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INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE
PARAMETERS IN PROBLEMS WITH UNKNOWN
LOCATION AND SCALE PARAMETERS!

By L. BrowN

Cornell Unaversity

1. Introduction. During the past two decades the admissibility of common
estimators of location parameters (e.g. the population mean) has been studied
by several authors, see Brown (1966) for a short bibliography. By utilizing a
logarithmic transformation these results can also be applied to the problem of
estimating unknown scale parameters when these are the only unknown param-
eters (in particular, when the location parameters are known). See Farrell
(1964) for details.

In a sense the next more complicated problem is that of estimating any power
of the scale parameter (e.g. the population variance) when the location param-
eter is unknown. This problem was studied in Stein (1964) where inadmissibility
of the usual estimator was demonstrated in one important case (estimating the
variance of independent identically distributed normal observations, when using
squared error loss function).

The results contained in our paper cover general situations with regard to both
the distributions and the loss functions involved, but with one major restriction
(the compact support assumption in Section 5). Our methods of proof are differ-
ent from those used in Stein’s paper (op. cit.), but the general nature of the
results are the same—namely, there is a scale invariant estimator which is better
than the usual location and scale invariant estimator (the formula is given in
(4.2)). In addition it is true that our estimators may also be motivated by the
following empirical Bayes argument. If the estimate, say &, of the location
parameter is small compared with the estimate, say §*, of the variance then this
indicates that the location parameter, u, is near 0. However, when pisknown tobe
near 0 and  7s also near 0 the best estimator of the variance is a smaller multiple
of s* than it is when p is unknown. Thus, by this reasoning one should use the
usual estimator for ¢° when |Z|/s is large and a somewhat smaller multiple when
|Z|/s is small. (The italicized portion of the above argument is not needed to
justify the estimator (6) of Stein [op. cit.] but is needed to justify estimators such
as our & (see (4.2)).) Actually the proofs in Sections 4 and 5 use a different
though related idea; namely that for any u the value of S given s > ||/K (for
fixed K, K > 0) is stochastically larger than the unconditional values of S. In
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30 L. BROWN

order to make this into a proof we will need to be able to make such a statement
uniformly in g, and the loss function will have to satisfy certain reasonable con-
ditions.

Although the estimators proposed in this paper are better than the best in-
variant estimator, they are themselves inadmissible. We have made no attempt
here to propose estimators which in practice afford significant improvement over
the usual estimators. Our specific aim in this paper has been to prove certain
mathematical theorems in order to provide increased insight into the decision
theory of statistical problems which contain unknown location and scale param-
eters. Nevertheless in a spirit of idle curiosity we computed the risks of our esti-
mators in a few special cases and found—as we had suspected—that they have
only slightly smaller risk than the usual procedure. The greatest improvement we
found was approximately 9%. We do not know if this figure can be greatly or
only slightly increased by the use of admissible proceduies. These computations
are reported very briefly in Section 6.

The squared error loss function has been traditionally used in a wide variety of
theoretical statistical investigations. This is partly because of its mathematical
simplicity. But in the case of the location parameter problem other justifications
exist as well. Chief among thése is probably the fact that when squared error is
used the best invariant estimator is unbiased in that problem. However it is well
known that in the problem of estimating an unknown scale parameter the best
invariant estimator for squared error loss is biased, see Pitman (1938), p. 406.
(For example, if X, -+, X, are independent identically distributed normal
random variables the best invariant estimator of o for squared error loss is
(n + 1) >t (x; — %)°, while the unbiased estimator is (n — 1)
> 74 (x; — &)%) (The biased nature of the best invariant estimator may be im-
perfectly justified intuitively by the fact that the squared error loss function is
out of balance for the scale problem, in the sense that the maximum loss for esti-
mating ¢* too small is finite, while the maximum loss for estimating o” too large
is infinite.)

Because of these possibly disturbing features of squared error loss in the scale
parameter problem, it seems reasonable to discuss the simple properties of some
other reasonable loss functions and of the corresponding best invariant estimators.
Section 3 of the paper is devoted to such a discussion.

The main result of Section 3 (Theorem 3.1) is that there is an essentially
unique loss function for which the best invariant estimator is always unbiased
Because of this, any general principle to the effect that lacking other information
one should always use an unbiased estimator in scale problems is equivalent toa
principle that in such situations one should always use this unique loss function.
It follows from this, as a kind of corollary to the inadmissibility theorems men-
tioned earlier, that one may say (if one wishes!) that the unbiased estimator of
any power of the scale parameter is inadmissible. Theorem 3.3 looks at a different
property of this unique loss function.

“The main inadmissibility theorems of the paper are contained in Sections four
and five.
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2. Definitions, assumptions, and remarks on differentiation. Let S, 7T, Z be
random variables taking the values s, £, z in E* X E* X E™, withs > 0. (m = 0
is possible, in which case we will drop the symbol z from the notation.) We suppose
(if m = 1) that Z has a probability distribution 5( - ) ; and for almost all z, S and
T have a conditional probability density with respect to Lebesque measure,
given by

fll.ﬂ(sy tIZ) = 6—701(3/6: (t - #)/Ulz)
= o f(s/o, (t — u)/o|2).

(If m = 0, S, T have the density (not conditional) f,.(s, {) = o *f(s/o,
(t — p)/o).) u and o are unknown parameters. (When, as in the last line of the
above, subscripts are omitted; it is assumed that 4 =0, ¢ = 1.) We will often
use the conditional density, which can easily be shown to exist:

Jo(slz) = o fi(s/o|2) = o f(s/o|2).

(f.(s|2) does not depend on w.)
If Xo, Xo,--+, Xn, n = 2, are independent identically distributed real-

valued random variables with density ¢ 'g((z — u)/c) with respect to Lebesgue
measure then the variables

== n_l Z;Lq]?i,
(2.1) s=[(n—1)7" 2k (2 — &),

2 = (Tya — &)/, i=1,-,n—2=m,

satisfy the previous definition of a location and scale problem. (In Theorem 3.2
we use a very slightly different but equivalent definition.)

