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1. Introduction. Let (X, &, A\) be a o-finite measure space. Let Li(\) =
L.,(X, §, A) be the real Banach space of -integrable real functions and L., ()\)
the dual of L;(M). All subsets of X discussed in this paper are elements of §. For
two sets A and B, A € B, A = B mean that A\(A — B) = 0,\(4 A B) =0,
respectively. All functions on X are F-measurable real functions and will always
be considered up to A-equivalence. For two functions fandgon X, f = ¢, f = ¢
mean that the equality and the inequality, respectively, are satisfied in the
almost everywhere (a.e.) sense with respect to \. {f = g} denotes the set {z | f(z)
> g(z)}. For any set A, A" denotes its complement and 1, designates the charac-
teristic function of 4.

Let T:f — fT be a positive linear contraction, (i.e., ||7]; £ 1) on L;(\) to
Li(M\). We call T a Markov operator on Li(\). The adjoint of T' which acts on
L,(\) will be denoted by T, but we will write Tg for g € Lo(\). The adjoint T
is characterized by (1) T is a positive linear operator, (2) T1 =< 1, (3) ¢z | 0
implies Tge | 0 ([8], p. 86). We have then [ fT-g\(dz) = [f-Tgr(dz) for
feLi(N), g & Lu(N).

The purpose of this paper is to prove the following generalization of Ito’s
results ([6], Theorem 1, Lemma 2).

TueOREM. Let T be a Markov operator on Li(N\). Suppose that the sequence
{(1/n) 28wl |n = 1,2, ---} is weakly sequentially compact for some w &
Li(X\) such that w > 0. Then the following assertions hold:

Assertion 1. (the pointwise ergodic theorem). For each f & Li(\),

i (1/n) D_i=0 fT*  exists (\-a.e.).
Assertion 2. (the Li(\)-mean ergodic theorem). For each f & Li()\),
limp,e(1l/n) D rze fT¢ exists in the Li(\)-norm.

We will prove Assertions 1 and 2 in Section 2 and 3, respectively. Certain
relevant facts are stated in Section 2.

The author wishes to thank the referee for valuable suggestions and, in par-
ticular, for a simplified proof of Assertion 2.

2. Proof of Assertion 1. The following lemma follows readily from the mean
ergodic theorem of Yosida and Kakutani ([7], p. 441; [11], p. 192).

LemMma 1. If the sequence {(1/n) > il wT* is weakly sequentially compact,
then the sequence converges in the Ly(\)-norm to a function w e LiT(\) which is
tvariant under T, i.e., uT = u.
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Thus for the sequence { (1/n) D iz wT*, the three concepts: weak sequential
compactness, weak convergence and strong convergence are equivalent. Hence-
forth we assume u = s — liMp.. (1/5) D_r= wT®, where s — lim denotes the
strong limit. Then T = u.

We review basic concepts related to Markov operator ([2], [5]). It has been
shown by Hopf ([5], Theorem 8.1) and Chacon ([2], Theorem 2) that for each
Markov operator T on L;(\), there exists a subset C of X, unique up to equiva-
lence, such that for each f & Li"(\), (1) D imo f/T% = Oor @ on C, (2) Dimo fT* <
© on C'. The subsets C and D = (' are called, respectively, the conservative part
and the dissipative part of X relative to T. In fact, we have C = { X pmo fT* = oo},
where f is an arbitrary but fixed positive element of L,()\). Following Neveu [9]
we write C; = { D o fT* = } for f e LiT(\). Then C; = C n { Do fT* > 0}
for each f& L,*(\). Hereafter C and D, respectively, denote the conservative
and the dissipative parts of X relative to a given Markov operator 7.

LeMMA 2. If u = s — lim, (1/n) Y rco wT®, then Cy = {u > 0}.

Proor. Since v e Lit(A) and T = u, we have

(>0 CCu=Cniyioul >0 =Cniu>0 C{u>0.

The following lemma of Hopf ([5], Lemma 9.4) proved for a finite measure A,
is also true for a o-finite measure N. For completeness of our argument we state
and prove

Lemma 3. If Th £ b (Th = h) on C for h e Lo(M\), then Th = h on C.

Proor. It is enough to consider the case where Th = hon C. Let A = {Th <
B} n C. Let f ¢ LT (\) be such that {f > 0} = C. It follows from Theorem 8.2 of
[5] that fT* = O on D foreach k = 1,2, - - - . Hence we have the inequality

Ja(h = Th) 2ies fT"N(dz) < [ (h — Th) X ime fT*N(d2)
= J (= T""W)f(dz) = 2fhllafls <, n=1,2, -
We have, from the monotone convergence theorem,
Ju (b = Th) Tim TN (dz) < w.

However, since )_reo f/T* = « on each A-non-null subset of C, we have A(4) = 0.
CoroLLARY. The following equalities hold on C.

Tl =1, Tley = lgy, Tle, =1lc,, Tle= le, where feLi™(M).

A set A is called closed (stochastically) if T1, = 1, on A. We prove the follow-
ing.

Lemma 4. Let B be a subset of C. The following are equivalent:

(1) B s closed; ie., Tlz = 1z on B.

(2) If for f e LY (\), {f > 0} C B, then {fT > 0} C B.

