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TOWARDS A THEORY OF GENERALIZED BAYES TESTS'
By R: H. FARRELL

Cornell University

1. Introduction. The main result of this paper is Theorem 7.1. Stated there
is a necessary and sufficient condition for the admissibility of tests in the expo-
nential case when the hypothesis set H, is compact and ‘“topologically’’ separated
from the alternative H; . In the theorem we ask that the entire parameter space
Q be a closed convex cone in Euclidean k-space Ry . The proof that tests satisfying
the stated condition are admissible is relatively easy and is almost a direct conse-
quence of an admissibility theorem for generalized Bayes tests proven in Section
5. The proof that the stated condition is necessary is much harder and requires
the results of Section 2, Section 3, Parts of Section 4, and a lengthy argument in
Section 7.

This paper originated out of efforts on the author’s part to see what could be
done with a theory of generalized Bayes tests. This can be considered to be a con-
tinuation of work begun in Farrell [5] in which some complete class theorems in
estimation problems were obtained. '

It was discovered that in the case of Birnbaum’s [2] necessary and sufficient
condition all admissible tests are generalized Bayes tests (see Theorem 4.1)
and conversely under much less restricted conditions generalized Bayes tests
are admissible (see Theorem 5.1 and 5.2). L. D. Brown has given the author
several examples presented in Section 6. In Example 6.1 the hypothesis set H is
a compact convex set and H; = @ — H, . The probabilities form an exponential
family (see below) and every test function is admissible. This example completely
destroys the hope of completely describing admissible tests in the exponential
case by generalized Bayes procedures.

Example 6.2 of L. D. Brown led the author to Theorem 7.1. In this example
Hy contains two points z; , 2, (hence is compact) and H; may be considered to
be any closed subset of @ disjoint from Hy so long as H; contains (2; 4+ 22)/2 and
a sequence of points (&, , ¥») With lim, .. ¥, = % . An admissible test is described
that is not a generalized Bayes test but within a certain subfamily of tests is in
fact a Bayes test. The necessary and sufficient condition stated in Theorem 7.1
has to do with choice of the right subfamily of tests.

Throughout subsequent sections the parameter space will be denoted by €,
the hypothesis set by Hy and the alternative set by H;. We assume Hon H; =
null set, but allow H, u H; to be a proper subset of Q.

{fo(+), we @} will be a family of generalized density functions on a set X,

Received 6 December 1966.
1 This research was supported in part by the Office of Naval Research under Contract

Nont 401(50). Reproduction in whole or in part is permitted for any purpose of the United
States Government.

1

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&2

The Annals of Mathematical Statistics. IKOJRN ®

WWW.jstor.org



2 R. H. FARRELL

measurable in a o-algebra of subsets ®, and integrated with respect to a o-finite
measure u.

If the given family of density functions has the special form f,(z) =
k(w) exp (w-x), w, x & Re , 2 an open subset of Ry , then we will speak of an expo-
nential family of density functions. =~

In the sequel, if 7 is a finite measure on the Borel subsets of Q such that the
total support of 7 is on Hou Hy and if ¢q is a test function satisfying

[ a0 eo(@)fo(z)u(dz)n(dw) + [[a, (1 = ec(@))fulz)u(dz)n(dew)

= inf, [ [ o(2)fu(z)n(de)n(dw) + [ [a, (1 — o(2))fu(@)u(dz)n(dw),

then we shall say that ¢ is a Bayes test relative to (or for) » even though 7
may not be a probability measure. If 7 is a o-finite measure and

oo(z) a0 ful@)n(dw) + (1 = ¢o(2)) [, ful)n(dw)
= inf, o(z) [m,fu(®)n(dw) + (1 — ¢(2)) [&, fu(z)n(dw)

then we shall say that ¢ is a generalized Bayes test for 7.

A slightly different usage will also be made as follows. If ® is a convex set of
nonnegative real valued functions on a locally compact Hausdorff space X, and
if n is a finite Borel measure on the Borel subsets of X then we will say that
fe® is Bayes for ¢ if

J 7(2)n(de) = infoq f g(z)n(de).

2. Representation of positive linear functionals. In the sequel we need to
know that certain positive linear functionals can be represented as integrals.
Although results of this type are standard, see for example Bourbaki [3], Chapter
III, Section 3, and Neveu (8], for the sake of completeness we have written a
short section about these results.

Throughout © is a set with locally compact Hausdorff topology assigned.
C(Q, R) will be the linear space of all real valued continuous functions on Q to R.
We take on C(£, R) the topology of uniform convergence on compact sets defined
as follows: If A is a directed index set, {fa, @ € 4} an indexed set of functions in
C(Q, R), then limg.4 fo = fif and only if to every compact subset £ C Q and
every e > 0 there exists ao ¢ 4 such that if a > @y then supe:z |fa(w) — f(w)] < e

The basic result needed is as follows.

TarorEM 2.1. Let Q have a locally compact Hausdorff topology and C(Q, R)
have the topology of uniform convergence on compact sets. If I:C(Q, R) — R is a
positive continuous linear functional then there exists a nonnegative countably addsi-
tive Borel measure p such that p has compact support and if f € C(Q, R) then I(f) =
[ (w)u(dw).

Proor. By the theory of the Daniell integral, see Loomis [7], a measure u and
a o-algebra of sets ® exist such that if f ¢ C(Q, R) and supu.e |f(w)| < « then
f i’ ® measurable and I(f) = f flw)u(dw). Since C(£, R) contains the constant
functions, u(Q) < « follows.
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We show u to have compact support. We suppose that @ is not compact. Sup-
pose there exists e = 0 such that if E C Q, E is compact, then u(E) 4+ ¢ =u(Q).
We show ¢ = 0. For to each compact subset E choose a function fz ¢ C(2, R)
such that if w € £ then fz(w) = 0, and such that if w e @ then 0 = fz(w) =< 1.
We may further suppose for some compact set E', if w g E' then fz(w) = 1.
Then [ fa(w)u(dw) = u(@ — E') = e But the set of compact subsets of @ is
directed under inclusion and limg fz = 0. Therefore since I is continuous, 0 =
I(limg fz) = limg I(fz) = € = 0. Therefore ¢ = 0. If u does not have compact
support we may therefore find an increasing sequence {E, , n = 1} of compact
subsets such that if n > 1 then E, is interior to E, 41 and lim,.. u(E,) = u(Q).
Then it is clear we may find a nonnegative function f ¢ C(2, R) such that I(f) =
[ f(0)u(dw) = . This contradiction shows u must have compact support.

Since u has compact support it now readily follows that 7(f) = [ f(w)u(dw)
for all f ¢ C(Q, R).

3. A necessary and sufficient condition for admissibility. Stein [9] has given a
necessary and sufficient condition for admissibility. Stein’s condition has been
generalized somewhat by LeCam and has been given a very elegant proof by
LeCam. In as much as the better version is needed here, and has not been
published, we sketch the details here.

We suppose Q is given a locally compact Hausdorff topology, C(Q, R) is the
topological linear space of continuous functions on € to R with the topology of
uniform convergence on compact sets. We will consider ® C C(Q, R), a convex
set satisfying the following definition of weak subcompactness.

DerniTION 3.1. ® is said to be weakly subcompact if given a directed index
set A and a sequence {f,, @ ¢ A} C ® there exists in ® a function f such that if
w e Q then f(w) = lim, sup fa(w).

In addition we need the following definitions:

DeriNiTiON 3.2. f ¢ R is an admissilbe point of & if g € ® and f £ ¢ implies
there exists w ¢  such that f(w) < g(w).

DeriNiTioN 3.3. Let ® be the least o-algebra of subsets of @ in which the
functions of C(Q, R) are measurable. To each nonnegative ®-measurable func-
tion a let V, be the set of all finite nonnegative measures x on ® such
that fa(w)p(dw) = 1. If ® is a convex subset of C(Q, R) and f ¢ ®, then f is
Wald in e direction a if and only if

(3.1) infuer, { [ f(0)u(dw) — infq [ g(w)u(de)} = 0.