An estimator of ¢* is a function 8(s, ¢, 2). k is a fixed, known, constant, & >0.
1t is snvariant (or, fully invariant) if 8(s, ¢, z) = ¢(2)s". (If m = 0, ¢ is a con-
stant.) It is scale tnvariant if it is of the form &(s, t, 2) = w(¢/s; 2)s*. Note that
invariant estimators are also scale invariant. (Randomized estimators may be
accommodated, as in Brown (1966), Section 1.3.)

Throughout the paper we will deal only with non-negative nvariant loss func-
tions—that is, with loss functions of the form L(3/¢") where L = 0. We will also
assume throughout that L(-) is of bounded variation on every interval (a, b)
with 0 < @ < b < o, and that L is right continuous. (Since L is of bounded
variation, there is always a right continuous version of L.)

The risk function is R(8; p, 0) = E,(L(8/04)). If § is scale invariant R is a
function only of & and the ratio u/o. Hence to prove that one scale invariant
estimator is better than another it is sufficient (and necessary) to consider only
the case ¢ = 1. For this reason we will need to consider only the case ¢ = 1 in
the proofs of the theorems in sections 3, 4, and 5.

., Throughout the paper we assume that there exists an essentially unique meas-
urable best invariant estimator described by ¢o - ) which satisfies:

J L(eo(2)s"/a")fo(s]2) ds = R(eo(2)s" |2) = inf, R(es"|2).
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(The above expression defines R( - |z), which, to be formally precise should be
written R((¢s*)|2); since the argument is really the function (¢s*).) Actually,
the basic inadmissibility theorems of the paper remain valid with several minor
modifications if ¢ exists, but is not essentially unique.

We will also have to assume that the expression

R(es"|2) = [ L(es")f(s|2) ds

can be differentiated in some sense with respect to ¢ under the integral sign in a

neighborhood of ¢o(2). Since we want this assumption to be as weak as possible,

we will now briefly discuss the problem of differentiating under the integral.
For —0o £ a<b= »let

oCo(a, b) = {h(-)|h(-) continuous on (a,b);d a < a < B < b such that
(2.2) a Sz = aorf =2z = 0bimplies i(z) = 0},
Co(a, b) = {h(-)| h(-) bounded and continuous on (a, b); A 8 < b such
that 8 < = < b implies h(z) = 0}
(oC(a, b) and C(a, b) can be similarly defined.)

Let k() € oCo (— o, =) and suppose A is a real function of bounded variation
on every bounded interval of (— o, ). In Brown (1966) we proved the follow-
ing simple fact:’

(2.3) (8/0¢) [ RN + ¥)dv = [h(v) d(v + ¥) = [h(v — ¢) dN(v).

It follows that the derivative (2.3) is a continuous function of .

Now, suppose g € ¢Co(0, »). By assumption L(-) is of bounded variation on
every interval (a, b) where0 < a < b < «.Ifweletv = Ins* and ¢ = Ing, and
use (2.3)

(3/9¢) | g(s)L(es") ds

(8/0¢) [ g(&"™)L(") (e /k) dv
e(9/ay) [ MoINY + v) dv

= ¢ [ h(v) d\(v + ¥)
where h(v) = e”*g(e"’*)/k and N(y) = L(e"). It follows from (2.4) that for each

@ > 0, (3/3¢) [ g(s)L(pss) ds is a linear functional on ¢Co(0, o). Thus for each
¢ > 0 there is a unique measure v,(-) on (0, « ) such that

(2.5) (8/3¢) [ g(s)L(¢s") ds = [ g(s)v,(ds).

If we substitute s and ¢ into the right side of (2.4) that expression becomes
[ g(s)(s/ek) doL(ps"). It is therefore reasonable to write », symbolically as
wo(ds) = (s/ok) dinetL(@s"). In particular, if L is absolutely continuous then
vo(ds) = *I'(ps*) ds and (2.5) is the usual formula

(2.6) (8/9¢) [ g(s)L(es") ds = [ g(s)s"L(si) ds.

2 We suspect this result is in all standard real variable texts, but we have never found an
explicit proof of it in such a text.

(2.4)
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With this definition (2.5) of differentiation under the integral sign and of v, we
can state the following assumption, which is to hold throughout this paper.

AssumpTioN A. There is a function ¢(z) > 0 such that for almost all ¢,
le — @u(2)| < e(2) implies

(2.7) (8/3¢) [ L(es")f(s|2) ds = [ f(s]2)vy(ds) # % .

If L is of bounded variation on every interval 0 < ¢ < b < « and
(- |2) € Co(0, ) (which is rarely the case in practice) then Assumption A is
automatically satisfied. Thus for continuous f(- |2z) the assumption is a con-
dition only on the behavior of L( - ) and of f( - | z) near 0 and near «. (Near 0 it is
usually enough just for f to be bounded since v, will usually satisfy (2.8).) But
Assumption A may also be satisfied if f( - | 2) is not continuous (roughly speak-
ing so long as ‘“‘uncontinuities” of f and of L do not “coincide’). Using standard
methods one can give various sufficient conditions for Assumption A to be satis-
fied and thus show that in practice it is very mild assumption. We will not pursue
the question further here, except to note that all the examples of Section 3 satisfy
the assumption.

Let us point out one further property which is needed later. First we need the
following:

DzrintTioN. L is bowl-shaped (respectively, siricily bowl-shaped) if there is a
number a;, , 0 < ar < «, such that L(y) is non-increasing (respectively, strictly
decreasing) for y < ar and non-decreasing (respectively, strictly increasing) for
Y = ag.

Lemma 2.1. Suppose L is bowl-shaped, and g(s, u) s a bounded non-negative
Sunction, continuous on (0, ©) X (e, B). Assume that for some a > 0 and ¢, > 0

(2.8) [5 1961 (ds)| < .
Then, if we (a, B),
(2.9) lim infy.g; g fg(s; wve(ds) = fg(s, 40) vy (ds).

