A GENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC THEOREM

By Choo-Whan Kim

Simon Fraser University

1. Introduction. Let $(X, \mathfrak{F}, \lambda)$ be a σ -finite measure space. Let $L_1(\lambda) = L_1(X, \mathfrak{F}, \lambda)$ be the real Banach space of λ -integrable real functions and $L_{\infty}(\lambda)$ the dual of $L_1(\lambda)$. All subsets of X discussed in this paper are elements of \mathfrak{F} . For two sets A and B, $A \subset B$, A = B mean that $\lambda(A - B) = 0$, $\lambda(A \triangle B) = 0$, respectively. All functions on X are \mathfrak{F} -measurable real functions and will always be considered up to λ -equivalence. For two functions f and g on f, f = g, $f \leq g$ mean that the equality and the inequality, respectively, are satisfied in the almost everywhere (a.e.) sense with respect to λ . $\{f \geq g\}$ denotes the set $\{x \mid f(x) \geq g(x)\}$. For any set f, f denotes its complement and f designates the characteristic function of f.

Let $T: f \to fT$ be a positive linear contraction, (i.e., $||T||_1 \le 1$) on $L_1(\lambda)$ to $L_1(\lambda)$. We call T a Markov operator on $L_1(\lambda)$. The adjoint of T which acts on $L_{\infty}(\lambda)$ will be denoted by T, but we will write Tg for $g \in L_{\infty}(\lambda)$. The adjoint T is characterized by (1) T is a positive linear operator, (2) $T1 \le 1$, (3) $g_k \downarrow 0$ implies $Tg_k \downarrow 0$ ([8], p. 86). We have then $\int fT \cdot g\lambda(dx) = \int f \cdot Tg\lambda(dx)$ for $f \in L_1(\lambda)$, $g \in L_{\infty}(\lambda)$.

The purpose of this paper is to prove the following generalization of Ito's results ([6], Theorem 1, Lemma 2).

THEOREM. Let T be a Markov operator on $L_1(\lambda)$. Suppose that the sequence $\{(1/n)\sum_{k=0}^{n-1}wT^k\mid n=1, 2, \cdots\}$ is weakly sequentially compact for some w ε $L_1(\lambda)$ such that w>0. Then the following assertions hold:

Assertion 1. (the pointwise ergodic theorem). For each $f \in L_1(\lambda)$,

$$\lim_{n\to\infty} (1/n) \sum_{k=0}^{n-1} fT^k$$
 exists (\lambda-a.e.).

Assertion 2. (the $L_1(\lambda)$ -mean ergodic theorem). For each $f \in L_1(\lambda)$,

$$\lim_{n\to\infty} (1/n) \sum_{k=0}^{n-1} fT^k$$
 exists in the $L_1(\lambda)$ -norm.

We will prove Assertions 1 and 2 in Section 2 and 3, respectively. Certain relevant facts are stated in Section 2.

The author wishes to thank the referee for valuable suggestions and, in particular, for a simplified proof of Assertion 2.

2. Proof of Assertion 1. The following lemma follows readily from the mean ergodic theorem of Yosida and Kakutani ([7], p. 441; [11], p. 192).

Lemma 1. If the sequence $\{(1/n)\sum_{k=0}^{n-1}wT^k\}$ is weakly sequentially compact, then the sequence converges in the $L_1(\lambda)$ -norm to a function $u \in L_1^+(\lambda)$ which is invariant under T, i.e., uT = u.

Received 5 January 1968.

Thus for the sequence $\{(1/n)\sum_{k=0}^{n-1}wT^k\}$, the three concepts: weak sequential compactness, weak convergence and strong convergence are equivalent. Henceforth we assume $u=s-\lim_{n\to\infty}(1/n)\sum_{k=0}^{n-1}wT^k$, where $s-\lim$ denotes the strong limit. Then uT=u.