DerintTiON 3.4. Let Q, C(2, R), ® and ® be as above. If fe ® and ifa = 0
is a ®-measurable function then f is low in the direction a if and only if for all
e>0,f —eaz@®.

Tuarorem 3.5. (Stein-LeCam). Suppose @ is a locally compact Hausdorff space,
C(Q, R) has the topology of uniform convergence of compact sets and ®  C(Q, R)
s a weakly subcompact convex subset of C(Q, R). Then the following conditions
are cquivalent:

(1) fe ® and f is an admissible point of R,
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(ii) fe ® and f is low in every direction a = O such that a 1s bounded and con-
linuous.

(iii) f & & and f is Wald in the direction a for every a = 0 such that a s bounded
and continuous.

Proor. The equivalence of (i) -and (ii) is obvious. We show first that (ii)
follows from (iii). Let & = 0 be a ®-measurable function. Let f ¢ ® be Wald in
direction a, let ¢ = 0, and suppose f — ea ¢ ®. By definition, if § > 0 we may
choose u & V, such that

(3.2) [ f(@)u(de) — infoeq [ g(w)u(dew) < 8.
Therefore

(3.3) [ f(@)p(de) <8+ [ (f(0) — ea(w))p(dw),
or, .

(3.4) 0= ¢ fa(w)u(dw) = ¢ < 0.

The inequalities (3.4) hold for all § > 0. Therefore ¢ = 0, as was to be shown.

We now show (iii) follows from (ii). Let a = 0 be a ®B-measurable function,
let f € ®, and let f be low in the direction a. From ® construct a closed convex set
®* = {h|heC(Q, R), for some g ¢ ®, b = g}. The assumed weak subcompact-
ness of ® easily implies ®* to be closed in the topology of uniform convergence
on compact sets. It is clear that since f — ea £ ® then f — ea £ ®*. Therefore the
compact convex set {f — ea} may be separated from the closed convex set &* by a
continuous linear functional I such that I(f — ea) < inf,.qsx I(g). See Dunford
and Schwartz [4]. If b = 0, k£ C(Q, R), and if g ¢ ®*, then ah + g £ ®*, & = 0.
Therefore a *(I(f — ea) — I(g)) < I(k), and letting & — «, we find I(h) = 0.
By Theorem 2.1 there exists a finite Borel measure ux having compact support
which gives a representation of I. Then

(35) [ (f(w) = ea(w))u(dw) = I(f — ea) < I(f) = [f(w)u(de).

Therefore f a(w)u(dw) > 0 and without loss of generality we may assume u
has been normalized so that u & V,. Then

(3.6) J f(@)u(dw) — infyeqe [ g(w)u(dw) < e.
Since
(3.7) infoq [ g(0)p(dw) = infeqe [ g(w)p(dw),

we see that f is Wald in the direction a. The proof is complete.

The applications made in this paper require a stronger theorem which we now
state. We shall require € to be a o-compact locally compact Hausdorff space.
If {E, ,n = 1} is a countable cover of @ by compact subsets then the topology of
uniform convergence on compact sets is equivalent to the topology of uniform
convergence on the sets F, , n = 1. This latter topology is a metric topology
so that in the discussion of convergence only countable sequences need be con-
sidered. We make a definition.
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DEFINITION 3.6. & is sequentially weakly subcompact if given a countable
subset {f, , » = 1} of ® there is an f ¢ ® and a subsequence {f.,, n = 1} such
that f/ < lim inf,.e fo, .

THEOREM 3.7. Assume Q is a o-compact locally compact metric space. Let & be
weakly subcompact (Definition 3.1) and sequentially weakly subcompact (Defini-
tion 3.6) convex set of monnegative lower semicontinuous real valued functions on
Q. Assume that if fe ®, E C Q, and E is compact then there exists g € ® such
that g is continuous and g(w) = f(w), weE. Let a = 0, a * 0, be a bounded
Baire measurable function on Q. If f is an admaissible point of & then there exists a
sequence of functions {g. ,n = 1} in ®, an increasing sequence of compact sets {Fn,
n = 1} and a sequence of finite Baire measures {n, ,n = 1} on ® such that Q@ =
U:us] F n and

(i) if n = 1 then 4. ts supported on F, and fa(w)n,,(dw) = 1;

(ii) if n = 1 then g, is Bayes relative to . (see the last paragraph of the iniro-
ductory section) and

limn—wo f (f(w) - gn(w))nn(dw) = 0:

(iii) #f w & @ then liMpsw ga(w) = fw).
Proor. Taking the discrete topology on @ and using Theorem 3.5, since f is an
admissible point of ®, there exists . &€ Va , un supported on a finite set E, , such

that
(38) [ f(@)um(dew) < 1/n + infy e g [ (w)p(do).
Define an affine map 7', by, if ¢ is a bounded function,
(39) (Twg)(w) = g(@) + (@) [ g(e)pn(dw)
— f(@) = (@) [ f(@)pa(dw), e

We will apply T, to the set & to obtain the convex set T»®.

Let E C Q. Let (T.® | E) be the functions of T,& restricted to E. We show
(T.® | E) has a minimax point. The zero function is a point of (T.® | E) so
that — e, = infreq SUPwer (Twh)(w) =< 0. We show €, < «. Ior if ¢, = « then
to each integer m = 1 we may find gn € ® such that

(3.10) if we E then g’ (@) + (ua(2)) ™ [ g’ (@) pn(de)
< f(@) + (ua(@)) 7 f(@)pn(de) — m.

Using (3.8) andg,, = 0, thisimplies lim sup-« gn (0) = —®, we B, which is
a contradiction. Therefore ¢, < . ‘

If m = 1let g.” € ® such that —e =< SUPuer (Thgn”)(0) < —e + 1/m.
Since ® is sequentially weakly subcompact there exists g, € & and a subsequence
{ga, ;m = 1} such that g, < lim inf,.e ga, - By Fatou’s lemma, [ ga(@)pn(dw) £
lim inf,e f ga, (@) pn(dw) . Therefore supyer (T'ngn) (@) = —€x and T',g, is minimax.

-We shall let

(3.11) (T.&® | E)c = {h|heC(Q, R),



6 R. H. FARRELL

and there exists &’ ¢ T,® such that if w e E then h(w) = h'(w)}. If e is the
function e(w) = 1, we®, then (—e)ee (Ta®R|E)e but if « < —e, then
aez (T.® | E)¢ . Therefore (—e,)e is minimax in (7T,® | E)c.

If E = F, is compact then by the minimax theorem of Wald [11] there exists
a hyperplane of support to (T.® | E) ¢ at ( —es)e given by a probability measure
v, supported on F, , so that if Supaer, h(w) = —e, then f hMa)r(dw) £ —e
and if b & (T,® | Fu)c then [ h(w)rm(dw) Z —e.

Since u, is supported on E, , let {F, ,n = 1} be an increasing sequence of com-
pact subsets of @, F,, T @, such that if n = 1 then E, C F, . Let T’,g, be minimax
in T,® | F, and let gn' be a continuous function in ® such that if w ¢ F,, then
g (@) = ga(w). Then if we Fr\ ga' (@) + (#a(2))7 J ga'(@)pn(dew) = gulw)
+ (1(2))™ [ gn(@)n(dew) from which it follows that (Tuga ) (@) = (Tagn)(w),
wel, . Let{f.,,n = 1} be a sequence of nonnegative continuous functions og Q
such that f, T f. The functions ¢.'(-) + (u(2))7" [ g0’ (0)ta(dw) —
Fu(+) = (ma(@)7" ffm(w)un(dw) are in (T,® | F.)c. Therefore by construc-
tion of v, ,ifn =2 1,m = 1,

(312)  —en = (wa(@))7 [ (0" (@) = fn(@)) (n(@)7a(de0) + pa(de2)).