Proor. This result follows easily from the representation (2.4), (2.5). We have

S 9(s, w)ve(ds) = [ h(v — ¢, u) dN(v)

where h(v, u) = (e"*/k)g(e"™, u). Thus k( -, -) is non-negative and continuous.
M) = L(¢") is also bowl-shaped with its minimum at In a; . Using (2.8), and
(2.4)

(2.10) [or e an(v) > — .
It then follows, using the boundedness of h and Fatou’s theorem that
(211)  liminfyay, wone [ B(v — ¥, 1) dA(v) = [ (v — ¥1, 1) dN(v)

where ¢1 = In ¢, . This verifies the inequality in (2.9) and proves the lemma.
The assumption (2.8) will occur so frequently that we will state it formally as
Assumption B. For some a > 0, and ¢; > 0

(2.12) [8 19, (ds)| < .
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As in (2.10), this implies [§[v,(ds)| < o« for all ¢ > 0, a > 0. We will spe-
cifically state when this assumption is being used. As with Assumption A, this
assumption is also very mild. In particular, it is satisfied by the three loss func-
tions discussed in Section 3. Note that if Assumption B is satisfied and
f(-|2) € Co(0, ) then Assumption A is also satisfied.

If we let f(s|2) = g(s, u) the above lemma shows in particular that if As-
sumption A is satisfied, and f(- | 2) is a bounded continuous function and As-
sumption B is satisfied then (9/d¢)R(¢s”|2) is lower semi-continuous in ¢ at
@o(2).

Actually, if L is absolutely continuous (so that », is given by (2.6)), and the
Assumptions A and B are satisfied then f( - | z) bounded implies (8/8¢)R(¢s* | 2)
is lower semi-continuous at ¢o(2). It is not necessary in this case that f(- | 2) be
continuous. This result follows from the fact that with 2 and ¢ as above
h(v — ¢¥) — h(v — ¥) in measure (Lebesgue measure) as ¢ — ¥o (see, for ex-
ample, Wiener (1933), p. 13). The desired lower semi-continuity thenfoilows
using the representation (2.6) of », and Fatou’s theorem in an expression like

(2.11). _
3. Relationships among best invariant estimators for certain invariant loss

functions; unbiased estimation. We have already mentioned one common in-
variant loss function, namely squared error, which is given by the formula

L(y) = (y — 1)*  (y = 8/d").

(Often, in the literature, squared error is defined as (8§ — ¢*)* which is ¢* times
our function. However, these two forms are equivalent for consideration of

questions of admissibility.)
The best invariant estimator for this problem is the solution to the equation

(3.1) [ $(e(2)s* — 1)f(s|2) ds = 0.
That is
(3.2) o(z) = [ $(s|2)ds/[ s™*f(s|2) ds.

Here we have made use of Assumption A to differentiate under the integral
sign. For later use let us denote this function ¢ by ¢,(-) and 8,(:) = ¢,(- ).

As we mentioned in the introduction many people prefer the use, in theoretical
assumption problems, of the unbiased estimator rather than the use of 8, . The
best unbiased estimator is defined by

eu(2) = ([ (s]2)ds)™  and  8u(-) = eu(-)s"
Define the loss function L,(y) by
(3.3) L(y) =y —1—1Iny.

Note that L.(y) is strictly convex in y. Hence the best invariant estimator for
L, , if it exists, is unique. Also, note that if L is given by (3.3) then for any
0,0 < ¢ < =, p, satisfies Assumption B.
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The next two theorems make precise the statement, referred to in the intro-
duction, that the use of an unbiased estimator is essentially equivalent to the
use of the loss function L, .

The following theorem applies equally well to the problem of estimating a scale
parameter when the location parameter is known, but to be consistent with the
notation of the rest of the paper, we state and prove it in the situation of Section 2.

Tueorem 3.1. Let L( -) be any non-constant invariant loss function for the prob-
lem of estimating o*, k > 0. Suppose the best invariant estimator 8 = o - )s* for L
satisfies oo(2) = ou(2) a.e. (q) for all densities such that f(- |2) £oCo (0, o) a.e.
(n). Then there are constants « > 0, 8 = 0 such that L(y) = aL.(y) + B.

Conversely, suppose L(y) = aL,(y) + 8(a > 0,8 = 0) and f(- | +) satisfies
Assumption A. Then oo(z2) = ¢u(2) a.e. (1).

Proor. The converse is obvious. Using Assumption A

(34) (9/90)R(es" |2) = [ (1 — (o) 7)f(s]2) ds.

Hence R(¢s" | 2) is uniquely minimized by choosing ¢ = ( f S(s|2)ds)™ = ..

For the main result we suppose there exists an invariant loss function L(-)
with ¢o = ¢, a.e. (n). For any probability density g(-) € ¢Co (0, ) satisfying
[ (" — 1)g(s)ds = 0, ¢, = 1 and hence [ g(s)m(ds) = 0.

If heoCo(0, ) satisfies f(s" — 1)h(s)ds = 0 then h can be written as
h = ayy — axge where a; = 0, and g; are probability densities in ¢Co (0, =)
satisfying f (s — 1)gi(s) ds = 0; ¢ = 1, 2. (In general g; and g, will not be merely
the positive and negative part of h.) Hence, for all & £ ¢Co (0, )

(3.5) [(s* = 1)h(s)ds = 0 implies [ A(s)n(ds) = 0.

As is well known, (3.5) implies that »(ds) is equivalent to a(s* — 1) ds on
(0, ) for some constant «; ie. that for any interval 0 < ¢ < b < =,
foan(ds) = o [ (8 — 1) ds. Looking at the derivation (2.4) of » we see that
this implies d,L(e") is equivalent to a(e’ — 1)dv. This in turn implies that
L(y) = a(y — Iny — 1) + B for all but an at most countable set of points. The
assumptions L = 0, L non-constant, imply & > 0, 8 = 0. The assumption that L
is right continuous gives equality everywhere. This completes the proof of the
theorem.

In the main assertion of Theorem 3.1 we required that the best invariant esti-
mator for L satisfies ¢o = ¢, (a.e. (%)) for all densities in a rather large family of
densities (namely, f(- |2) €¢Co (0, )). It should be clear that the conclusion
will be valid even if the family of densities is much smaller; for example, as long
as it contains enough densities so that their closure spans the subspace of
oCo (0, =) consisting of all densities satisfying [ (s* — 1)g(s) ds = 0.

