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BOUNDS FOR THE PROBABILITY OF A UNION, WITH APPLICATIONS!

By EustraTIOS G. KOUNIAS

The University of Connecticut

1. Inequalities. Consider a probability space (2, §, P) and the sequence of
events A; e F,7 = 1,2, ---, n. Let I;(w) be the indicator random variable of
the event A;, 7 = 1,2, --- , n, then max;,... ,» I:(w) is the indicator random
variable of the event Ul A4; .

In the present paper we assume that we only know P, = P(4;) and P;,; =
P(A;nd;)foralli,j = 1,2, -+, n, and we find bounds for the P(U7 4.).

It is not difficult to prove that the inequality

(1) ZieJIi<w) - Zz‘<f.i,je11i(w)la‘(w) ’
< maxis Ii(w) £ (1 — Ii(w)) Dis Li(w) + In(w)

holds for all points w & 2, all subsets J of the set {1, 2, --- ,n} and all ke J.
Taking expectations in (1) we obtain

(2) XierPi — Xiciinier Pii < P(Uis A) £ 2is Pi — D iesiven Proi -
Hence, the best lower bound for the P( U7, 4;), among the lower bounds (2), is

(3) max; (D ier Py — Diciivier Pis)-

Now if we take disjoint subsets Jy , - - - , Jw such that U7y J; = {1, --- ,n} and
denote by B, = U, A;, then Uy B, = U}, 4, and using (2) obtain
P(B;) = min (1, Zie.l,. P; — maxg., Zis},,i;ék Py) = T, and P(U;;l 4;) =
P(UL B) = Zl'lq T, . In particular for m = 1 we obtain the upper bound

(4) min [ D7 Py — MaXie1,2,n Dyimtie Pii s 11

Actually, it is easy to construct examples where the bounds (3) and (4) are
attained.

Below we derive another lower bound which is not as sharp but more elegant
than (3). For this, let us use the following notation:

P'= (P, ,P), Q={P:i}, I'(w)= T(w), ,I(e)),

ie., P, I(w) are n X 1 vectors and @ is n X n matrix. Let us also denote by
Q™ the generalized inverse of @, i.e., satisfying QQ~Q = Q. Such an inverse al-
ways exists, (see [4], page 24). The lower bound (5), we derive below, for non-
singular @ was obtained by Gallot [3].

LemmA 1.1. The vector P is in the range of Q.

Proor. If @ is non-singular, the lemma is obvious. If @ is singular, then for
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every vector @ in the null space of @, i.e., Qa = 0, we have
E(d'I) = d'Qa = 0.

Hence, a’] = 0 with probability one and, taking expectations, we obtain a'P = 0,
i.e., P is orthogonal to the null space of @ and thus lies in the range of @. Q.E.D.
TaEOREM 1.1.

(5) P(Uim4:) z P'QP.
Proor. For any vector a’ = (ay, -+, a,), the following inequality
(6) (d'I(w))* — 2(a'I(®)) + maxicy,...n [i(w) Z 0
holds for all points w £ 2; hence, taking expectations, we obtain
(7) P(U?r A)) = 2d'P — dQa.

The vector a which maximizes 2a’'P — a'Qa satisfies the relation Qa = P. There-
fore, )

P(Ui4 4)) = d'Qa subject to Qa = P,
but
dQa = d'QQ Qa = P'Q"P. Q.E.D.

2. Related work. Recently, Dawson and Sankoff [2] have proved a result
equivalent to

(8) P(UiL A:) 2 2(B+ C)/(2 +p) — 2C/(1 4 p)
where

B=iuP;,, C=27iu2iPi, and p=[2C/B].
They show that (8) is stronger than
(9) P(Ui 4;) =z BY/(2C + B)

which was derived by Chung and Erdés [1]. Nevertheless, inequality (8) is not
better than (5) as will be clear from the examples below.

In the following numerical examples, inequalities (3), (4), (5), (8), and (9)
are compared.

(1) Forn = 3 and

P, = 0.5, P, = 04, P; = 0.3,
Py =0, P;; = 0.25, Py = 0.05,

the lower bounds (3), (5), (8), and (9) are 0.9, 0.9, 0.9, and 0.8, respectively.
The upper bound (4) is 0.9.
(2) Forn = 3 and

P; = 0.50, P, = 0.40, P; = 0.60,
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P12 = 020, P13 = 030, P23 = 010,

the lower bounds (3), (5), (8), and (9) are 0.9, 0.9, 0.858 and 0.833 respec-
tively. The upper bound (4) is 1.
(3) Forn = 3 and

[

P1= P2=%, P3=
Py = Py =35, Pu=

the lower bounds (3), (5), (8), and (9) are 0.83, 0.76, 0.66, and 0.66, respec-
tively. The upper bound (4) equals 0.83.

