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ON A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSI-
BILITY OF ESTIMATORS WHEN STRICTLY CONVEX LOSS
IS USED!

By R. H. FARRELL

Cornell University

1. Introduction. In this paper we consider a necessary and sufficient condition
for the admissibility of estimators when strictly convex loss is used. The result
is stated as Theorem 1. The sufficiency of the condition is obvious and has served
as the basis of admissibility proofs in [1], [6], [11], [3], and [2]. The necessity of
such a method of proof is relatively deep. The author claims no practical use of
Theorem 1. He has been moved primarily by curiosity about the necessity part
of the theorem together with a desire to strengthen the tools of decision theory.
The results of this paper depend on Farrell [5] to which one can refer for defi-
nitions of some common terms like “Bayes” if these are not clear.

In the sequel R, will denote Euclidean n-space n = 1, and R = R, the set of
real numbers. If n = 1 we let &, be the o-algebra of Borel subsets of R, .

TreorEM 1. Let X = Ry . Let the decision space D be an open convex subset of
R . We suppose the parameter space Q is a separable locally compact metric space
and @ 1s the o-algebra of Borel subsets of Q. In addition we assume

(1) m is a o-finite (regular) measure on &y .

(i) {f(-, w), w &€ Q} s a family of density functions in Ly(X, B, ).

(iii) f:X X @ — [0, ») is (jointly) measurable and if x ¢ X then f(z, - ):Q —
[0, =) s a continuous function.

(iv) The measure of loss W satisfies, W:D X @ — [0, «) is a continuous func-
tion. If we @, W(-, w):D — [0, ») is strictly convex. If E C Q is compact then
limltl.,w infmz W(t, w) = o0,

(V) If 0 eQ, z ¢ X, then f(z, w) > 0.

Then (vi) and (vil) stated below are equivalent.

(vi) The estimator & is admissible;

(vii) The procedure & is non-randomized and has risk function r(8, -). There
exists an increasing sequence of compact subsets {F, ,n = 1} of @, F, 1 Q, a sequence
of finite measures {n. , n = 1}, and a sequence of Bayes procedures {6, ,n = 1},
such that

(viia) there exists a compact subset Ey C Q such that inf, 51 7.(Eo) = 1;

(viib) of E C Q is a compact subset then sup,z1 1.(E) < o;

(viie) if n = 1 then 8, is Bayes relative to n, with risk function

7'( on ')'Limn-nof (7'(5,. ) w) - 7'(’3, w) )nn(dw) = 0;
(vii d) liMyaw 7(8,, w) = 7(8, w), w € Q.
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[Note: throughout we consider only decision procedures having everywhere
finite risk.]

A restricted version of Theorem 1 was proven in Farrell [4] in the case @ was
a sudset of R. The proof there required a very detailed analysis of the nature
of generalized Bayes procedures. The purpose of the present paper is to gener-
alize the earlier result and to show that it really is a consequence of the geometry
of the problem alone.

The examples of admissibility proofs mentioned above are all examples of
admissibility of generalized Bayes procedures. An example due to L. D. Browns
Example 6.2 of Farrell [5], shows that in problems of testing hypotheses there
exist examples of admissible tests which cannot be generalized Bayes procedures.
Although we believe the same to be true of some estimation problems we do not
have a conclusive example of an admissible estimator which is not a generalized
Bayes procedure. Further Farrell [4] and Sacks [7] have shown for estimation
problems that in certain cases generalized Bayes procedures do form a complete
class. Therefore, our statement of the theorem speaks only of admissible es-
timators without trying to show that such estimators must be generalized Bayes
procedures. '

The proof makes use of a strengthened form of Stein’s [9] necessary and suffi-
cient condition for admissibility. The required result is given in Theorem 3.7 of
Farrell [5].

The proof given below requires that a special case discussed in Section 2 be
treated. The case discussed there does arise in the decision theory of testing
hypotheses but we do not know whether it arises in estimation theory. Section 3
contains a proof of Theorem 1.

2. Admissibility outside of compact sets. In this section ® will be a convex
set of functions on Q to [0, « ). In this section no further restriction on the indi-
vidual elements of ® is needed. It will however be helpful to think of ® as the
set of risk functions for some statistical problem.

