

(4.30) 367 [2, (¢’ M*(b)g)! = [S12 u gl du + o(1)
< (olX w i du)t + o(1) = 1 + o(1)

where inequality will hold in (4.30) unless Y ", is constant. On the other
hand, if M(b) is given by me(b) = (b + 1), my;(b) = 0 for (3, 5) = (0, 0).
tr AM(b) = 1 and

(4.31) 1wt [P M)l = 1 + o(1).

A comparison of (4.30) and (4.31) shows that 1 = 1 and #;; = 0 for (4, j) #
(0, 0). Thus, mi(d) = b(1 + o(1)) and m5(b) = o(b”"*™) and from this
it follows easily that (¢M*(b)¢)? is approximately uniform on [—b, b] when b
is large.

We continue with the same set-up and investigate ¢3 asymptotic optimality
under the criterion ¥(B) = sup_s<:<sf(t) Bf(t). This criterion differs only by a
constant multiple (recall that f(¢) = 2t', 4 = 0,1, ---, J) from the criterion
Y(B) = supg+ tr BM where 91" consists of the moment matrices to order 2J
of probability measures £ having support in [—b, b]. That is, the matrices in
question have the form M = (fb_b e dE(z); 0 1,7 = J).

We seek M* (or £*) so as to maximize [ (¢'A7'MA7¢)? over an*. As before,
it suffices to consider just those M for which m;; = 0 if ¢ 4 j is odd, or, to con-
sider symmetric measures £. Now if ¢’A™" is denoted by (Ae(2), ---, As(¢)),
£* is the symmetric probability measure on [—b, b] which maximizes

(4.32) [% [Zi,j N(E)N;(2) fb—b xiﬂdg(x)]}dt
= fib [fib ( Zf‘=o )\i(t)iﬂi)2 df(x)]* di.

If we set ¢ = bs and # = bu in the above, the problem can also be viewed as
that of choosing £* on [—1, 1] so as to maximize

(4.33) TSRS (Cl-and(s)uh) 2 de(w)] ds

where A(s) = b\i(bs), i = 0, 1, ---, J. Inasmuch as explicit use of 4™ can-
not be avoided here, we will look only at the first few values of J.

For the one parameter problem J = 0, the appropriate density is, trivially,
uniform on [—b, b]. When J = 1, reference to (4.27) shows that (N(2), M (%))
is proportional to (b + b* 4+ 1b*), (1 + b)t). It is then easy to see in (4.32)
that £* should concentrate mass % at each of =b. Accordingly, the (positive)
density on [—b, b] which provides an asymptotically optimal sequence of designs
is, proportional to ((b + b* + 1b*)* 4+ b*(1 + b)**)*.
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When J = 2, the situation worsens to the extent that (A\’(s), AM(8), A(s))
is now proportional to

((14b+ 3936 + 6" 4 26 4 2 — (1 + 1b)], b(b + 1)(20* + b + $)s,
(1+b+ )b + 1) — (30° + ° + 26 + 2)]).

As b — 0, we find that (2_AS(s)u’)® is proportional to (1 + 4?)? + o(1) 0 a

maximizing £* at (4.33) should concentrate mass 3 at each of +1. Asb — w,

the same argument leaves us with the non-trivial problem of choosing £* so as

to maximize

JAUA (s — 3) + tsu + (38" — 3)ud) de(u)] ds.

We will not pursue these matters further here,
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