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COMPARISON TESTS FOR THE CONVERGENCE OF MARTINGALES

By Bureess Davis

Rutgers—The State Universtiy

1. Introduction. If f = (f1, f2, ---) is a sequence of real valued functions
on a probability space and dy = fi,d; = fi — fii, 7> 1, let

f'ﬂ* = max (lfll) )If"l)y f* = Supn fn*7
8u(f) = (21 dd), and S(f) = Sulf) = supa Sa(f).

In (1], Burkholder proved that if f and ¢ are martingales relative to the same
sequence of o-fields, f is L' bounded, and S.(g) < S.(f), n = 1, then g con-
verges almost everywhere. It will be shown here that the condition S,(¢) =<
Sx(f), n = 1, can be replaced by the weaker condition S(g) < S(f). Using this
it requires almost no alteration of Burkholder’s proofs to make the same replace-
ment in Theorems 6 and 7 of [1].

Using essentially the same method, a theorem will be proved for L'-bounded
martingales f which gives among other things the convergence of g and finiteness
of S(g) if, in place of S(g) < S(f), we have ¢* < 1™

2. Comparison tests for martingale convergence. Suppose ¢ is a martingale
such that if e > O then there is a stopping time ¢ such that P(¢ < ©) < eand
E(S.(g)) < ». Then g converges almost everywhere by Theorem 2 of [1],
which states that if f is a martingale and E(S(f)) < « then f converges almost
everywhere, since by this theorem ¢ stopped at ¢ will converge almost everywhere
and the probability of stopping at a finite time is arbitrarily small.

Lemma 1. If (fa, Gn, n = 1) is a nonegative martingale with difference sequence
(dn,n = 1), and N > 0, then almost everywhere

(1) P([f’ + dapa + -1 > Ma| @) £ M/2
where M s the constant appearing in Theorem 8 of [1], and almost everywhere
(2) P(Sup [fo, fat1, fage, oo 1 > M| @) = 1/,

Proor. Let A\ > 0, n be a positive integer, 4 € @, and « > 0. Then
P(lfd + duss + -1 > AMfa + al, A) = P([(ful 4/[fn + <))
+ (doila/lfa + o)’ + - F > \) £ (M/N)P(A),

using the fact that the partial sums of the series fula/[fn + «] -+
dniil 4/[fa + ] + --- form a nonnegative martingale with the L' norm of each
partial sum equal to E(ful4/[f» + a]) < E(I.) = P(A), together with Theo-
rem 8 of [1].
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Letting & — 0, we obtain
P([fa" + daga+ -1 > Ma, 4) = (M/N)P(A),

implying (1). (2) is proved similarly using Theorem 3.2 on page 314 of [2].
LemmMa 2. Suppose that f satisfies the assumptions of Lemma 1. If ¢, is an G,
measurable function satisfying ¢, < S(f), then almost everywhere

(3) on = Su(f) + Mfu.
If Y is an @, measurable function satisfying ¥n < f*, then almost everywhere
(4) Yo S o'

Proor. Note that
n = 8(f) = (X)) = 8uf) + (Xin dD
Let A > M. Then, almost everywhere ]
P(¢n > Su(f) + Ma| @) £ P((Z5nd)' > Mal @) < M/N <1,

using Lemma 1. Since A = {¢» > S.(f) + M.} is in @, , we have that its indica-
tor function I, satisfies I, = P(4 | @.) < 1 almost everywhere. Consequently,
for all A\ > M, ¢ = Su(f) + N» almost everywhere, so (3) follows.

To prove (4), let A > 1. Then almost everywhere

P(Ya > Ma¥| @) = P(* > M| Gn)
P(supisna fi > Ma* | @)
< P(supisn fr > Ma| @n)
1/ < 1.

lIA

This implies (4).

When the assumption f = 0 is dropped we can deduce an analogue of (3) as
follows. Write ([3], page 144) f = f* — f” where f and f” are nonnegative martin-
gales relative to the same sequence of o-fields, ||If'|li = [Ifll+, Ilf”Il. = |If]l: . Then

S = S(f) + S(¢”) and ¢, = S(f), where ¢, is @,-measurable, implies that
o = Sa(f) + (200 (@)D + 8u(f) + (i (@)

so that if N > 2M, then almost everywhere

Pgn > Sulf) + Su(f") + Mo+ M | @)
P20 d 4+ (i d™ > M+ M | @)
P00 di > M @) + P(( X d™P > 0" | @)
= M/N+ M/\N=2M/\ < 1.

Thus ¢, £ Su(f) + Sa(f”) + 2Mf, + 2Mf," almost everywhere.
TaroreM 1. If f = (fi,fe, ) and g = (g1, g2, - - - ) are martingales relative

A

fiA
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to the same sequence of o-fields, f is L' bounded, and S (g) £ S(f), then g converges
almost everywhere.