DeriniTION 2.1. R is sequentially weakly subcompact if and only if to every
countably infinite subset {f,,n = 1} of ® there is an f ¢ ® and a countably in-
finite subsequence {f,, , n = 1} such that if w ¢ @ then f(w) = lim infyow fo,(w).

DerintTioN 2.2. Let {E, , n = 1} be a sequence of subsets of Q. f ¢ ® is admis-
sible outside {E,, n = 1} if and only if given g ¢ ®, g 5 f, then if n = 1 there
exists w B, such that g(w) > f(w).

DEerinrTioN 2.3. An admissible point of ® is a function fe ® such that if
g e®, g # f, then there exists an w & @ such that g(w) > f(w).

The concept of Definition 2.2 may prove hard for the reader and we offer
an example. Suppose the family of density functions is exponential, the problem
is a testing problem, @ = X = R., Hy is an (unbounded) proper subspace of
Ry and Hy = @ — H,. Let {E,,n = 1} be any sequence of bounded subsets of
Ry and let ¢ be a non-randomized test having a convex acceptance region. Then
it follows from Stein [10] that ¢ is admissible outside {E, , n = 1}. For, given =,
let wo be a point of Hy not in E, . Then wo is a boundary point of H, and con-
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tinuity of the power function implies every test ¢ as good as ¢ outside E, must
have the same power function as ¢ on Hpo n (€ — E,), and in particular at
wo . It now follows at once from Stein’s proof, op. cit., that if ¢’ and ¢ are distinet
yet have equal power at wo then ¢’ must have power less than ¢ somewhere far
out, that is, outside E,, . C

The basic result of this section, needed for the proof of Theorem 1, is really
about functions f admissible outside {E., n = 1}. However a slightly stronger
result is needed for the proof of Theorem 1, and this stronger version is given
below.

TuEOREM 2. Assume Q 1s a o-compact locally compact Hausdorff space. Let ® be
a convex sequentially weakly subcompact set of real valued functions on Q. Let
{E.,n = 1} be an ncreasing sequence of compact subsets of @, E, TQ, such that
if n = 1 then the interior E, of E, is nonvoid and E,' D En_y , By = {w}. Let f
be an admissible point of ®. Suppose that it is false that there exists a compact subset
E c Q and a function g € ® such that g # f, SUPuer (9(w) — f(w)) < o, and if
w2 E then g(w) = f(w). Then there exists a continuous function h:Q — R such that
hMwo) > 0,4 w2 Ey then h(w) < 0, and f s an admissible point of the convex hull
of ® and {f + h}.

Proor. If n = 11let A, = {g|ge®, g # f, g(w) + (1/n) = f(wo), and
SUPuer, (§(w) — f(w)) = n}. Define a sequence of constants {m, , n = 1} by
n = infgeq, SUDPwrr, (9(w) — f(w)), 1 = o if A, is empty.

We show that m, > 0, n = 1. Since ® is sequentially weakly subcompact, if
7, < 0, we may choose in A, a sequence {g., m = 1} and a function g ¢ ® such
that if w £ @ then g(w) = lim infow gn(w), and supurs, (gn(w) — f(w)) < 1/m.
It follows that g € 4, , that g(ws) < f(wo) so that g # f, and that if w 2 E, then
g(w) = f(w). This contradicts the hypothesis of the theorem.

A compact Hausdorff space is a normal topological space. See Kelley [7]. Let
{6,, n = 1} be a nonincreasing real number sequence such that 8, | 0. Let
h:Q — R be a continuous function which satisfies A(wo) > 0, and if w ¢ E; then
h(w) = —1.Further,ifn = 1 and w £ E, then 0 > A(w) > max ( —1, —8,m,./2).
To obtain such a function define constants 7, by 7, = max (—1, —6m/2, -- -,
—8,7a/2), n = 1. Since Enys — Eoy is compact, since E, is compact, and since
E, C E,s, by the normality of E.,. as a topological space we may find a con-
tinuous function A, such that if w e E.i2 then 0 £ hu(w) £ 1, if we E, then
ha(w) = 1, and if w £ E5 41 then h,(w) = 0. Extend h, to all of @ by giving it the
value zero outside E,s . Define

M) = h(w) — roha(w) — D net (s — 7a)ha().