Using the monotone convergence theorem and (3.12) gives, if n = 1,

(313)  —en = (ua()7 [ (9" (w) = £(0)) (un(R)ra(de) + pn(de)),

and since ¢, is minimax (3.13) implies

(8.14)  —e = (1(2)7 [ (g (@) = (@) (a(R)7a(dw) + pa(dw))
= [ (Tuga") (@)va(dw).

And since on the support of 7, we have T,g, < T.gn < —eqe, (3.14) holds also
with g, replaced by g, .
From (3.14) we may now obtain

02 —& = [ (Toga)(w)ra(de)

(a(2) ™ [ (Tagn) (@) tin(de)

2(ua(2))7 [ (gu(@) — (@) pn(deo)
2(un(2)) " infreq [ (R(w) — f(w))n(de)
= =207 (ua(2)) 7

Since a is a bounded function and u, ¢ V,, n = 1, we obtain

v

(3.15)

I

%

(3.16) lim inf, e u.(2) > 0.
Therefore
(3.17) liMpe (nu(2))™ = 0.

From (3.15) it follows that
(3.18) liMpsw & = 0 and  limg.e p(Q)en = 0.
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Define

(3.19) itn =1 e = (@) [ alw)m(de) + [ a(w)p(de).

Then ¢,”* = 1 and we let

(3.20) 02 1 10(-) = calpm(@)al-) + ma(-)).

Then 4, ¢ V., and n, is supported on F,, , » = 1. From (3.14) and (3.15) we find
(3.21) limpse [ (ga(w) — f(©))1a(dw) = 0.

By construction g, is Bayes relative to 7. . To complete the proof, observe from
(3.15) that it follows that if w € Q.

lim SUPsaw (ga(w) — f(w))
(322) = lim SUPmw (ga(w) — f(@) + (a(@) 7" [ (ga(0) — f(@))ira(dw))
= 0.

We use here the assumption T,g, is minimax for 7,& | F, and that F, T Q.
Since f is an admissible point of &, (3.22) and the sequential weak subcompact-
ness of ® imply

(3.23) lim inf, .0 ga(w) = f(w).
The proof has been completed.

4. The complete class theorem of Birnbaum. In case the sample spaceX is
Euclidean k-space R , @ = X = Ry, uis a o-finite measure on the o-algebra of
Borel subsets of R, and {f.,, weQ} is an exponential family of densities in
Li(X, ®, u), Birnbaum [2] gave a complete class theorem. If Hy = {0}, H; =
Q — {0}, and if u is absolutely continuous with respect to a nonatomic product
measure, then a test ¢ is admissible if and only if there exists a convex set C with
indicator function x(C,-) such that u({z|e(z) # x(C, z)}) = 0. Parts of
Birnbaum’s result have been extended by Stein [10] and Stein’s result will enter
our discussion later.

It is the main purpose of Section 4 to prove that in Birnbaum’s problem every
admissible test is a generalized Bayes test and conversely. We state this formally.

TuroREM 4.1. Let @ = X = Ry ; let B be the g-algebra of Borel subsets of X;
and let u be a o-finile measure on & which is absolutely continuous relative to a
nonatomic product measure. Let Hy = {0} and Hy = @ — {0}. Let {f,, w e Q} be
an exponential family of density functions in Ly(X, ®, u). A test ¢ is admissible if
and only if ¢ is a generalized Bayes test.

In order to prove Theorem 4.1 several lemmas are needed. We proceed at once
to the statements and proofs of the lemmas.

LemMa 4.2, Let w, = pX -+ Xu be a nonatomic product measure on ®. Let A
be a conver subset of Ry, and suppose w(A) > 0. Suppose f is an analytic function
of ;& real variables defined on A and w({x |f(z) = 0}) > 0. Then f(z) = 0 at
every interior point of A.
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Proor. To each 7 ¢ R let ¢g,: Ry—1 — R be defined by ¢.(y) = f((y, r)). Let
A, = {y|yeRea, (y, r) € A}. The sets A, are then convex sets. Let B =
{rlreR; ma({y|yeA,, g.(y) = 0}) > 0}. By Fubini’s theorem, u(B) > 0.

We make an inductive argument on k. If £ = 1, u(4) > 0 together with u
being nonatomic implies there is an -accumulation point interior to A4 in the
neighborhood of which f vanishes infinitely often. Hence f(z) = 0 at all 2
interior to A.

By induction, if r ¢ B then ¢,(y') = 0 for all ' interior to A, . Since 4 has
interior points we may choose real numbers ¢ < b and ¢ > 0, and an interior
point yo &€ A, such that u(B n [a, b]) > 0, and a sphere S.(yo) of radius e about
yosothat S.(yo) Xla, b] € A. Write f((y,7)) = D n=ofu(y)r". Thenif r ¢ B n [a,b]
and y & S.(yo) we have 0 = D ueofu(y)r". This implies f,(y) = 0, n = 0,
y € S(yo). Therefore f(y) = 0,7 = 0,y € 4,, r ¢ B n [a, b]. This clearly implies
f(z) = 0 for all z interior to A. For f is an analytic function.

LeMma 4.3. Let we = pu X -+ X p be a nonatomic product measure on ®. Let
A C Ry, A a closed convex set with topological boundary B. Then w(B) = 0.

Proor. By induction on the dimension k. If ¥ = 1 then A4 is a (finite or infi-
nite) line segment, and B consists of at most two points. Therefore u(B) = 0.

To each reR let A, = {y|yeRia, (y, r)eA} and B, = {y|y e Ry,
(y, r) e B}. Then A, is a closed convex set. Either B, is a convex set parallel to
one of the coordinate axes so that u,(B,) = 0 or B, is the topological boundary
of A, in Ry . Therefore by the inductive hypothesis ux—1(B,) = 0. By Fubini’s
" theorem, u(B) =" [ wes(B,)u(dr) = 0.

Lemma 4.4. Let u be a o-finite measure on ® which is absolutely continuous
with respect to a nonatomic product measure. Suppose Q is a convex set with non-
void interior. Let no # m be o-finite measures on the Borel subsets of Q. Then 0 =
r({z | [ exp (v z)no(dw) < o and [ exp (w-z)no(dw) = [ exp (w-z)m(dw)}).

Proor. We write w-z for the dot product of vectors v and z. Let 4 =
fz | [ exp (w-z)no(dw) < o and [ exp (w-x)m(dw) < »}. Then 4 is convex,
if u(A) > 0then A has nonvoid interior. Further, if u(4 n{z | f exp (w-x)ne(dw)
= fexp (w-z)n(dw)}) > 0 then by Lemma 4.2, [exp (w-x)no(dw) =
f exp (w-2)m(dw) if z is interior to 4. Therefore 7o and 7, have Laplace trans-
forms equal on a set with nonvoid interior and 5o = m; follows. 9o # 7 by hy-
pothesis. Therefore the conclusion of the lemma follows.

We now prove Theorem 4.1. If ¢ is generalized Bayes relative to measures 7o
supported on {0} and 7, supported on @ — {0}, we may suppose 7({0}) = 0 or
70({0}) = 1. In the latter case we find that, writing fw(z) = k(w) exp (w-x),

(4.1) if k(0) < [ k(w) exp (w-x)m(dw) then o(z) = 1;

if k(0) > [k(w) exp (w-z)m(dw) then ¢(z) = 0.
Therefore {z | o(z) = 0} = A4 is a convex set. The test ¢ will randomize only on
the boundary of A, hence randomization takes place with u-measure zero (see

Lemma 4.3). From Birnbaum [2] the test is admissible. If 7¢({0}) = 0 then
o(z) # 1 with u-measure zero and we take A = & having u measure zero. Again



GENERALIZED BAYES TESTS 9

this test is admissible. Therefore generalized Bayes tests are admissible. (This
result will also follow from Theorem 5.1).