(3) B = C, for some g ¢ L,T()).

(4.) T].B = ]-B on C.

Proor. (1) = (2): We know from (1) and the Corollary to Lemma 3, that
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Tlc—p = 0 on B. Suppose that {f > 0} C B for some f & L, (). Since fT =
on D from Theorem 8.2 of [5], it remains to show fT' = 0 on C — B. But

Joea ST N(dz) = [ £ Tle_s\(dz) = [5f - Tlcs\(dz) = 0,

so the assertion holds. (2) = (3): Let g e Li*(\) be such that {g > 0} = B.
It follows from (2) that 7" = 0 on X — B for each k. Clearly, B  C. Then
C—-BcX-—-BcCc{ Zk=0gT—O}andC—BCCn Do gTF =

C — C, from Lemma 84 of [5]. Hence B D C,. On the other hand, C’ =
Cn{ Zk=0 gT" > 0} D Cn{g > 0} = B. The implications (3) = (4) = (1)
are obv1ous

A subset B of C is called an invariant set if it satisfies one of the four conditions
of Lemma 4. We may readily show that the class of all invariant sets forms a
a-algebra of subsets of C.

LemMa 5. If u = s — lim, (1/n) D =0 wT®, then lim; T*1¢, = 0.

Proor. Since the set C, is an invariant set and Tl¢,r = 0 on C,, we readily
have Tlc, = le¢,. However T being positive implies that {T%1¢, |k = 1}
is a decreasmg sequence. If we write b = limg "1, , then & = lim, (1/n)-

»=0 T*1c, . Let p = Ay, be defined by u(4) = fA wA(dz). Then u is a finite
measure equivalent to A. Now we have the following equality:

few (1/n) 2200 wT™\(dz) = [ (1/n) 2oz T* e u(dz).

By using the Lebesgue dominated convergence theorem on the right hand side
and the weak convergence of {(1/n) Y r= wT™ on the other side, we have

0 = [coun(de) = [ hu(dz).
Since i = 0, b = 0 p-a.e.; equivalently, h = 0 A-a.e.

LemMa 6. If w = s — lim, (1/n) 2_i= wT®, then C = C, = {u > 0}.

Proor. It is enough to show that A(4) = 0, where A = C'n C,. Since 71, <
T1ey, k = 1,2, --+, it follows from Lemma 5 that lim; 7%1, = 0. On the
other hand the set A = C n (. is invariant; i.e., T1, = 14 on C. By the usual

argument we have
0 = lime f T°1owN(de) Z limg [o T*14-wN(dz) = [ols-wh(dz) = O,

soa(4d) =

Proor (Asseltlon 1). It is enough to show that for each feI,™()),
lim, (1/n) SR fT" exists (- ae) on C. We assume from Lemma 1 that
w = s — lim, (1/n) X_iZ wT® By the. general ergodic theorem of Chacon-
Ornstein [1] and Lemma 6, we have, for f& Li*(\), lim, D im0 fT%/ > ice uT'
= u ' lim, (1/n) Dr= fT" exists (A-a.e.) on € n { D ul® > 0} = C n
{u > 0} = C. Hence the assertion holds.

3. Proof of Assertion 2. Our point of departure is the following lemma.

LemMma 7. Let {ga} and {ha} be sequences in Li(\) such that (1) 0 < gn < ha,

= 1,2 -, (2) hu — h in the Li(\)-norm. Then {g.} is weakly sequentially
compact.
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Proor. It is well known ([4], Theorem C, p. 108) that the measures u.(E) =
f ghod\, EeF,m = 1,2, ---  are uniformly absolutely continuous with respect
to the measure A and equicontinuous from above at the empty set & under the
condition (2). In particular, the conditions (1) and (2) imply that the meas-
ures v,(E) = fE g dN, E eF,n = 1,2, ---  are equicontinuous from above at &.
It is easy to see that {g.} is bounded in the L;(A)-norm. From a theorem of
Dunford and Pettis ([3], Theorem 9, p. 292), we establish the assertion.

Proor (Assertion 2). In view of the mean ergodic theorem of Yosida and
Kakutani_ ([7], [11]), it suffices to show that the sequence {(1/n) D rze f/T® is
weakly sequentially compact for every f belonging to some fundamental subset of
Li(\). (A subset of a Banach space is called fundamental if the linear span of the
set is dense in the space.) Let for ¢ = 1,2, --- , B, = {z |w(z) > 1/t}, where
w(z) is the function appearing in the assumption of the theorem. Then, for each
t, Bie %, A\(B;) < » and Ui, B, = X. If we denote by M the set of all func-
tions f of the form f = 1zns, , where B is an arbitrary set in§ and ¢ a positive
integer, then it is easy to see that M is a fundamental subset of L;(\). We now
show that for each f in M, the sequence { (1/n) > iz fT* is weakly sequentially
compact. So, let f & M. Then, f = 1zns, for some ¢, and we have f(z) =< tw(z)
for all x. The positivity of T now implies 0 = (l/n) DRt <

t(1/n) i wT® n = 1,2, --- . We complete the proof by using Lemmas 1 and
7 to the sequences {g» = (1/n) Drzo fT% and {h, = t(1/n) D> rm wT".
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