We have tried to produce a small family of densities containing the densities
of the x° variables for which the conclusion of Theorem 3.1 is valid, however we
have not succeeded in producing an adequate characterization of such a family.
We offer instead the following theorem as an example of the kind of theorem

which may be obtained.
TuroreM 3.2. Let X;, X, be independent random variables each having the



36 L. BROWN

density o 'g((x — u)/a); u, o unknown. (For convenience) let
(3.6) s = |z — 2.

Suppose L( -) is a non-constant invariant loss function for the problem of estimating
o*. Suppose the best invariant estimator 8 = ¢os* for L satisfies oo = ¢u for all
bounded densities g having compact support. Then there are constants o > 0,8 = 0
such that L(y) = aL,(y) + 8.

Conversely, suppose L(y) = aL,(y) + B(a > 0,8 = 0) and g is as above. Then
Yo = Pu .

Proor. The converse follows from the converse of Theorem 3.1 using the fact
f(+) (the density of the random variable S defined in (3.6)) satisfies Assumption
A with L, , since L, satisfies Assumption B and g is bounded and has compact

support.
Let
Aaz) =z —¢, c=z=(c+4d))/2
=d—z (ct+d)/2=2z=4d,
=0, otherwise.
We claim that if 0 < e < ¢a — ¢, ¢ > 2 X 2*
. (8.7) Y1 aderre) T V2 erlieator = Geser

satisfies fq(s)(s’c — 1) ds = 0 then q is in the linear subspace of ¢Co (0, «)
spanned by those densities {f(-)} of S which also satsify [f(s)(s" —1)ds =0
To see this, let

A

X(c,d)(w> =1, c=x = d7
= 0, otherwise,

then define a probability density g by g(y) = > 88 YiXes.a; (y) where ¢ = —¢/2,
ds = 0,64 = Cl,d4 = ¢ + 6/2,65 = Cz,da = ¢ + é/28,ﬂd’Y¢,i= 3,4,5,deter-
mined subject to the two restrictions that (1) g is a probability density and
(2) the density of S determined by g satisfies ) f(8)(s" — 1) ds = 0, and hence
[ f(s)n(ds) = 0 since ¢y = ¢, . It can be shown by direct (but messy) calcu-
lations that this can be done. (It is necessary here that ¢ be sufficiently large;
e > 2 X 2"% is enough.) In the process of doing this one computes the proba-
bility density of S as

(3.8) f= (ZE=3 ’yz') 0Aese + 2 > Z3§j<i§5 YV ej—d)Didj—cs) +

Note that ,—ipAus—cs) = ;Aér+e AN (c5—apAids—c) = erBerte -

A further computation shows that one can write functions of the form g, ,
B7) with0 < < e — ¢ >2 X 2% and fq(s)(sk — 1) ds = 0 as finite
linear combinations of densities of the form (3.8). Going one step further, one
tan then write any function of the form g, with 0 < ¢; < ¢ — ¢ (and
fq(s)(s" — 1)ds = 0) as a finite linear combination of densities of the form
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(3.8). These functions, g, ., , are clearly dense in the uniform norm in the sub-
space of functions in ¢Co (a, b) satisfying [ h(s)(s* — 1) ds = 0. It follows that
» satisfies the statement (3.5) in the proof of Theorem 3.1.

Thus, just as in Theorem 3.1 it now follows that L(y) = aL.(y) + 8, a > 0,
B = 0. This completes the proof of the theorem. )

These two theorems should not be interpreted as an argument that L, is in-
herently a more reasonable loss function for this problem than squared error
(L,). Rather, the loss function to be used in any particular situation should de-
pend on as accurate an assessment as possible of the actual losses which will be
incurred in that situation. We feel, however, that theorems such as the above
may aid in the choice of which loss function to use in some general situations.

In this vein, there is one more loss function (among the many intuitively
reasonable ones) which we would like to discuss briefly. For each given value of
o the squared error loss function gives equal importance to equal differences be-
tween & and o, i.e. to equal values of |§ — o|. Since a scale parameter is being esti-
mated it might seem reasonable to instead weigh equal proportional errors
equally; i.e. to let L be a (bowl shaped) function of |log 8/c|. A mathematically
convenient loss function of this type is given by

(3.9) Li(y) = (logy)".

81(2) = ¢i(2)§" is the corresponding best invariant estimator.

It can be argued heuristically that the squared error loss function gives rela-
tively little importance to errors of the type & < o and that, therefore, the factor
o, will be “small.” Comparatively, 8; appears to give much more relative weight
to errors of the type 8§ < o and one would expect the multiplier ¢; to be large. The
following theorem proves that these statements are correct, and also shows that
L, lies in between L, and L; in this regard. Part of this theorem was proven by
Pitman (1938).

TuaeoreMm 3.3. Suppose Assumption A s satisfied for the three loss functions
L,, L,,and L;. Then ¢,(2) < ou(2) < ¢i(2) a.e. (1).

Proor. Using Assumption A, ¢(z) is the solution to the equation
[ $¥(es" — 1)f(s|2)ds = 0. Since $* and ¢s* — 1 are both strictly increasing
funections of s

0 = [ (ei2)s" — 1)f(s]|2) ds
> fskf(s]z) dsf (0s(2)s* — 1)f(s]2) ds.

Hence [ (¢s(2)s* — 1)f(s]2) ds < 0 which implies ¢,(2) < ¢u(2).
Again using Assumption A, and this time using Jensen’s inequality,

0 = (¢u(2))7 [ (log eu(2) + log s")f(s|2) ds
< (eu(2)) ' (log ¢u(2) + log [ s*f(s|z) ds).
This implies
ou(2) = ([ &f(s]2) ds)™ < ou(2).
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This completes the proof of the theorem.