Conversely, an admissible test ¢ has the form u({z | o(z) # x(4, z)}) = 0
where A is a suitable convex set and x(4, -) is the indicator function of 4. We
will now show the test function x(4, -) is generalized Bayes. The conclusion is
clear if A has void interior. If A has nonvoid interior we argue as follows.

A closed convex set A is the intersection of all closed half-spaces containing 4.
The general closed half-space {y | £-y < ¢} supporting A may be represented by
a triple (£, «, ¢), £ a unit vector of Ry, z ¢ R, a boundary point of 4, ¢ ¢ R and
&z = c. We choose a countable dense subset { (£, , %, , ¢,), n = 1} of these points
andlet m, = {y | &2y S Cu, & = cu},n 2 1. Then 4 =, m, .

Let \ be Lebesque measure on R, and let g: R — [0, « ) be a measurable func-
tion satisfying [ g(a)M(da) = 1 and [ g(a) exp (af)\(da) = «» if 8 > 0.
Let 7, be defined on ® by, if Ee® then 7.(E) = [(ajaten; (k(at,))™ exp
(—atn-za)Nda),n = 1. Thenifn = landz e 4, ¢, (z — 2,) < 0 and

J (&) exp (£:2)m.(dE) = [ g(a) exp (ata: (z — 2.))Mda) < 1;

if £&-(z — %) > O then [ k(&) exp (£.-2)7.(dE) = . Let 1 be defined by
1(EB) = 2 n=12""n.(E), E ¢ ®. Then, if x ¢ 4, [ k(&) exp (¢-2)n(dt) < 1;and
if z £ A, then since 4 is a closed set, f k(%) exp (¢-z)n(dt) = . The given test
x(4, -) is thus generalized Bayes for the pair 7¢, 7, where 70({0}) = 1 and
70(2 — {0}) = 0.

In order to obtain the complete class statement above it has been necessary to
allow integrals which are divergent. We now show that use of divergent integrals
is necessary.

THEOREM 4.5. Let A be a convex subset of Ry and suppose the boundary of A con-
tains a line segment {x | = af + 7,0 < a < 1}. Let 4 be a o-finite measure on &
suchthat A = {z| [ k(w) exp (w-z)n(dz) < 1. Suppose

fexp (w-z)n(dz) =1
tfx = at+ 7,0 = a = 1. Then the support of v lies in the orthogonal complement
of &.

Proor. [ exp (- (af + 7))n(dw) is analytic in «, and by hypothesis is a con-
stant function of @, 0 < « < 1. Thus if the integral converges for 0 < o < 1
we take & = 0 and find [ exp (w-£)n(dw) = 1. By Jensen’s inequality, if 3 <
a =1,

(4.2) 1= f (exp (& (£/2)))™ exp (- 7)n(dw)
2 (fexp (0 ((£/2) + 7))n(dw))™ = 1.

If « > 3 the inequality will be strict unless exp (w-7)5(dw) is concentrated on a
line w- (£/2) = c. Substitution into (4.2) gives 1 = (exp ¢)** or ¢ = 0. Therefore
, the support of 5 is perpendicular to £.

By way of an example let k& = 2 and suppose the boundary of 4 contains two
nonparallel flats with normals & and & . If 4 = {z | [ exp (w-2)n(dw) < 1} and
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if fexp (w-2)n(dw) < o for all z ¢ Ry, then on the boundary of A we have
1= f exp (w-2)n(dw). By Theorem 4.5 the support of 4 must be contained on
the 1-spaces generated by £ and & . Hence 7 is completely concentrated at
(0, 0), which is nnposs1ble Therefore if k£ = 2 the generalized Bayes test with
acceptance region {z | |z1] < 1, |ro] 1,2 = (21, 22)} can be obtained only by
measures with an integral somewhere divergent.

6. A sufficient condition for admissibility of tests. It is the purpose of this
section to show that a very large class of generalized Bayes tests are admissible.
The main theorem is as follows.

TaeoreMm 5.1. Let (X, ®, u) be a o-finite measure space (X ¢®), and
let {fo, w € Q} be a family of density functions in Ly(X, ®, u). Let Hy C Q, Hy # &,
H,=Q — Hy,H, # . Let @ be a g-algebra of subsets ofﬂ such that Hy € C. In
addilion we make the following hypotheses.

(1) fy(+) is jointly measurable as a function on & X X, € X & to R.

(2) no s a probability measure on C such that no(H,) = 0.

(3) m s a o-finite measure on © such that m(Hy) = 0.

(4) w(fe | [ fu(@)n(de) = [ fu(x)m(dz)}) = 0.

(5) x is a generalized Bayes test for the pair 1o, n1 .

Then x 1s an admissible test. In addition, if B is the power function of x, then

(5.1) J (1 = B(w))m(de) £ [ (1 = B(w))no(dw), and,
J Be)mo(de) + [ (1 — B(ew))m(dw)
(5.2) = inf { [ [ %' (@)fu(2)u(dz) no(de)

+ [ (1 = X' (@) fo()u(dr)m(d)}.

Proor. Let {C,,n = 1} be a nondecreasing sequence of sets from @ such that
Q= Us~Coandifn = 1, m(C,) <o .Inn = 1, define 7, (E) = n(E n C,),
Eee.

Relative to the pair 7¢, 71, , let x. be Bayes, chosen so that if f Jo(x)no(dw) >
| fo(2)ma(dw), then xa(z) = 0;if [ fu(2)no(dw) < [ fu(2)ma(dw) then x.(z) =
1;n = 1. Since the integrals on the right increase with =, it follows that if z ¢ X,
n = 1, then x,(#) = x.t1(z). By the monotone convergence theorem,
iMoo [ fo(2)ma(de) = [fo(z)m(de) (which may = o), so that if
ze{z] [ fo(@)n(de) = [fo(z)m(dw)} then lim,.ox.(z) = x(z). By hy-
pothesis (4), lim,.« x.(z) = x(z) a.e. [ul.

Let B, be the power function of x, , » = 1. Since 5, and 7;, are finite measures
and yx, is Bayes relative to n¢, 71, , # = 1, we find

(63)  [Bu(@)no(dw) + [ (1 — Bu(w))na(dw)
< [B(0)n(dw) + [ (1 — B(w))ma(dw) < .

Since all the integrals involved are absolutely convergent, we find that
(54) ifnz1 then 0= [[(x(z) — xu())fu(2)ma(de)p(dx)
= [ (x(®) — xa(@))fuo() no(dew) u(dz).
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By the monotone convergence theorem, the second integral in (5.4) converges
to zero as n — o, while, since x(z) — x.(z) = 0,z ¢ X, n = 1, it then follows
from (5.4) that

(5.5) limgw [ (B(w) — Ba(w))nmo(dw) = 0;
limy e f (B(w) — Bu(w))nn(dw) = 0.

We now show (5.1) must hold. Consider the test, if ¢ X then x'(z) = 1. It
has a power function 8'(w) = 1, £ 2. We find therefore, using the fact that if
n = 1 then x, is Bayes$ relative to 79, 71, , that

(5.6) [ (Bu(w) — B(w))mo(dw) + [ (B(w) — Bu(w))ma(dw)
= [ (B'(w) — B@))mo(dw) + [ (B(w) — B'(0))ma(de).

Asn — «, the left side of (5.6) tends to zero. Substituting for 8’ its values, and
passing to the limit, we find

(5.7) lim supsew | (1 — B(w))1a(dw) = [ (1 — B(w))m(dw)
= [ (1 = B(w))ne(dw).

From this it follows that the left side of (5.2) is finite. We may now prove that
(5.2) holds. Let ¢ = 0 and suppose x* is a test with power function 8*. Then if

J 85 (@)no(dw) + [ (1 — 6*(w))m(dw) + e
= [B(w)m(do) + [ (1 — B(w))m(dw),
we find from (5.3) that
e+ [ Ba(w)mo(dew) + [ (1 — Bu(w))mu(dw)
(5.8) < e+ [ (w)no(do) + [ (1 — %(w)) ma(dw)
J B@)no(do) + [ (1 — B(w)) ma(dw).