We review basic concepts related to Markov operator ([2], [5]). It has been shown by Hopf ([5], Theorem 8.1) and Chacon ([2], Theorem 2) that for each Markov operator T on $L_1(\lambda)$, there exists a subset C of X, unique up to equivalence, such that for each $f \in L_1^+(\lambda)$, $(1) \sum_{k=0}^{\infty} fT^k = 0$ or ∞ on C, $(2) \sum_{k=0}^{\infty} fT^k < \infty$ on C'. The subsets C and D = C' are called, respectively, the conservative part and the dissipative part of X relative to T. In fact, we have $C = \{\sum_{k=0}^{\infty} fT^k = \infty\}$, where f is an arbitrary but fixed positive element of $L_1(\lambda)$. Following Neveu [9] we write $C_f = \{\sum_{k=0}^{\infty} fT^k = \infty\}$ for $f \in L_1^+(\lambda)$. Then $C_f = C \cap \{\sum_{k=0}^{\infty} fT^k > 0\}$ for each $f \in L_1^+(\lambda)$. Hereafter C and D, respectively, denote the conservative and the dissipative parts of X relative to a given Markov operator T.

LEMMA 2. If $u = s - \lim_{n \to \infty} (1/n) \sum_{k=0}^{n-1} w T^k$, then $C_u = \{u > 0\}$.

Proof. Since $u \in L_1^+(\lambda)$ and uT = u, we have

$$\{u > 0\} \subset C_u = C \cap \{\sum_{k=0} uT^k > 0\} = C \cap \{u > 0\} \subset \{u > 0\}.$$

The following lemma of Hopf ([5], Lemma 9.4) proved for a finite measure λ , is also true for a σ -finite measure λ . For completeness of our argument we state and prove

LEMMA 3. If $Th \leq h$ ($Th \geq h$) on C for $h \in L_{\infty}(\lambda)$, then Th = h on C.

PROOF. It is enough to consider the case where $Th \leq h$ on C. Let $A = \{Th < h\}$ n C. Let $f \in L_1^+(\lambda)$ be such that $\{f > 0\} = C$. It follows from Theorem 8.2 of [5] that $fT^k = 0$ on D for each $k = 1, 2, \cdots$. Hence we have the inequality

$$\int_{A} (h - Th) \sum_{k=0}^{n} f T^{k} \lambda(dx) \leq \int_{A} (h - Th) \sum_{k=0}^{n} f T^{k} \lambda(dx)$$
$$= \int_{A} (h - T^{n+1}h) f \lambda(dx) \leq 2||h||_{\infty} \cdot ||f||_{1} < \infty, \qquad n = 1, 2, \cdots.$$

We have, from the monotone convergence theorem,

$$\int_A (h - Th) \sum_{k=0}^{\infty} fT^k \lambda(dx) < \infty.$$

However, since $\sum_{k=0}^{\infty} fT^k = \infty$ on each λ -non-null subset of C, we have $\lambda(A) = 0$. Corollary. The following equalities hold on C.

$$T1 = 1$$
, $T1_{c_{i'}} = 1_{c_{i'}}$, $T1_{c_{f}} = 1_{c_{f}}$, $T1_{c} = 1_{c}$, where $f \in L_{1}^{+}(\lambda)$.

A set A is called *closed* (stochastically) if $T1_A = 1_A$ on A. We prove the following.

LEMMA 4. Let B be a subset of C. The following are equivalent:

- (1) B is closed; i.e., $T1_B = 1_B$ on B.
- (2) If for $f \in L_1^+(\lambda)$, $\{f > 0\} \subset B$, then $\{fT > 0\} \subset B$.
- (3) $B = C_g \text{ for some } g \in L_1^+(\lambda).$
- (4) $T1_B = 1_B \text{ on } C$.

PROOF. (1) \Rightarrow (2): We know from (1) and the Corollary to Lemma 3, that

 $T1_{C-B} = 0$ on B. Suppose that $\{f > 0\} \subset B$ for some $f \in L_1^+(\lambda)$. Since fT = 0 on D from Theorem 8.2 of [5], it remains to show fT = 0 on C - B. But

$$\int_{C-B} f T \cdot \lambda(dx) = \int_{C-B} f \cdot T \mathbf{1}_{C-B} \lambda(dx) = \int_{B} f \cdot T \mathbf{1}_{C-B} \lambda(dx) = 0,$$

so the assertion holds. (2) \Rightarrow (3): Let $g \in L_1^+(\lambda)$ be such that $\{g > 0\} = B$. It follows from (2) that $gT^k = 0$ on X - B for each k. Clearly, $B \subset C$. Then $C - B \subset X - B \subset \{\sum_{k=0}^{\infty} gT^k = 0\}$ and $C - B \subset C \cap \{\sum_{k=0}^{\infty} gT^k = 0\} = C - C_g$ from Lemma 8.4 of [5]. Hence $B \supset C_g$. On the other hand, $C_g = C \cap \{\sum_{k=0}^{\infty} gT^k > 0\} \supset C \cap \{g > 0\} = B$. The implications (3) \Rightarrow (4) \Rightarrow (1) are obvious.