4. Inadmissibility results for normal random variables, and generalizations.
If X1,---, X, are independent normal random variables with mean u and
variance ¢° then ¢ = Z and s as-defined in (2.1) are sufficient statistics. Hence
their distribution does not depend on 2z, and neither does the best invariant esti-
mator. However this fact does not play a role in the methods of this section.
What is crucial for the results of this section is the fact that T and 8 are inde-
pendent (conditionally on z).

Theorem 4.1 contains the condition that

(4.1) foa(s, tl2) = f(s|2)h(t]2)

where, of course, both f(- | 2) and h(- |2) are probability densities. Therefore
this theorem applies to the normal distribution casé mentioned above. (The
other assumptions of the theorem are easily seen to be also satisfied in the normal
distribution case so long as L(y) does not tend to infinity extremely fast as
y—0ory — «».)

As mentioned in the introduction the scale invariant estimators which we will
prove to be better than the best invariant estimator are of the form

(4.2) a(-) = 6(z)s" if |t/s] < K(z)
eo(z)s* if |t/s| = K(z)
where (as always) @o(2) s° is the best invariant estimator of ¢*, and 6(2) < @o(2).

We will have to consider various conditional densities; and so we define (for
example)

(4.3) JC-1lt/s] < K, p,2)

to be the conditional probability density of S given [t/s| < K, and Z = ¢, for
the given value of u (and for ¢ = 1). For any scale invariant 6 we also define

(44)  R(Su|lt/s| < K,2) = Bua(L(3(-)/d")| t/s| < K, Z = 2).

It should be clear already that what we will do is to prove that for each given
value of Z

(4.5) R(di3p|2) = R(ou;mllt/s| < ©,2) = R(do;5ul2)

with strict inequality for an appropriate set of values of u, which in our case will
include a neighborhood of 4 = 0. (The first equality of (4.5) defines R(d: ; 1| 2).)
Since we only need to prove (4.5) separately for each given value of Z it will be
convenient in the remainder of this section to assume that a value z of Z has
been given. We will make this assumption throughout this section except in the
statement of Theorem 4.1, and hence we will not write the given value of Z in
expressions like (4.1)-(4.5). For example, the expression (4.1) becomes
foa(s, t) = f(s)h(2).

The main idea of the proof is, roughly speaking, to show that
f(s||t/s| < K, , z) has auniform (in p) strict monotone likelihood ratio property

]

If
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with respect to f(s|z). In order to get the necessary uniformity some assumption
must be made concerning the density & (see Example 4.1). The following is
stronger than necessary, but convenient.

AssumpTION (4.6). For the given value of Z there are constants b, > 0, b; > 0

such that
h(t) > b for |t < by,

(4.6) h(t) is non-decreasing when ¢ < —by,
h(t) 1is non-increasing when ¢ > b .
Let
(4.7) F(s) = [$f(y) dy,
(4.8) H(@) = [Leo h(y) dy.

(Again, all these expressions depend on the given value of Z.)

We can now state the main theorem of this section.

TaroreM 4.1. Suppose L is an invariant bowl-shaped loss function satisfying
Assumption B. Suppose there is a set Z of values of Z such that n(Z) > 0 and for
each zeZ:

(a) S and T are conditionally independent (i.e. (4.1) is valid), with f(- |2) a
bounded continuous function,

(b) h satisfies the assumption (4.6), and

(¢) Assumption A s satisfied.

Let K(z) be any measurable function such that for z 2 Z, K(z) = 0, and for each
2¢Z,0 < K(z) < o, satisfies

(4.9) Jo1 @9 f(s | 2) |vee(ds)| > 0, @0 = ¢o(2).
Then there is a measurable 8(z) < ¢o(2) such that for each z ¢ Z
(4.10) R(d1;ul2) < R(do;ul2)
with strict inequality for all u such that Pr, i {[t/s| < K(z)|2} > 0. (8, is defined
n (4.2).)
Hence
(4.11) R(81;pn,0) S R(30;p 0)

with strict inequality for all values of u, o such that |u/s| lies in a sufficiently small
neighborhood of the origin. (Hence & is inadmissible.)

Note. (4.9) will certainly be satisfied if L is strictly bowl-shaped (so that
|75 (- )| is strictly positive) and for the given z ¢ Z F(b:/K) > 0.

Proor. First of all, note that for z £ Z the condition Pr, {|t/s| < K(z)|Z} > 0
will certainly be satisfied for all u for which A(—u) > 0; and hence, using As-
sumption 4.6, for all u in a neighborhood of the origin. Thus (4.11) follows im-
mediately from (4.10), and the fact that R(8;; u, o), ¢ = 0, 1, depends only on
the ratio u/c, and the fact that n(z) > 0.
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In the remainder we have only to prove (4.10). As noted in the beginning of
this section we choose a value z ¢ Z, and will prove (4.10) for this fixed value.
Also we will consider only values of u such that Pr,,{[{/s| < K} > 0. (For
values of u for which Pr,, {|t/s| < K} = 0, & = 8 with probability one and
hence there is equality in (4.10).) -

For such values of u

(4.12) f(s|lt/s| < K, u) = (K, w)(H(Ks — p) —H(—Ks — p))f(s).
Define
(4.13) r(s,u) = K[W(Ks — p) + W —Ks — wH(Ks — ) — H(—Ks — p)I”’
= (8/0s) log (H(Ks — p) — H(—Ks — u)).

Using the Assumption (4.6), note that r(s, u) satisfies:
(a) if |[Ks — p| < byor |—Ks — p| < by then r(s, u) > Kb,

or
(b) if (Ks — u) < —byor (—Ks — u) > by then (using the “monotone tails”

p operty of A)
r(s, u) = K[(2Ks)(H(Ks — p) — H(—Ks — p))]
[(H(Ks — p) — H(—Ks — p)]" = (28)".
For 0 < s < by/K the situation —Ks — u < —b; and Ks — p > by is impos-

sible, and therefore either (a) or (b) above is valid.
Define

(4.14) ro(s) = min (Kby, (25)™), 0 < s < b/K,

= 0, S % bl/K.

It follows from (a), (b) above that for 0 < s < by/K, inf, (s, u) = 7o(s) > 0.
Let

(4.15) r*(s) = exp {[3ro(y) dy}
so that ro(s) = (8/ds) In r*(s). Finally define the probability density * by
(4.16) £*(s) = a™*(s)f(s)

where ¢ is the appropriate constant.