From (5.5) we find that ¢ < 0. Therefore e = 0 and (5.2) is proven.

Hypotheses (4) and (5) imply that x is the essentially unique test function
giving the minimum established in (5.2). Therefore x is admissible.

TaEOREM 5.2. Let X, B, u, Q, C, {f,, w e Y, Hy and H, be as for Theorem 5.1.
In addition assume

(1) nots a o-finite measure on © with no(H,;) = 0.

(2) m is a o-finite measure of C with g (Hp) = 0.

(3) x s a test function having power function B which satisfies
J (1= B@))m(dw) < o.

(4) If 7o and m,' are o-finite measures on @ satisfying no (Hy) = m'(Ho) = 0
then

A

w({@ | [ ful@)nd (dw) < o, [ fu(@)ne'(de) = [ fu(z)m'(dw)}) = 0.

(5) w(lz | [ fulz)no(do) = © and [ fu(z)m(de) = =}) = 0.
(6) x 1s a generalized Bayes test for n9 , 11 .
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Then, x is an admissible test.

Proor. Let {D,, n = 1} be an increasing sequence of subsets in @ such that
H, = U< D, , and such that if n = 1 then n(D,) < ».If n = 1 define 7o
by n0.(E) = n(E n D,). Let x, be a generalized Bayes test for no, , 71 . Hypothe-
ses (3), (4) and (5) imply that X, is well defined, is essentially unique, and that
x» | x a.e. [u] as n — . Therefore (1 — x,) T (1 — x) and by the mono-

tone convergence theorem, limg.. [[ (1 — xu(z))fu(z)m(de)u(dz) =
JT( = x(@)fu(2)m(dw)u(dz) < o.

The hypotheses of Theorem 5.1 are satisfied. Thus, if x, has power function
Bn,n = 1,if x* is as good as x, and if x* has power function 8*, then using

Theorem 5.1 we find
(5.9) [ (@) [ ful@)non(dw) + (1 = xa(@)) [ ful)m(dew)lu(dz)
= [ x(@) [ fo(@)non(dw) + (1 — x(2) A1—2()) [ ful2)m(dw)lu(dz)
so that
(510) 0 = [[ (xal®) — x(2))ful®) n0n(des) ()
< [J (@) = x(@))ulde)m(dw)u(de).
As the integral on the right side of (5.10) tends to zero, we find that
(5.11)  limpsw [ (Ba(w) — B(w))non(dw) = 0 and
limas [ (Ba(@) — B(w))m(dw) = 0.
Further, using Theorem 5.1 and the assumption that x* is as good as x, we obtain
J Bu(@)non(de) + [ (1 = Bu(w))m(dw)
(5.12) = [ B%(@)non(dw) + [ (1 — B*(w))m(dw)
< [ B(w)moalde) + [ (1 = B(w))m(de) < .
Therefore from (5.11) and (5.12) we conclude that
(5.13) 0 = limn.w (f (B(w) — B%(0))n0n(dw) + [ (8%(w) — B(w))m(dw)).

We write (1 — x) — (1 —x*) =x* —x = x4 —x— ,wherex4+ = 0, x- = 0,
and x(z)x_(z) = 0 for all z. Then (1 — x) = x4 and (1 — x*) = x_ . From
(5.12) conclude

(514) [ [ x4(@)fo(@)m(dw)u(dz) < w; [ [ x-(@)fulz)m(dw)u(de) < .

Therefore
J (B(0) — 8%(w))10m(de) + [ (B*(w) — B(w))m(dw)
(5.15) = [ x-(@)(J fol@)n0n(dw) — [ fu(z)m(dw))u(dz)
— [ x+@) ([ fuo(@)100(dew) — [ ful®)m(dw))pu(dz).

Since x-(x) > 0 implies x(xz) = 1, which implies
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Jiu(@)non(dw) < [ fu(@)no(fo) S [ fu(z)m(dw),

the third integral of (5.15) is always nonpositive. As n — o« the integrand in-
creases monotonely. By the monotone convergence theorem we obtain

(5.16)  limusw J x—(2) ([ fu(@)n0n(dw) — [ fulz)m(dw))u(dz)
= [ x-(@)([ fulx)n(dew) — [ fo(z)m(dw))u(dz) = 0.

Similarly, x+(z) > 0 implies x*(z) # 0 and x(z) = 0. This means that
[ fu(@)no(dew) = [ fu(x)m(dw). Therefore by the monotone convergence
theorem,

(5.17)  limpew — [ x4(2) ([ fo(2)noa(de) — [ ful(z)m(dew))u(dz)

= — fx-i-(x)(ffu(x)ﬂO(dw) - ffw(x)m(dw))u(dx) =0.
By (5.13), (5.15), (5.16), and (5.14) we concluded

(5.18) 0 = [ x-(2)|[ fal@)no(dw) — [ fu(z)m(dw)|u(dz);
0 = [ x(@)|f fuo(@)no(dw) — [ fulz)m(dw)|u(dz).

Hypothesis (4) now implies x— = 0 a.e. [u] and x4 = O a.e. [u]. Therefore x is
admissible. []

6. Examples of L. D. Brown. The results of Sections 4 and 5 strongly suggest
a false result. The author is indebted to L. D. Brown for two examples. The
exposition of these examples is the contents of Section 6. Throughout we deal
with £ = 2 and exponential families {f,(- ), » € @} of density functions.

Example 6.1 is an example of a hypothesis set H, which is convex but which by
virtue of its structure requires that all tests are admissible. Thus in particular
the test function ¢(z) = % for all z € X is an admissible test which is not gen-
eralized Bayes. As we shall see in Section 7, Example 6.1 is related to the fact
that Ho and H, are not topologically separated and yet a discontinuous measure
of loss is used.

Example 6.2 is an example of a situation in which H, and H; are topologically
separated and in which an admissible test ¢ is for some = generalized Bayes
while for other z, ¢ is not generalized Bayes. It will be the main work of Section
7 to abstract this form and prove a complete class theorem.

ExampLE 6.1. Let {a, ,n = 0} bea strictly increasing sequence of positive real
numbers such that g = O and if n = 1 then a4y — an < 7 and lim,,0 an = 2.
Let H, be the convex hull of the points {(cos e, , sin a,), » = 0}. Then the
boundary of H, contains a countable number of line segments which converge
towards the point (1, 0). If n = 1 we let L, be the line segment between (cos
an , Sin a,) and (€S a1, SN Auta).

Let the parameter space @ be any convex set containing H, . If ¢ and ¢ are
test functions with power functions 8, 8" respectively and if ¢’ is as good as o,
then if w e Hy, B'(w) £ B(w), and if w e Hy, B (w) = B(w). In the exponential
case power functions are continuous, and we find 8'(w) = B(w) if  is on one of
the line segments L, .
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If we write L, = {x |2 = af, 4+ 7., 0 < a =< 1} then B(at, + 7,) is an ana-
Iytic function of the real variable o, n = 1. Similarly 8'(af, + 7.) is an analytic
function of &, n = 1. Since B(abn + 72) = B (atn + 1), 0 S a = 1,n = 1, it
follows from the analyticity of 8, 8’ that 8(at, + 7.) = B (akn + ™), — © <
a<w,n= 1.Ifn = 1let L, be the line{z |2 =at+ mn,— o < a < »}.
If L is any line through (1, 0) then all but at most two of the lines L,", n = 1,
intersect L in a sequence of points {w, ,n = 1} such that lim,e w, = (1, 0) and
if n 2 1, B(ws) = B'(w,). The analyticity of 8, 8 then requires f(w) = 8'(v)
for all we L As this holds for all lines through (1, 0) and since Q is conyex,

Blw) = B (w), weQ. Since an exponential family is boundedly complete,
p({z | p(z) #= o' (z)}) = 0.

This proves that every test is admissible.

ExamrLE 6.2. We will first describe the example, then a few remarks about its
relevance are made. Then the actual verification of details which involves a
considerable amount of work.