A subset B of C is called an *invariant set* if it satisfies one of the four conditions of Lemma 4. We may readily show that the class of all invariant sets forms a σ -algebra of subsets of C.

LEMMA 5. If $u = s - \lim_{n \to \infty} (1/n) \sum_{k=0}^{n-1} wT^k$, then $\lim_{k \to \infty} T^k 1_{C_{n'}} = 0$.

PROOF. Since the set C_u is an invariant set and $T1_{C_{u'}} = 0$ on C_u , we readily have $T1_{C_{u'}} \leq 1_{C_{u'}}$. However T being positive implies that $\{T^k1_{C_{u'}} \mid k \geq 1\}$ is a decreasing sequence. If we write $h = \lim_k T^k1_{C_{u'}}$, then $h = \lim_n (1/n) \cdot \sum_{k=0}^{n-1} T^k1_{C_{u'}}$. Let $\mu = \lambda_w$ be defined by $\mu(A) = \int_A w\lambda(dx)$. Then μ is a finite measure equivalent to λ . Now we have the following equality:

$$\int_{C_{u'}} (1/n) \sum_{k=0}^{n-1} w T^k \lambda(dx) = \int (1/n) \sum_{k=0}^{n-1} T^k 1_{C_{u'}} \mu(dx).$$

By using the Lebesgue dominated convergence theorem on the right hand side and the weak convergence of $\{(1/n)\sum_{k=0}^{n-1}wT^k\}$ on the other side, we have

$$0 = \int c_{u'} u \lambda(dx) = \int h \mu(dx).$$

Since $h \ge 0$, h = 0 μ -a.e.; equivalently, h = 0 λ -a.e.

LEMMA 6. If $u = s - \lim_{n \to \infty} (1/n) \sum_{k=0}^{n-1} wT^k$, then $C = C_u = \{u > 0\}$.

PROOF. It is enough to show that $\lambda(A) = 0$, where $A = C \cap C_u'$. Since $T^k 1_A \le T^k 1_{C_{u'}}$, $k = 1, 2, \dots$, it follows from Lemma 5 that $\lim_k T^k 1_A = 0$. On the other hand the set $A = C \cap C_u'$ is invariant; i.e., $T 1_A = 1_A$ on C. By the usual argument we have

$$0 = \lim_{k} \int T^{k} 1_{A} \cdot w \lambda(dx) \ge \lim_{k} \int_{C} T^{k} 1_{A} \cdot w \lambda(dx) = \int_{C} 1_{A} \cdot w \lambda(dx) \ge 0,$$

so $\lambda(A) = 0.$

Proof (Assertion 1). It is enough to show that for each $f \, \varepsilon \, L_1^{+}(\lambda)$, $\lim_n \left(1/n \right) \sum_{k=0}^{n-1} f T^k$ exists (\(\lambda-\text{a.e.}\)) on C. We assume from Lemma 1 that $u = s - \lim_n \left(1/n \right) \sum_{k=0}^{n-1} w T^k$. By the general ergodic theorem of Chacon-Ornstein [1] and Lemma 6, we have, for $f \, \varepsilon \, L_1^{+}(\lambda)$, $\lim_n \sum_{k=0}^{n-1} f T^k / \sum_{k=0}^{n-1} u T^k = u^{-1} \lim_n \left(1/n \right) \sum_{k=0}^{n-1} f T^k$ exists (\(\lambda-\text{a.e.}\)) on $C \cap \{\sum_{k=1}^{\infty} u T^k > 0\} = C \cap \{u > 0\} = C$. Hence the assertion holds.