Since r* is bounded it follows that f* is bounded. Since L is bowl shaped
veo( + ) is a non-positive measure on (0, @) and a non-negative measure on (a, , )
where @ = (az/@0)"*. (a1 is defined above Lemma 2.1.)

Since r*(s) is non-decreasing, f* has monotone likelihood ratio with respect to
f. In addition, f* has strict monotone likelihood ratio with respect to f on
(0, b/K). We may use these likelihood ratio properties and condition (4.9) to
obtain strict inequality in the equation

(4.17) [ £*(8)vpo(ds) > [ f(8)vpo(ds) = 0.
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Since f* is bounded and continuous and L satisfies Assumption B, Lemma 2.1
applies; hence [ f*(s)v,(ds) is lower semi-continuous in ¢ at ¢, . It follows from
(4.17) that there is a number § < ¢ such that [# — ¢o| < € (with € as in Assump-
tion A) and such that § £ ¢ < ¢, implies

(4.18) [ £ (s)v (ds) > 0.

Finally we note'from the construction of f* that each density f( - [ t/s| < K, )
has non-decreasing monotone likelihood ratio with respect to f*. In addition,
using the expression (4.12) and the fact that H is continuous and bounded the
densities f( - | [t/s| < K, p) satisfy Assumption A for |p — @ < € (e as above).

Using these properties of f(- | -, +) and (4.18), for8 < ¢ < ¢o

(4.19)  (3/3)R(Ys"; ullt/s] < K)ly=p = [f(s||t/s] < K, u)ry(ds) > 0.
It follows from (4.19) that
R(6s"; u|[t/s] < K) < R(eos"||t/s| < K).

This verifies (4.10) for the chosen value of Z; and completes the proof of the

theorem.
The assumption that f(- | z) be continuous and bounded for z ¢ Z is needed in

Theorem 4.1(a) only so that [ f*(s)»,(ds) be lower semi-continuous at @q(2).
If L is absolutely continuous then it follows from the remark at the end of Section
2 that f* bounded is sufficient for [ f*(s)»,(ds) to have this property. Hence if
L is absolutely continuous the assumption (a) of the theorem may be weakened
to require only that f(- | 2) is bounded.

We conclude this section with an example showing that if an estimator like
6, is to be better than 8, then some assumption must be made concerning the
shape of the density h (although the Assumption 4.6 is clearly stronger than
necessary ). We do not know whether the & of this example is admissible within
the class of scale invariant estimators, nor whether it is admissible.

ExampiE 4.1. Let f(s) = 1,0 £ s £ 1, = 0 otherwise. Let

Rit) =3X2"¢ 28— 27 < | <2 4+24=1,2 -,
=0 otherwise.

(h places a small amount of probability increasingly concentrated (as t — &+ « )
near a very sparse sequence of points — =42, +4, 48, +16, ---).
Using the expression (4.12) it is clear that for any fixed K < o
limiso f(s | [t/s] < K, £2") = ().
Hence, if L is any loss function such that ¢, is uniquely determined and &, is any
estimator of the form (4.2) with § < ¢ then
limg, R(8: ; £2°| |t/s| < K) = R(65*) > R(pus").

Hence 61 is not better than & .
The fact that f has compact support seems to be important in this particular
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example. However there do exist analagous (though messier) examples where f
does not have compact support. What seems to be necessary is roughly that the
tails of h look somewhat like those in the example and contain much more prob-
ability than the tail of f (with the ratio tending swiftly to « as [t| = s — »).

5. Inadmissibility results in the general case with compact support. In this
section we prove inadmissibility theorems analogous to Theorem 4.1, but with-
out the condition that the random variables S and 7 be conditionally independ-
ent. As we showed in Example 4.1 even when S and T are conditionally inde-
pendent awkward things can happen if the tails of the distribution of T behave
badly. This is even more true when S and 7 need not be conditionally inde-
pendent. Therefore in this section we are able to deal only with the case where
the distribution of 7" has no tails at all.

We assume here exists a B < « such that |¢{| > B implies

(5-1) fo,l(S, t) = 0.

At the end of this section we briefly discuss some aspects of the situation when
Assumption 5.1 is not satisfied.

We assume throughout this section, as in the bulk of Section 4, that we are
dealing only with a fixed value of Z, and thus the value of Z will not be displayed
in the notation except in Corollary 5.1. It should be clear from the remarks in
Section 4 and from Theorem 4.1 how to deal with the case where Z is not fixed.

The careful reader will note that several of the assumptions in the following
theorem are stronger than the corresponding assumptions in Theorem 4.1, and
that the conclusion of the theorem is slightly weaker than the conclusion of that

theorem.
We remind the reader that (for a fixed value of z)

& =65 if Jt/s) <K
= <p08k if |t/8l g K.

The intuitive idea which lies behind the proof of the following theorem is that
when K is large the line |t/s| = K is (locally in ¢) almost horizontal (away from
the point s = 0). Because of the compact support of f; it follows that for all p
sufficiently large (|u| > U) the region |t/s| < K is practically the same as the
region s > |u|/K; and this approximate identity of regions becomes better and
better as K — o uniformly in p (for |u| > U).

Conditionally, given s > |u|/K for |u| > U, it is clear that the estimator ¢os" is
not admissible; rather, there is a better estimator of the form 6s° with 8 < ¢;.
(To use the language of the preceding section the distributions of S given
s > |u|l/K, |u| > U, have a uniform monotone likelihood ratio property with
respect to the unconditional distribution of 8.)

The first part of the proof of Theorem 5.1 is devoted to showing essentially
that when K is sufficiently large one need not worry about values of p with |u| < U
(U is defined in (5.8) ). Then the second part of the proof verifies in the appropri-
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ate precise sense that the region [t/s| < K is practically the same as the region
s > |u|/K for |u| > U.