We assume k = 2, and @ = X = R, . u will be Lebesque measure. We use the
family of normal density functions (27)™" exp (—=3)((z — 0)* + (y — 7)%).
We set Hy = {(—1,0), (1,0)} and H, = {(8, 9) | = 1} u {(0, 0)}. For ac-
ceptance region A of a test take all points (z, y) satisfying y < 8 and |z| 2 «,
a>0,8>0.

In the sequel we prove several lemmas. From the lemmas it will follow that A
is the acceptance region of an admissible test. We will then show 4 cannot be
the acceptance region of a generalized Bayes test. The analysis will show that
there exists a convex set C (here C is the half space {(z, y) |y < 8}) such that
among all tests ¢ satisfying, if ¢(z) s 1 then z ¢ C, 4 is a Bayes acceptance
region. The complete class theorem of Section 7 will abstract this idea.

Lemma 6.3. (Stein) Let ® be the o-algebra of Borel subsets of Ry and u be a
o-finite measure on ®. Let {k(w) exp (w-2), weQ} be an exponential family of
density functions in Ly(X, B, u). Let Hy and Hy be disjoint nonempty subsets of Q.
Let A be a closed convex subset of Ry such that if ¢ e R, ce Ryand A n {z| &2 >
¢} = & then there exists w1 such that [ exp (wi-z)u(dz) < o and a sequence
A T o with oy + N& € Hy . Let o be a test such that if (x) 7 1 then x ¢ A. If the
test ¥ s as good as ¢ then u({z | Y(z) £ 1l and z 2 A}) = 0.

Proor. The proof given here is an almost direct copy of Stein [10]. If w £
let P, be the probability measure on © determined by the density k(w) exp
(w-x). Let ¢ be as in the hypotheses of Lemma 6.3 and ¢ as good as ¢ satisfying
p({z |¢(z) # 1, x2A}) > 0. Then there exists £ € B, and ¢ ¢ R such that
Anfz|t2z>c = Fand u({z | ¢(z) # ¢(x) and -z > ¢}) > 0. Then

J(e(z) — ¥(2))Poyre(dz)
(6.1) = (k(wr + M£)/k(w1)) exp (eh,)
A S wizeser (0(2) — () exp (M(E-z — €)) Py, (dx)
+ [tz (o(x) — ¥(2)) exp (\(E-@ — ¢))Pa,(dz)}.
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Asn — o the first integral tends to « while the second integral is bounded.
Therefore at some parameter points w; + \.& the test ¢ has better power than
¥. The negative of this implication is the conclusion of Lemma 6.3.
LemMA 6.4. Suppose the hypotheses of Lemma 6.3 about X, ®, u, {k(w) exp (w-2),
w e QY and A hold. Suppose Hy and H, are disjoint nonempty measurable subsets of
Q and no , m are totally finile measures on & such that no(H,) = n(H,) = 0. Let
o be a test such that, if o(z) #= 1thenx e A, and, if x ¢ A then

o(2) [ k(w) exp (0-z)no(dw) + (1 — ¢(2)) [ k(w) exp (w-z)m(dw)
(6.2) = info<e<1 (@ fk(w) exp (w-z)no(dw)
+ (1 — a) [ k() exp (w-z)m(dw)).
Then the test ¢ is admissible. ’

Proor. If ¢ is a test as good as ¢ then by Lemma 6.3, u({x |z 24 and
¥(z) £ 1}) = 0. However within the class of all tests satisfying u({z | 7 £ A and
Y(z) # 1}) = 0 the test ¢ is the essentially unique Bayes procedure. We use
here Lemma 4.4. Therefore ¢ is admissible.

We return to Example 6.2 and show the acceptance region described there is
admissible. To apply Lemmas 6.3 and 6.4 let A = {(2,y) | y < B8}. Then relative
to the class of tests which accept H, only in A the test ¢ is Bayes. For put mass
p/2 at (—1,0), p/2 at (1, 0) and (1 — p) at (0, 0). The expression to be mini-
mized is then

(2m)exp (—3(2" + ")) W(x)p(e™ + €°) + (1 — ¥(2))(1 — p)].

Then ¢(z) = 0if |z| = « is the form of the acceptance region. By proper choice
of p between 0 and 1 all « > 0 may be obtained. Therefore ¢ is an admissible test.

We use here Lemma 6.4.

We now show that ¢ cannot be generalized Bayes. Forlet 0 < p =< 1, put mass
pat (—1,0), mass 1 — p at (1, 0), and call this measure 7, .

Suppose #; is a o-finite measure on ® for which 7:(Hy) = 0. Let ¢ be generalized
Bayes for the pair 7o, m1 . Then ¢ minimizes

¥(z) [ exp (=3(z — 0)* — 3(y — n)*)no(dd, dn)
+ (1 = (=) [ exp (—3(z — 0)* = 3(y — n)*)n:(d0, dn).

By hypothesis ¢(z) = 0if y < 8 and |z| > a. From convexity it follows that if
y < B then )

Jexp (—3(2" + ¢")) exp (26 + yn) exp (—3(6" + 7°))m(d6, dn) < .
Therefore along the line segments z = da, y < B, we must have
(6.3) [ exp (26 + yn) exp (—%(6" + 7°))no(d6, On)
= [exp (28 + yn) exp (—3(6° + ")) m(d6, dn).

i

Taking partial derivatives with respect to y under the integrals we find that if
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z = faandy < B then
(6.4) [ nexp (26 + yn) exp (—3(6° + 7°))no(d6, dn)
= [ nexp (z0 + yn) exp (—3(6" + #°))mu(d9, dn).

Therefore the two measures (of équal mass) represented in (6.3) have by (6.4)
the same mean value in the y direction. In order that the acceptance region be
contained in the half space y < B it is necessary that n place positive mass
above the line y = 0. Therefore in order to obtain the same mean value in the y-
direction, it is necessary that n; place positive mass below the line y = 0. From
this it follows that

© = limy.— [ exp (26 + yn) exp (—3(6" + 7°))m(d9, dn).

Since fexp (z6 + yn) exp (—2(6° 4+ 4°))no(d8, dn) is independent of y, it
follows that the generalized Bayes test for 7o, m1 must always reject the hy-
pothesis if y = yo < 0 for some yo . Therefore 5o, 71 cannot determine the ac-
ceptance region of .

The analysis given has shown that ¢ is an admissible test which is not a gen-
eralized Bayes test. We now give a necessary and sufficient condition for ad-
missibility which includes Example 6.2.

7. A necessary and sufficient condition for admissibility.

TureorEM 7.1. Let X C Ry and ® be as previously. We suppose the parameter
set Q 1s a convex cone conlaining 0 such that @ vs g closed subset of Ry . Let u be a
o-finile measure on ® such that p is absolutely continuous with respect to a non-
atomic product measure. Let {f,, w e} be an exponential family of density func-
tions in Ly(X, ®, u). Let Hy and H, be disjoint subsets of @ such that Hy is compact
and H, is closed. We suppose that if £ & there exists wy € Q and a real number
sequence N, T o such that if n = 1 then wy + M£ e Hy. Then the following are
equivalent.

(i) The test ¢ 1s admissible.

(ii) There exists a probability measure no on ® such that no(H,) = 0, and a o-
finite measure m; on & such that i (H,) = 0.

There exists a convex set C such that

(7.1) p({z]zeC and o(z) #1}) = 0.

Within the class of tests satisfying (7.1) ¢ is generalized Bayes for no, m . The
convex set C 1s the intersection of @ and half spaces whose normals are in Q.

The remainder of Section 7 consists of a proof of Theorem 7.1. We begin with a
proof that a test satisfying (ii) is admissible. The proof is an obvious modifica-
tion of the proof of Theorem 5.1.