Notice that inequality (8) is equivalent to (5) in the first example, better in
the second, and worse in the last example in which @ is singular. For n = 2, (8)
gives the exact result i.e., equality holds, whereas equality holds in (5) only if @
is singular or Py > P, = Py,

o= ool

)

S
&

3. Applications. Assume now that we have an infinite sequence of events
A;e5, 7= 1,2, ---, and denote by D,, = (P, A Prin), Qrn = {Pi 3},
i,7 =r,r 4+ 1, ---,r + n, and the quadratic form D; ,Qr»Dyn = Crn .

LEvma 3.1. The lim,q, limy,e ¢rn = ¢ exests and lies between zero and one.

Proor. By the definition of ¢, and relation (7), we obtain

12 ¢y = max, [20'Dyis — a'Qrni10]
= maxp [2b,Dr,n+1 - bIQr.n+lb] = Crn = 0

where ' = (ao, -+, @py1) and b’ = (bo, -+, ba, 0).
Thus, for any r the sequence ¢, n = 1, 2, -+ | is increasing and bounded
by 1; hence,

limn-»oo Crn = Cr.

Similarly, we prove that 0 < ¢, < Crgnn < 1l sothat 1 2 ¢y 2 ¢, 2 0
and the sequence ¢, is decreasing and bounded below by 1; hence, the result.
Q.E.D.

TaEOREM 3.1.
lim infy,e lim infpue (D fer Pi — MAXjepooon Doreroise: Proi)
2 P(Nra USr 4,) 2 limysg liMapsw Crn -
Proor.
P(Nr Uio4s) = lime, P(U7, 4,).
But, by virtue of (4) and (5) we have
lim inf,,e (Z%LT P; — maXj—y,..n Z?=r,i;£k Py.:)
2 P(U7- 4,) 2 limpaw 6 = ¢

and hence the result. Q.E.D.
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CoRrOLLARY 3.1. The lower bound of Theorem 3.1 s better than the lower bound
of Erdés-Rényi ([5), p- 326), i.e.,

(10)  liMyoey limpsw Crn Z M SUPRae [( D001 Pi)*/ 2001 2071 Pijl.
Proor. First, observe that
¢rn = Dt nQrnDrom
= maxX, (2'Dyn — €'Qrua) Z (2757 Pi)Y/ 2020 27N Py

because the last expression is found by setting the n X 1 vector ' = ¢(1, 1,
, 1) with
c= 2 Py 20 Py
This shows that (5) is stronger than (9) which in consequence proves our claim.
Q.E.D.
The following example, although not very interesting, shows that strict in-
equality might hold in (10) and hence the Borel-Cantelli type lemma obtainable

from Theorem 3.1 is stronger than the one obtained by Erdods and Rényi. Let
the events A;,7 = 1, 2, -- -, such that,

Py = p, Pyy=9¢q, with 0<g<p=1, and

P;;=np, if ¢ and j areeven,
P;; = q, if ¢ and j are not both even, forall 4,7, =1, --,
then we easily see that ¢, = p forallr = 1, - - -, so that lim,., ¢, = p, whereas

liMpae ( Doteg P/ (200 D31 Pij) = (p + ¢)*/(p + 3¢) which is less than p.
As the last application, consider the sequence of random variables X, ,n = 1,
, and let A, be the event |X,| > e for some e > 0, then

P (supuz, | Xa| > €) = P (U7_, 4,)
and
lim inf, e im infpae ( Doier Py — MaXr<k<n D imr,isk Pri)
= limyne P (SUPnzr [Xa| > €) = P (Nrm Uner 4,) = limyag limp,e ¢

For example, if P(X, = 0) =1 — p/n, P(X, = 1) = p/nand P(X, = 1
= 1) = pmin (1/n — 1/2°, 1/k — 1/k*) forn > k where 0 < p < 6/
then from (4)

P (Un—r é fo=r Pn - Zi:r-}-l Pr,n
= (X (1/n) — 2hcria (I/n — 1/0"))p = 1/r + 20pia (1/0).
Hence P (U5, 4,) < 1/r + 2 e (1/0%), and lim,.. P (UZ_, 4,) = 0,

ie, X, —a25.0asn— .

)
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