TuEOREM 5.1. Suppose L s strictly bowl-shaped, is continuous at its minimum
value (a) and satisfies Assumption B. Suppose the condition (5.1) is satisfied.
Suppose f(x) is bounded, continuous, satisfies Assumption A and satisfies

(5.2) [§f(s)ds >0 forall &> 0.

Suppose also that for each fixred K > 0 the densities f(s||t/s| < K, u) are jointly
continuous in s, u for all s, u such that

Pr..{|t/s] < K} > 0.

Then there is a Ko < o such that K > K, implies there is a 8 < ¢, (6 depends on
K) such that B(6, ; p) = R(80 ; u) with strict inequality whenever

(5.3) Proi{s, t:]t/s| < K} > 0.

ProoF. Again we need consider only values of K, u such that (5.3) is satisfied.
If ¢ — @o| < ¢, then the conditions on f( -) and f( - | |t/s| < K, u) guarantee that
the latter satisfies Assumption A. Hence

(54) (9/3e)R(es"; ullt/s| < K) = [ f(s||t/s| < K, w)ve(ds) = D(e, K, p)

where (5.4) defines D( -, -, -).
Let a0 = (ai/¢0)"¥, so that L(pes*) attains its minimum value when s = aq .
We first prove that

(5.5) For each p, K > Kop) = (B + |u])/av = D(¢, K, p) > 0

(for all K, u satisfying (5.3)).
[t/s] = K > Ko(u) implies s < ao. Since L is strictly bowl shaped,
v5,(+) is a strictly negative measure on this region. Hence for K > Ko(u)

(5.6) [H(s|1t/s] = K, w)ven(ds) < 0.

Condition (5.2) guarantees that Pr,; {|{/s| = K} > 0 so that (5.6) makes
sense. Then,
0 = D(¢o, =, n)

(5.7) = Proa {[t/s| = K} [f(s]]t/s] Z K, u)ve,(ds)
+ Proa {|t/s] < K}D(¢o, K, ).

(5.6) and (5.7) prove that (5.5) is valid.
We next prove

(5.8) AU such that |u] > U = D(¢o, K, u) > 0 forall K > 0,
and pu satisfying 5.3.

First, choose a’ > a, such that for some a > 0, fff' f(8)vg(ds) > @ > 0. Then
choose a” < ao such that fﬁn" f(8)vp(ds) > —a/2. That o’ and a” exists is a
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consequence of the Lebesgue regularity of »,, and the fact that »,, is non-atomic
at ao (since L is continuous at a.). Choose

(5.9) U = max (B(a’ + a0)/(a’ — ao); B(ao + a”)/(ag — a")).

A little algebra shows that for any K, |u| > U > B implies either

(5.10a) (lul = B)/ao > K or
(5.10b) (¢l + B)/as < K or
(5.10¢) (lul — B)/a" > K and (|u| + B)/d' < K.

Note that (5.3) is automatically satisfied if (5.10b) or (5.10¢) are true.
If (5.10a) is true, then (using (5.1)) with probability one

K < (lul = B)/ao < |tl/a0.

Hence, with probability one, the condition |¢/s| < K implies s > ao in this case.
vo,( +) is a strictly positive measure on this region; hence (5.8) is true in this
case.

If (5.10b) is true then (using (5.1)) with probability one |¢{/s| = K implies
s < ao. As in the verification of (5.5) it follows that (5.8) is also true in this
case.

Finally, if (5.10¢) is true then

f(s| |t/3| <K,p) = Cflt/s|<xf0,1(3, t — u)dt

(5.11) = ¢f(s), if s> d,
< ¢f(s), if a" £s=d,
=0, ifs<a”,

(where c is the appropriate normalizing constant). Hence, using the definition of
ron
A, a,a,

(5.12) D(go, K, 1) Z ¢ [ f(s)vgo(ds) + ¢ [ f(8)vgy(ds)
= c(la — a/2) > 0.

(5.12) proves that (5.8) is also true in this case. Hence we have proved the
statement (5.8).
Let

Ko = Ko(U) = supp<v Ko(u).

Using (5.5) and (5.8) for all K > K, and all p such that u, K satisfy
(6.3), D(¢o, K, n) > 0.

Choose any K > K, .

We claim there is a number 8, oy — ¢ < 8 < ¢y, such that § = ¢ = ¢, implies
D(¢, K, u) > 0 for all p such that (5.3) is satisfied. Suppose not.
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Then there is a sequence ¥;, u; such that (5.3) is satisfied, ¢; /' ¢, and
D(\l”t ) K} /J'i) é 0.

Reasoning as in the verification of (5.8) in the case (5.10a), if
(i) — B)/a; > K where a; = (ar/¥:)"* and (5.3) is satisfied then
D(¢:, K, p;) > 0. S

It follows that | u:| < Ka; + B — Kao + B. By taking subsequences we may
assume u; — po where |ug| = Kay + B. Thus (|w| — B)/as = K, and it follows
(since K > Ko(U)) that || satisfies (5.10b) or (5.10c) and hence that uo, K
satisfy (5.3). The results (5.5), (5.8) thus establish that D(¢o, K, ue) > 0.

Lemma 2.1 now applies here (with f(s| |t/s| < K, u) substituted for g(s, u) in
expression 2.9). Thus

lim inf'/’i*too'ﬂi-’ﬂo D(‘pl ) K) ”’i) = D((po ] K’ #0)-

But this implies D(gq , K, po) = 0 which is a contradiction. Thus we have estab-
lished our claim, namely that there is a 6 < ¢ such that 6 < ¢ < ¢, implies
D(y, K, ) > 0 for all x such that (5.3) is satisfied. It follows that for these
values of u, R(8: ; u||t/s] < K) < R(8 ;i | |t/s| < K). The main assertion of
the theorem follows immediately; and the proof of the theorem is complete.

The condition in Theorem 5.1 that f(s||t/s| < K, u) be jointly continuous in
s, p is undoubtedly stronger than is necessary for the conclusion of the theorem
to be valid. (To weaken the condition and retain the same type of proof would
require that the hypotheses of Lemma 2.1 be weakened. This can probably be
done.) Nevertheless the hypotheses of Theorem 5.1 are weak enough to apply to
most practical situations in which the compact support condition (5.1) applies.
The following corollary gives the most important such application.