3. Proof of Assertion 2. Our point of departure is the following lemma.

LEMMA 7. Let $\{g_n\}$ and $\{h_n\}$ be sequences in $L_1(\lambda)$ such that (1) $0 \le g_n \le h_n$, $n = 1, 2, \dots, (2)$ $h_n \to h$ in the $L_1(\lambda)$ -norm. Then $\{g_n\}$ is weakly sequentially compact.

PROOF. It is well known ([4], Theorem C, p. 108) that the measures $\mu_n(E) = \int_{\mathcal{E}} h_n \, d\lambda$, $E \in \mathfrak{F}$, $n = 1, 2, \cdots$, are uniformly absolutely continuous with respect to the measure λ and equicontinuous from above at the empty set \emptyset under the condition (2). In particular, the conditions (1) and (2) imply that the measures $\nu_n(E) = \int_{\mathcal{E}} g_n \, d\lambda$, $E \in \mathfrak{F}$, $n = 1, 2, \cdots$, are equicontinuous from above at \emptyset . It is easy to see that $\{g_n\}$ is bounded in the $L_1(\lambda)$ -norm. From a theorem of Dunford and Pettis ([3], Theorem 9, p. 292), we establish the assertion.

Proof (Assertion 2). In view of the mean ergodic theorem of Yosida and Kakutani ([7], [11]), it suffices to show that the sequence $\{(1/n)\sum_{k=0}^{n-1}fT^k\}$ is weakly sequentially compact for every f belonging to some fundamental subset of $L_1(\lambda)$. (A subset of a Banach space is called fundamental if the linear span of the set is dense in the space.) Let for $t=1, 2, \dots, B_t=\{x\mid w(x)>1/t\}$, where w(x) is the function appearing in the assumption of the theorem. Then, for each $t, B_t \in \mathfrak{F}, \lambda(B_t) < \infty$ and $\bigcup_{t=1}^{\infty} B_t = X$. If we denote by M the set of all functions f of the form $f=1_{B\cap B_t}$, where B is an arbitrary set in \mathfrak{F} and t a positive integer, then it is easy to see that M is a fundamental subset of $L_1(\lambda)$. We now show that for each f in M, the sequence $\{(1/n)\sum_{k=0}^{n-1}fT^k\}$ is weakly sequentially compact. So, let $f \in M$. Then, $f=1_{B\cap B_t}$ for some t, and we have $f(x) \leq tw(x)$ for all x. The positivity of T now implies $0 \leq (1/n)\sum_{k=0}^{n-1}fT^k \leq t(1/n)\sum_{k=0}^{n-1}wT^k$, $n=1,2,\cdots$. We complete the proof by using Lemmas 1 and 7 to the sequences $\{g_n=(1/n)\sum_{k=0}^{n-1}fT^k\}$ and $\{h_n=t(1/n)\sum_{k=0}^{n-1}wT^k\}$.

REFERENCES

- [1] Chacon, R. V. and Ornstein, D. S. (1960). A general ergodic theorem. *Illinois J. Math.* 4 153-160.
- [2] Chacon, R. V. (1962). Identification of the limit of operator averages. J. Math. Mech. 11 961-968.
- [3] DUNFORD, N. and SCHWARTZ, J. T. (1958). Linear Operators, Part I. Interscience, New York.
- [4] Halmos, P. R. (1954). Measure Theory. Van Nostrand, New York.
- [5] HOPF, E. (1954). The general temporally discrete Markoff process. J. Math. Mech. 3 13-45.
- [6] Ito, Y. (1965). Uniform integrability and the pointwise ergodic theorem. Proc. Amer. Math. Soc. 16 222-227.
- [7] Loève, M. (1960). Probability Theory (3rd ed.). Van Nostrand, Princeton.
- [8] Moy, S. C. (1965). λ-continuous Markov chains. Trans. Amer. Math. Soc. 117 68-91.
- [9] Neveu, J. (1961). Sur le théorème ergodique ponctuel. C. R. Acad. Sci. Paris, 252 1554-1556.
- [10] NEVEU, J. (1964). Bases Mathématiques du Calcul des Probabilités. Masson, Paris.
- [11] Yosida, K. and Kakutani, S. (1941). Operator-theoretical treatment of Markoff's process and mean ergodic theorem. *Ann. Math.* 42 188-228.