We begin by -considering a truncation. Let {C., n = 1} be a sequence of
measurable parameter sets such that C, T Q@ and if n = 1, m(Cn) < ». If
7 = 1 define n, by, if E ¢ ® then 71,(E) = m(EnC,). Ifn = 1let oa" be Bayes
related to 70, 71, and define ¢, by, if » = 1 and 2 ¢ A then ¢,(z) = ¢. (z),
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if z ¢ A then ¢,(z) = 1. Then ¢.(x) = ¢(z) if z 2 A, while if z ¢ 4, then ¢,(2)
= o, (2) £ o(z). Further, it is clear by the nature of the truncation that
on T ¢ a.e. [u], since in the exponential case, generalized Bayes solutions are
uniquely determined. Therefore

(7.2) p({z | limnse u(2) # ¢(2)}) = 0.

Let ¢ have power function 8 and ¢, have power function 8, , n = 1. Then we
have 8 = 8, . Further, the construction of ¢, requires

(7.3) [ Bal@)no(dw) + [ (1 — Bu(w))min(dw)
< [B(w)n(dw) + [ (1 — B(w))ma(dw),
so that we obtain .
0 = [ (B(w) — Ba(w))ma(dw) = [ (B(w) — Ba(w))mo(dew).

Thus both sides converge to zero.
The test x'(z) = 1 for all z satisfies the condition that if x'(z) # 1 then

zeA. Therefore
J (Bu(@) = B(w))mo(dw) + [ (B(w) — Balw))mn(dw)
< [ (1 = B(w))n(dw) + [ (B(w) — 1)ma(dw).
From this we see that (7.3) implies
lim SuPnse [ (1 — B(@))ma(dw) = [ (1 — B(6))m(dw) = [ (1 — B(w))m(dw).

It now follows that if ¢ satisfies, y(z) £ 1 implies = € 4, then the generalized
Bayes risk of ¢ is as great as that of ¢. From the uniqueness of ¢ as a minimizing
solution, it now follows ¢ is admissible. For by Lemma 6.3, if ¢ is as good as ¢
then ¢(z) £ 1 impliesz ¢ 4.

In order to prove the necessity of (ii) in Theorem 7.1 we need two lemmas on
the convergence of sequences of convex sets. These lemmas are Lemma 7.2 and
Lemma 7.3.

LemMA 7.2. Let u be a o-finite measure on ® such that u gives zero mass to hyper-
planes of Ry . Let {C, ,n = 1} be a sequence of closed convex sets, let C be a bounded
convex set, and assume if n = 1 then C, C C and u(C,) = € > 0. Then there
exists a subsequence {C,, , n = 1} such that ()n=1 Ca, has nonvoid interior.

Proor. Below we shall show that if = is any hyperplane there exists a subse-
quence {C,,, n = 1} and a point z such that z z 7 and z € () »=1 Ca, . We show
that Lemma 7.2 follows from this. Then we prove the assertion.

By the first paragraph there exists a subsequence {Co., n = 1} such that
there exists 7o € ] #=1 Co,» . Let m be a hyperplane through 2, . By the first para-
graph there exists a subsequence {Ci., n = 1} of {Cy,», n = 1} and a point
21 (V=1 C1,n, 212 m . Suppose sequences {Con, n = 1}, -+, {Cnpn, n = 1},
points z, , - -+ , «, and hyperplanes m , - - - , m»_1 have been obtained such that
ifl £7<mthen{C;,,n = 1}isasubsequenceof{Ciy,,n = 1},20, -+, Tina
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are in m;—; and «; £ mi—; . Let 7, be a hyperplane through x,, - - - , z,, . This will
be possible provided m = k — 1. By the first paragraph there is a subsequence
{Congam, n Z 1} of {Crum, n = 1} and a point 2,41 &€ () =t Cm41.n , Such that

Tm1 2 Tw . If m < kE — 1, the dimension, then x,, - - - , 41 are contained in a
hyperplane 7,41 and we continue by induction. If m = k — 1 then the convex
hull of {2, -+, Tmta} = {To, -+, 2} is a simplex with nonvoid interior and
{0,y Tmya} C () n=1 Cms1,n, Proving the lemma.

To prove the assertion of the first paragraph, let = be a hyperplane, = =
{x | &2 = ¢}. To each real number slet ms" = {z |£-2 > c+ 8}, m = {z |tz <
¢+ 8,and m = {x | &2 = ¢ + 8}. By hypothesis u(m;) = 0, § ¢ R. Relative to
one of m* and m~, say m", it is possible to choose a subsequence {C,’, n = 1}
of {Cn,n = 1} such that if @ = 1 then u(m™ n C,') = ¢/2. Then it will be pos-
sible to choose 8 > 0 such that if n = 1 then ”((m+‘u m) n C,') = ¢/4. For
uw(C) <  and lims,e p(C nm nm’) = 0.

By the recurrence theorem, Lo&ve [6], we may choose a further subsequence
(C.", n = 1} of {C,', n = 1} such that if no, -- -, n; are integers = 1, then
p((mtu m) n C;:o n---n C:fk) > 27'(e/4)*". By Helley’s theorem, see
Berge [1], (m" U ms) n =1 C.” is nonempty.

Therefore Lemma 7.2 is proven.

LemmA 7.3. Let p be a o-finite measure on ® such that u vs absolutely continuous
relative to a nonatomic product measure on &. Let {C, , n = 1} be a sequence of
closed convex subsets of Ry . If E C Ry let x(E, -) be the indicator function of E.
Then there exists a convex set C and a subsequence {C,, ,n = 1} such that

(7.4) limpe x(Coy, , +) = x(C, -) ace. [u],
and such that if C has nonvoid interior then
(7.5) limgsw x(Ca, , ) = x(C, x)

at every x interior to or exterior to C.

Proor. If to every bounded convex set A, lim sup,.. u(4 n C,) = 0 then
we may choose ¢ = & and find a subsequence {C,,, » = 1} such that
limpe X(Ca, , ) = 0 for almost all  [u].

If lim sups.. u(4 n C,) > 0 for some bounded convex set A then by Lemma
7.2 we may suppose a subsequence {C;,,n = 1} chosen such that (7~ Ci.
has nonvoid interior.

Let {z, , n = 1} be an enumeration of the points of R, whose coordinates are
all rational. By a diagonalization argument we may choose {Cz,, n = 1} a
subsequence of {C},, , # = 1} such that one of the following two conditions hold.
If n = 1 then '

(i) z, € Cy, for all but a finite number of integersm = 1;

(ii) z, € Cq,n for at most a finite number of integers m = 1. We define C to be
the convex hull of those z, , n = 1, which satisfy (i) relative to {C2,. ,n = 1}.

C has nonvoid interior. For [)7%=: C>,, has an interior point z. Therefore we

"may find integers o , - - - , 7 such that the convex hull of z,,, , - - , ,, contains
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x as an interior point and 2., , * - * , T, € [} n=1 C2,» . Therefore z is interior to C.

Let = be an interior point of C. Then we may find integers ng, - - - , 7 such
that z is interior to the convex hull of ., , - - - , Zs, and Zp, , - - - , T, satisfy (i).
Then there exists an m, such that if m = mo then ., , * « + , Za; € Ca,m . Therefore
if m = my, z is interior to Cs,,, and lim,.e x(Co,m , ) = x(C, 2).

Let z be exterior to C. We show there exists m, and § > 0 such that if m = m,
then the distance of z to Cs,., is at least §. For suppose to the contrary that on the
subsequence C:q,, the point z is of distance = 1/m to Cs4,, m = 1. Let y be
interior to C, and let mg, %,y , -+ - , %, be as in the preceding paragraph such
that y is interior to the convex hull of x,, , - - - , @&, € Ca,» - Then if L is the line
segment joining y and z, given ¢ > 0 we may find a point z. interior to Cza,, ,
m = 1/¢, such that ||z. — z|| < 2e. It follows that z. € C for all ¢ > 0 and thus
that z is a boundary point of C. This contradiction proves the assertion of this
paragraph.

The proof of Lemma 7.3 is therefore completed.