The infinite series is uniformly convergent so the continuity of A follows. Since
™10, h(wo) = m(we) > O follows. If w ¢ By — E, then hy(w) =0, -+,
hoa(w) = 0, and hj(w) = 1if j = n 4+ 1. Thus h(w) = —(7app — Ta) —
(Tnte — Tat1) — -+ = 7, . Therefore the function h has the desired properties.

We form the convex hull of ® and {k + f}. Suppose forsome 8 e R, 0 £ 8 = 1,
and g e R such that g # f, that 8(h + f) + (1 — B)g = f. We show that this
assumption leads to a contradiction.
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Since h(wp) > 0it must be that 8 = 0 and 8 % 1. Therefore we obtain Bh(wy) <
(1 — B)(f(wo) — g(we)) which implies that g(wo) — f(wo) < 0. It also follows
that if we @ then gh(w) + (1 — B)(¢9(w) — f(w)) = 0 which implies that
(1 — B) supuea (g(w) — f(w)) = B. We use here the assumption that
inf,eq B(w) = —1. If no is the least integer such that supgee (g(w) — f(w)) = ng
and f(wy)) — g(wo) = 1/mo, then ge Ao, n = ny. Therefore if n = ny there
exists w, £ E, such that g(w,) — f(ws) > m./2.

Substitution of these inequalities now gives, if n = n¢ then Bh(w.) +
(1 — B)(g(wn) — f(wa)) = 0. Therefore B( —8,m./2) + (1 — B)(ma/2) = 0.
If in this inequality we divide out =,/2, then take a limit on 7, we obtain
1 — B £ 0.Since 0 < B < 1 this is a contradiction.

Therefore it must be that f is an admissible point of the convex hull of ®
and {f + h}, as was to be proven.

3. Proof of Theorem 1. In the sequel we let ® be the set of risk functions ob-
tainable by considering all randomized decision functions, and assume as stated
earlier that if g ¢ ® then g(w) < o for all w & Q. Our hypotheses require that if
w e Q then g(w) = 0. As is well known, the hypotheses of Theorem 1 imply the
compactness of the set of decision functions and the sequentially weakly sub-
compactness of ®. See Wald [12] and the appendix to Farrell [4]. As a first step
in the proof we need a lemma.

Lemma 3. The points of ® are lower semicontinuous functions. If fe® and
E C Q is compact there exists g € R such that g is continuous and if w ¢ E then
9(w) = flw).

Proor. Using hypothesis (iii), it follows that limg..,f(-, @) = f(+, wo) in
Li(X, ®, n). Using this, hypothesis (iv) and considering truncations of the
loss function the lower-semicontinuity assertion follows.

Let E C Q, and suppose E is compact. Let f, ¢ D and let C be a compact
subset of D such that supees W(t, «) < infyc inf,.x W(¢, ). This is possible
by virtue of hypothesis (iv). Given a nonrandomized procedure & define 8" by,
if zeX and if 8(z) e C then 8'(z) = 8(x), and if 8(x) £C then §'(z) = t,.
As is well known it follows from the definition of & that if w ¢ E then (8, w)
< 7(8, w). Further, since W is a continuous function, if F < @ is any compact
subset of @ then Supzex SUpwer W(8'(2), ) < o, so that using the bounded
convergence theorem it follows that if wp e @ then lim,.a, 7(§, ©) = (8, wo).
The proof of Lemma 3 has been completed.

In the proof of Theorem 1 we need to consider an admissible point f ¢ ® and
relative to f we consider two cases as follows.

Case I. There exists a compact subset £ C @ and g ¢ & such that ¢ # f
and if w £ F then g(w) < f(w) -Supees (¢(w) — f(w)) < oo.

Cask IL. It is false that case I obtains.

We begin with Case I. Let E C Q be a compact subset, and let g e ®, g # f,
such that if w 2 E then g(w) = f(w). We may suppose ¢ is the risk function of a
nonrandomized procedure & and f is the risk function of a nonrandomized
procedure 8, and we will use the alternative notations g(w) = 7( 8, ) and
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flw) = r(8, w). Let 8" = (8 + 8')/2. Since the measure of loss is strictly convex
and since we assume f(z, ) > 0 everywhere, it follows that if w £ E then r( 8", )
< (8, w) Farrell [4] has shown that if F < @ — E is compact then inf,.» (r(a ®)
— (8", w)) > 0.