Proor. Clearly, S.(g) = S(f), so that almost everywhere Sa(g) = S.(f) +
S.(f") + 2Mf, + 2Mf,”, f and f” as above. In view of the remarks at the
beginning of this section, it will suffice to find a stopping time ¢ such
that ES,(g) < « and P(¢ < =) is arbitrarily small.

Let K be a positive number. Let ¢ be the first time one of the terms Sa(f ),
Sa(f"), 'y " exceeds K.

Then on {t = o},

S:(g) = S(g) = 8(f) = 8(f) + 8(f") = 2K
and on {f < oo},
Si(g) £ 8uf) + 8u(f") + 2Mf! + 2Mf” < (K + |d/]) + (K + |d."])
+ (2MK + 2Md/|) + (2MK + 2M|d"|) < C + C|f/| + C|f/]|

for some constant C, since either d;’ > 0 and thus d; < ft' or d; £ 0 and thus
di £ K since fi_; < K and f; = 0. Thus E(8:(g)) < »,and P(t < ) can be
made arbitrarily small by making K large.

THEOREM 2. Let f = (fi, fa, -+-) be an L' bounded martingale and g a martin-
gale relative to the same sequence of o-fields. Let ¢ = (e, ey, ---) be the difference
sequence of g. Then if ¢* = f* the three sets {sup. g» < o}, {g converges},
and {S(g) < «} are equal almost everywhere.

Proor. Again writing f = f' — f”, where f and f" are nonnegative martingales,
we have ™ < (f + f)* and f' + fisa nonnegative martingale, so from now on
we may and do assume that f is nonnegative. Since ¢* < f* implies that e,* < 7
and e,* is @, measurable, we have, by (4), that e,* < f,* almost everywhere.

Now let ¢ be the first time that f, exceeds K > 0. We have that on {t = n},
e’ < fo¥ = fu,and on {t = w}, ¢ = f* < K. Thus if § is the martingale g
stopped at ¢, and if & is the corresponding difference sequence, then E(&*) < o.
Thus by Theorem 4 of [1] and a result on page 320 of [2], the three sets {g con-
verges}, {S(§) < «}, {sups & < =} are equivalent. By making K large we
make P(f{ < «) arbitrarily small. Therefore, since

P({supn gn < w} A {sups gn < @}) = P(t < ),
P({8(4) < »} A{S(g) < »}) = P(t < »)
P({g converges} A {g converges}) < P(t < =)

where A A B = (4 u B) — (4 n B), we have the result.

In particular, if f is a martingale and E(d*) < o« then f satisfies the condi-
tions of Theorem 2, since if b, = E(d* | @,) then (k. , Gx ,n = 1) is a martingale
and d* = 1* ae.

Cororrary. If f and g are martingales relative to the same sequence of o-fields,
g = f* and fis L' bounded, then g converges almost everywhere and S(g) < o
almost everywhere.
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Proor. The condition sup, |g.| = f* implies that sup, |g.— gn_1| < 2f*= (2/)*.
Thus g satisfies the hypotheses of Theorem 2, and P(sup. g» < ) =
P(f* < ©) = 1.

The following example shows that the hypothesis that f and ¢ are martingales
relative to the same sequence of o-fields cannot be entirely removed. First we
give an L' bounded martingale f and then a martingale ¢ which although satisfy-
ing S(g) = S(f) diverges on a set of positive measure.

Let @ = {1,2, ---} and P({k}) = 1/k — 1/(k + 1).

Define f by
' fulk) = n itn <k
=—1 ifn=k,
and ¢ by
ga(1) = —2 220 1/( + 4),
gu(2) = 2,
gu(k) = gu(1) ifn <k —1,
= gea(l) +k  ifn=k—1,
for k > 2.
Now

i =2/G+ P <425L /G +3) -/ + ] =1L
Therefore, at 1, S(g)* < 1 = S(f)’, and at k > 1, S(g)* < 1 + K = S(f)?,
implying S(g) = S(f)-

It is easily checked that f and ¢ are martingales. Now f is L' bounded since
it is bounded below. But ¢, — — at 1. If e, = ¢g» — ¢u—1, 7 > 1, then by
adding —e;, instead of e for selected k¥ we can make the resulting martingale
oscillate between — o and o at 1, still keeping S(g) =< S(f), and similar trans-
forms provide counterexamples for Theorem 2 and the corollary, if the same
o-field condition is removed.

Acknowledgment. I am greatly indebted to Professor D. L. Burkholder for
much helpful advice and criticism.
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