Proor oF THE NEcEssITY OF (ii) 1IN THEOREM 7.1. We will use Theorem 3.7.
In order to apply Theorem 3.7 we verify the hypotheses. If we change the ordi-
nary Euclidean topology on € to include among the open sets Hy, and H;, then
in the testing problem the risk function r(w) = B(w), weHy, = 1 — B(w),
w € Hy , becomes continuous. The topology on € is a locally compact Hausdorff
topology which is o-compact.

Since I,(X, ®, u) is a separable Banach space, the set of test functions being a
closed convex subset of the unit ball of L,(X, ®, u) is weakly compact. This at
once implies that the set of risk functions are weakly subcompact in the sense of
Definition 3.1.

By Theorem 3.7 we may find sequences of measures {no,» , 7 > 1}, {m,n = 1}
such that if » = 1 then 5, (Ho) = 1,if n = 1 and ¢, is Bayes for 79,, , M., With
power function 3, , then, if ¢ has power function g,

(7.6) limp e Ba(w) = B(w), weQ,
and _
(7.7) limpaw ([ (Ba(w) — B(w))10n(dw) + [ (B(0) = Ba(@))mn(dw)) = O.

We may without loss of generality assume ¢’ = weak lim, .« ¢, exists (as linear
functionals on I,;) and obtain from (7.6) that the power function g of ¢ is the
same as 8. Since an exponential family of density functions is boundedly com-

plete, ¢ = ¢ ae. [u].
Using the assumption that ¢, is Bayes and comparing with the test which

always accepts H; , we find
(78) [ (Ba(w) — B(w))n0n(dw) + [ (B(w) — Ba(w))m1a(de)
= f(l — B(w))noa(dw) + f(ﬂ(w) — 1)mn(dw).

Since H, is compact we may choose from {5o. , # = 1} a weakly convergent sub-
sequence. To simplify notation we suppose weak lima.. 70» = 70 . Then as H,
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is compact, 7o(H,) = 1. Similarly we may suppose weak lim,.« 71» = m (other-
wise take a subsequence), the weak limit being in the sense that if g:Q — R is
continuous and has compact support then lim,.. f g(w)ma(dw) exists. From
(7.7) and (7.8) follows

(7.9) lim supnaw [ (1 — B(w)Ima(dew) = [ (1 — B(w))no(dw).

The hypothesis that Hy and H; are topologically separated has been made to
ensure that n, # m1 . We need this observation in the sequel.
Deﬁne SetS {Cm,n ;M g 1) n g 1} by

(710) ifm=1,n =1 then Cn, = {z]|[fu(@)n.(do) < m}.

Since f.(z) = k(w) exp (w-z) and since 71,(-) is a finite measure with compact
support, C..,» is a closed convex set, m = 1, n = 1. Further, Cpny1n D Cromy
mz1ln=1. .

We apply Lemma 7.3 and choose a subsequence {a, , n = 1} the integers such
that

(7.11) ifm = 1limu,e x(Cuya,, 2) = x(Cny )

exists a.e. [u], C.. a closed convex set. It follows from (7.11) and the inequalities
Cuiin D Cumy that if m = 1 and if C,, has nonvoid interior then C,4y D C,. .
Using (7.9) we obtain the existence of a constant K > 0 such that

(7.12) supaza [ [ (1 — o(2))fu(@)n(dz) ma(dw) < K.
Then
(7.13) K 2 [[a-cnap (1 = 0(2))fu(@)u(dz) n1n(dw)

= m f(n_c,,.,.,”) (1 — o(x))u(dz).

It follows from (7.11) that we may pass to the limit on 7 and obtain

(7.14) K2zm [@cn(l— o(x))u(d).
By the monotone convergence theorem, if ¢ = Un— C..
(7.15) 0= f @0 (1 — ¢(z))u(dz).

We take C to be the convex set whose existence is asserted in Theorem 7.1.

If u(C) = 0 then 0 = f (1 — ¢(z))u(dz) and using the test ¢, Hy is always
accepted. This test is a Bayes test and Theorem 7.1 is satisfied. In the remainder
of the proof we suppose u(C) > 0. Then it follows that if m = m, then u(C,,) > 0.
By Lemma 7.3 it follows that limgaw X(Chn,a, , ) = x(Cn, ) at all z interior
to and exterior to C,,, m = my.

We now show that if z is interior to C then

(7.16)  o(2) [ ful@)no(da) 4+ (1 — o(2)) [ fulz)m(dw)
= infocags (a [ fu(®)no(dw) + (1 — a) [ fu(z)m(dw)).
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Let 2 be interior to C. Then z ¢ C,,, m = m,; . If z is a boundary point of
Cn,m Z my then to each m = 1 we may find ¢m e R;, and ¢, € R such that
tm-x =cpandim-y = cw,y € Crn,m = my . We may further suppose [|£.]| = 1,
m Z my . A simple compactness argument then shows that since C..|C, z is a
boundary point of C. Contradiction.

Since z is interior to C,, we may choose n; such that if » = n; and m = my
then z is interior to C,,¢, . We may further choose ., , - - - , Z,, (of the countable
dense set introduced in the proof of Lemma 7.3) such that z is interior to the
convex hull @, , *+* , Zny, S Corap, M = My, n = ny. Let z = ) a,, , where
(g, +++, o) is a probability vector. Then

(7.17) b, ju e ( 22 @fu(2:)) /fu(@) = .
Since we assume Hy to be a closed subset of Ry, it follows from (7.17) and from
m = weak limn;, that
(7.18) [ fu(xi)mn(dew) < m,n = n; and
[ fo(@)m(dew) = limnse [ ful@)na(dw).

We have assumed that C has nonvoid interior, and from (7.18) we obtain
[ fu(x)m(dw) < « on the interior of C. By Lemma 4.4 either no =
oru({z |z e C, [fo(x)n(dw) = [fu(z)m(dw)}) = 0. As noted earlier, our
hypotheses exclude the case 7o = 71 . From these remarks, from (7.18), from the
functional inequalities that express the fact ¢, is Bayes, n = 1, it follows that

(7.19) w({z |z & C, limyw ¢a,(x) does not exist}) = 0.
If z is exterior to C then limg.e [ fu(2)716,(dw) = o which implies
(7.20) p({z |z 2 C, liMpsw ¢a,(z) # 1}) = O.

In particular, limy,.« ¢a, exists a.e. [u] and since ¢ = weak lim,_.« ¢s, W& obtain
(7.21) ¢ = lim,,w @, a.€. [u];

if z is interior to C then (7.16) holds.

To complete the proof of necessity of (ii) we establish the shape of the
boundary of C by considering the boundaries of C,.,, » = 1. Since
f exp (w-z)k(w)n(dw) < o, ze Ry, n = 1, we may take partial derivatives
under the integral sign. We use here the fact that the measures 71, , 7 = 1, have
compact support. See Theorem 3.7. Thus the boundary surface of C,.q, is given

by ‘

(7.22) m = [ fu(®) May(dw)
which has normal the vector
(723) f wfw(x)")la,,(dw)'

Siﬁce Q is a convex cone and n14,( - ) is supported on @ the vector given in (7.23)
is a vector in Q.
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C, is a limit of the sets C,q, in the sense that lim,.o X(Cn,e, , £) = X(Cm , Z)
for all x interior to or exterior to C,, . Therefore if z is a boundary point of C,
we may find a point sequence {z.,, n = 1} such that z = lim,., %,, and if
n = 1, x,, is a boundary point, of C,.,., . By considering planes of support
£a,°Y = Ca, through z,,, n = 1, normalized by |[|£.,] = 1, n = 1, we see that
C.. has a plane of support ¢-y = ¢ through z such that ||£]| = 1 and { € Q.

Since C,, T C, a similar argument shows every boundary point of C to have a
plane of support £-y = c¢ such that [|£]| = 1 and £ € Q. Since C has a unique
normal at almost all boundary points of C, the last assertion of Theorem 7.1 is
verified.
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