We apply Theorem 3.7 of Farrell [5] In the apphcatlon we let E' be a compact
set such that E is contained in the interior of E’, and define the function a(-)
by, if w e E' then a(w) = 1, if w ¢ E then a(w) = 0. Then the sequences {7, ,
n = 1}, {g.,n = 1} and {F,. » n Z 1} referred to in Farrell, op. cit., satisfy
(viia), (vii ¢) and (vii d) of Theorem 1. It remains to verify (vii b). Smce G is
the risk function of some decision procedure, say 6., we write g, = r(8n, +),
n = 1.

Since 6, is Bayes for 9, ,n = 1, we find

(31) [ (r(8s, @) — (3, @))mm(dw) = [(g(w) — f(w))nu(dw).

Using (vii ¢) and E as above, since the left side of (3.1) goes to zero as n goes
to infinity, it follows that

(3.2)  lim SUPsw fo-r (f(©) — (@) )na(dw)
< lim suppsw [£(9(0) — f(@))nu(dw).

The right side of (3.2) is < <« since f is nonnegative and since ¢ satisfies the
hypothesis of Case I.

It may happen that for some w £ E that g( ) = f(w). In this case we > may repeat
the above argument with g replaced by ¢’ defined by ¢ "(w) = r(8" , @), we.
Thus, without loss of generality we may suppose that if w £ E then g(w) < f( w).
Then since F is a compact set and F C Q@ — E, we have infu.r (1(8', )
— 7(8, ®)) > 0. It follows that if n = 1 then 7,(E’) = 1 and SUPrz174(F) < oo,

In Case II we apply Theorem 2. We are able to find a continuous function A
such that A(wo) > 0 and if w 2 E, then h(w) < 0. Let & be the convex hull of
{h + f} and ®. ®’ is again a convex and sequentlally weakly subcompact set,
fe® is an admissible point, the functions in ®” are lower semlcontmuous and
if E C Q is compact, if g ¢ ®’, then there is a continuous ¢’ ¢ ® such that if
we E then g(w) = ¢'(w). Therefore Theorem 3.7 of Farrell [5] applies to ®’.
Let {n., n = 1} and {F,.,n = 1} be as in Theorem 3.7, op. cit., and let g,/ =
Bu(h +f) + (1 — Bu)gn,BreR,0 = 8, < 1,9, ¢ ®, n = 1, be the correspond-
ing Bayes points. Since ® is sequentially weakly subcompact, from any sub-
sequence {Bz, n = 1} such that g = lim,,_,w Ban exists we may choose a sub-
sequence {fi., n = 1}, a sequence {g1,, n = 1} of {g., n = 1} and a point
g € & such that ¢ < lim inf, .. g1n - Part of the conclusion of Theorem 3.7, op:
cit., asserts that f = lim,-« ¢ . Therefore it follows that f = lim,., g,
Z B(h + f) + (1 — B)g. Since g = 0, and since h(wy) > 0, it follows that
B.= 0 and g # f. We use here the hypothesis that f is an admissible point of
®. Since every convergent subsequence of {8,, n = 1} converges to zero it fol-
lows that lim,. 8, = 0. Therefore f = lim, g,,' = limpswgn . Since if n = 1,
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g is Bayes for 1, , it follows that
(3.3) 0 = limgaw [ (ga"(0) — f(@))1a(dw)
< Tim infun [ (h(@) + () = () )1(de) = lm infya [ B()1a(de).

Since & is a continuous funetion, since h(w) < 0 if w £ E, since E is compact, and
since 7,(E) = 1,n = 1, from (3.3) it follows that

lim Supps [ (@) [1n(dw) < co.
Therefore sup,>17.(F) < « for all compact subsets of 2, as before, and
0 = limy.ww [ (Ba(B(w) 4 f(@)) + (1 = Ba)ga(w) — f(®))na(de)
(34) = limyew (B [ h(@)ma(de) + (1 = Ba) f (gn(w) — f())na(dw))
= liMpse [ (gn(@) — f(e))1a(dw).

Lastly, since lim,.« 8, = 0 there exists an integer n, such that if n = n, then
B. # 1. Therefore if n = no, g, is Bayes relative to », within the class ®’ and

hence within ®.
The proof of Theorem 1 has been completed.
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