CoroLLARY 5.1. Let X, -+, X, be independent, real-valued random variables
each with density e 'g((x — w)/o) with respect to Lebesque measure. Let t = %, s, 2
be defined as in (2.1). Suppose g(-) is bounded and has compact support (i.e.
g(y) = 0 for ly| > B’). Suppose L is strictly bowl-shaped, is continuous at its
minimum value and satisfies Assumption B.

Then there is a measurable function Ko(z) < oo such that for any measurable
K(z) > Ko(z) there is a measurable 8(z) < ¢o(2z) suchthat R(8, ;| t/s| < K,2) =
R(8; p||t/s| < K, z) with strict inequality for all u in a neighborhood of u = 0.

Proor. The proof consists in verifying that the assumptions of the corollary
imply that for each fixed value of z the assumptions of the theorem are satisfied.
The hardest condition to check is that f(s | |¢/s| < K, u, 2) is jointly continuous
in s, p for each fixed K, 2; but this can be verified directly by writing down the
explicit expression for f and using elementary properties of the Lebesgue integral.
We omit the details. ‘

After this verification the conclusion of the corollary then follows from a direct
application of the theorem.

In Example 4.1 we gave one example of a situation in which the compactsup-
port assumption (5.1) was not valid and in which the specific conclusion of our
Theorems 4.1 and 5.1 was false. If S and T need not be conditionally independent
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it is much easier to give such counter-examples. Consider the following:
ExamrLE 5.1. Let
f 0,1( S, t)

1 if 05ss(2n)

Il

0 otherwise.

I

Note that for any K < o
sup {s:|t/s| < K,0 = s = (21r)—%e_*“"")2} —0 as p— Lo,

Hence if L is any strictly bowl-shaped loss function then for |u| sufficiently large
and ¢ = ¢, D(¢, K, p) < 0 where D is as defined in (5.4). It follows that no
estimator like 8; can be better than &y .

In spite of these examples it seems reasonable to canjecture that a result like
Corollary 5.1 should be true without the assumption that g(-) has compact
support. Simply the fact that S and T result from independent random variables
X, -+, X, imposes certain kinds of restrictions on the tails (in ¢) of the density
f(s, t|2) which seem to preclude examples like Examples 4.1 and 5.1. (Some
preliminary investigations have indicated to us that in the proof of such an in-
admissibility result it may be more convenient to define { = z; and s = |z — 1
rather than ¢t = &, ete.)

We have only been able to prove a result like Corollary 5.1 with non-compact
support in the special case where n = 2, g is symmetric and unimodal, and
K=2"%(when K = 27 {(21, @):|t/s| < K} = {(z, m):m < 0 < x5 or
z; > 0 > x2}). Since our proof of this result seems to make strong use of all these
special assumptions we do nottake space to give it here.

6. Numerical results for estimating the variance of a normal population. In
order to get some idea as to the improvement which one may expect from the use
of estimators better than the usual one we computed the risks in a few special
cases of an estimator much like those developed in Section 4. It should be empha-
sized again that the scale invariant estimators we have used are themselves
inadmissible, and we do not at all know how much the risks of these estimators
may be decreased by the use of admissible estimators.

We deal with the case where X;, - -+, X, are independent normal random
variables with unknown mean u and variance ¢°, and ¢ and s are as definedin (2.1).
Then T is normal with mean p and variance 1/n and (n — 1)s”is x* withn — 1
degrees of freedom. Rather than using the exact proof in Section 4, it is easier to
note that in this case

(6.1) f(s|lt/s| < K, u) = e(K, p)(H(Ks — p) — H(—Ks — p))f(s)

has strict monotone likelihood ratio with respect to f(s | |t/s| < K, 0) (H and f
are as in (4.1), (4.8)). This fact follows directly from well known likelihood
sproperties of the normal distribution function. (Note that H(x) = ®(n'z) ). Hence
for any appropriately differentiable, convex loss function L and for any K > 0
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the 6 in the definition of §; (4.2) may be chosen as the unique solution of
(6.2) [ W' (6s*) (H(Ks) — H(—Ks))f(s)ds = 0.

Formula (6.1) can then be used to compute the risk of §; and this risk can be
compared with the risk of & .

All the numerical results in this section are for the problem of estimating the
variance, i.e. k = 2.

For the squared error loss function we computed the risks of §; for n = 2 and
n = 10 for several values of K.

Forn = 2,0 = 3 and B(8 ; p, 1) = %. The best choice of K overall that we
found was K = .5. (This choice was best among values of K = 0(.1)1.0.) For
K = 5,60 asin (6.2) was 8 = .2794(6) and the risks of §; were

n = 0 .50 1.0 1.5
R(6,;p,1) = .6595 .6569 .6562 .6579

This represents a maximum improvement of (.6667 — .6562)/.6667 = 1.6%

over the usual estimator at |g|/o = 1, and an improvement of 1.1% at g = 0.
For N = 10 we found K = .2 as a reasonable value of K. Then ¢y = 9/11 =
.81818 while 6 = .7602(3). B( ; u, 1) = 2/11 = .181818 while

=20 5 1.0
R(6;p, 1) = .1796 1804 181

Thus the maximum improvement we found was (.1818 — .1796)/.1818 = 1.2%
at u = 0. As one would expect, the improvement of 8, over §, falls away to zero
faster in this case than in the case K = 2.

We also carried out some computations for the same problem when the loss
function is L, (defined in (3.3) ), and when n = 2. In this case, of course, ¢y = 1.
When K = .7, 6 = .60949. (Note that Pry; {|¢/s] < .7} = .49+4. Hence § and
8, are very different—almost 3 of the time &, is only 61% as large as &.)
R(8o;p,1) = 924 and

g = 0 5 1.0 1.5

R(615m,1) = 852 .846 842 .860

The largest improvement here is (.924 — .842)/.924 = 8.9%, for p = 1. For
g = 0 the improvement is 7.8 %. (The choice K = .5 will give an improvement
of 8.4% at u = 0, but only 7.56% at p = 1.)
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