## COMPARISON TESTS FOR THE CONVERGENCE OF MARTINGALES

## By Burgess Davis

Rutgers-The State University

**1. Introduction.** If  $f = (f_1, f_2, \dots)$  is a sequence of real valued functions on a probability space and  $d_1 = f_1, d_i = f_i - f_{i-1}, i > 1$ , let

$$f_n^* = \max(|f_1|, \dots, |f_n|), \quad f^* = \sup_n f_n^*,$$
  
 $S_n(f) = (\sum_{1}^n d_i^2)^{\frac{1}{2}}, \quad \text{and} \quad S(f) = S_{\infty}(f) = \sup_n S_n(f).$ 

In [1], Burkholder proved that if f and g are martingales relative to the same sequence of  $\sigma$ -fields, f is  $L^1$  bounded, and  $S_n(g) \leq S_n(f)$ ,  $n \geq 1$ , then g converges almost everywhere. It will be shown here that the condition  $S_n(g) \leq S_n(f)$ ,  $n \geq 1$ , can be replaced by the weaker condition  $S(g) \leq S(f)$ . Using this it requires almost no alteration of Burkholder's proofs to make the same replacement in Theorems 6 and 7 of [1].

Using essentially the same method, a theorem will be proved for  $L^1$ -bounded martingales f which gives among other things the convergence of g and finiteness of S(g) if, in place of  $S(g) \leq S(f)$ , we have  $g^* \leq f^*$ .

**2.** Comparison tests for martingale convergence. Suppose g is a martingale such that if  $\epsilon > 0$  then there is a stopping time t such that  $P(t < \infty) < \epsilon$  and  $E(S_t(g)) < \infty$ . Then g converges almost everywhere by Theorem 2 of [1], which states that if f is a martingale and  $E(S(f)) < \infty$  then f converges almost everywhere, since by this theorem g stopped at t will converge almost everywhere and the probability of stopping at a finite time is arbitrarily small.

LEMMA 1. If  $(f_n, \mathfrak{A}_n, n \geq 1)$  is a nonegative martingale with difference sequence  $(d_n, n \geq 1)$ , and  $\lambda > 0$ , then almost everywhere

(1) 
$$P([f_n^2 + d_{n+1}^2 + \cdots]^{\frac{1}{2}} > \lambda f_n \mid \alpha_n) \leq M/\lambda$$

where M is the constant appearing in Theorem 8 of [1], and almost everywhere

(2) 
$$P(\sup [f_n, f_{n+1}, f_{n+2}, \cdots] > \lambda f_n \mid \mathfrak{A}_n) \leq 1/\lambda.$$

PROOF. Let  $\lambda > 0$ , n be a positive integer,  $A \in \mathcal{C}_n$  and  $\alpha > 0$ . Then

$$P([f_n^2 + d_{n+1}^2 + \cdots]^{\frac{1}{2}} > \lambda [f_n + \alpha], A) = P([(f_n I_A / [f_n + \alpha])^2 + (d_{n+1} I_A / [f_n + \alpha])^2 + \cdots]^{\frac{1}{2}} > \lambda) \le (M/\lambda) P(A),$$

using the fact that the partial sums of the series  $f_nI_A/[f_n + \alpha] + d_{n+1}I_A/[f_n + \alpha] + \cdots$  form a nonnegative martingale with the  $L^1$  norm of each partial sum equal to  $E(f_nI_A/[f_n + \alpha]) \leq E(I_A) = P(A)$ , together with Theorem 8 of [1].

Received 19 February 1968.

Letting  $\alpha \to 0$ , we obtain

$$P([f_n^2 + d_{n+1}^2 + \cdots]^{\frac{1}{2}} > \lambda f_n, A) \leq (M/\lambda)P(A),$$

implying (1). (2) is proved similarly using Theorem 3.2 on page 314 of [2].

Lemma 2. Suppose that f satisfies the assumptions of Lemma 1. If  $\phi_n$  is an  $\mathfrak{A}_n$  measurable function satisfying  $\phi_n \leq S(f)$ , then almost everywhere

$$\phi_n \le S_n(f) + M f_n.$$

If  $\psi_n$  is an  $\mathfrak{A}_n$  measurable function satisfying  $\psi_n \leq f^*$ , then almost everywhere

$$\psi_n \le f_n^*.$$

Proof. Note that

$$\phi_n \le S(f) = \left(\sum_{1}^{\infty} d_i^2\right)^{\frac{1}{2}} \le S_n(f) + \left(\sum_{n+1}^{\infty} d_i^2\right)^{\frac{1}{2}}.$$

Let  $\lambda > M$ . Then, almost everywhere

$$P(\phi_n > S_n(f) + \lambda f_n \mid \mathfrak{A}_n) \leq P(\left(\sum_{n=1}^{\infty} d_i^2\right)^{\frac{1}{2}} > \lambda f_n \mid \mathfrak{A}_n) \leq M/\lambda < 1,$$

using Lemma 1. Since  $\Lambda = \{\phi_n > S_n(f) + \lambda f_n\}$  is in  $\mathfrak{A}_n$ , we have that its indicator function  $I_A$  satisfies  $I_A = P(A \mid \mathfrak{A}_n) < 1$  almost everywhere. Consequently, for all  $\lambda > M$ ,  $\phi_n \leq S_n(f) + \lambda f_n$  almost everywhere, so (3) follows.

To prove (4), let  $\lambda > 1$ . Then almost everywhere

$$P(\psi_n > \lambda f_n^* \mid \alpha_n) \leq P(f^* > \lambda f_n^* \mid \alpha_n)$$

$$= P(\sup_{k > n} f_k > \lambda f_n^* \mid \alpha_n)$$

$$\leq P(\sup_{k > n} f_k > \lambda f_n \mid \alpha_n)$$

$$\leq 1/\lambda < 1.$$

This implies (4).

When the assumption  $f \geq 0$  is dropped we can deduce an analogue of (3) as follows. Write ([3], page 144) f = f' - f'' where f' and f'' are nonnegative martingales relative to the same sequence of  $\sigma$ -fields,  $||f'||_1 \leq ||f||_1$ ,  $||f''||_1 \leq ||f||_1$ . Then  $S(f) \leq S(f') + S(f'')$  and  $\phi_n \leq S(f)$ , where  $\phi_n$  is  $\mathfrak{A}_n$ -measurable, implies that

$$\phi_n \leq S_n(f') + (\sum_{n+1}^{\infty} (d_i')^2)^{\frac{1}{2}} + S_n(f'') + (\sum_{n+1}^{\infty} (d_i'')^2)^{\frac{1}{2}},$$

so that if  $\lambda > 2M$ , then almost everywhere

$$P(\phi_{n} > S_{n}(f') + S_{n}(f'') + \lambda f_{n}' + \lambda f_{n}'' \mid \Omega_{n})$$

$$\leq P((\sum_{n=1}^{\infty} d_{i}'^{2})^{\frac{1}{2}} + (\sum_{n=1}^{\infty} d_{i}''^{2})^{\frac{1}{2}} > \lambda f_{n}' + \lambda f_{n}'' \mid \Omega_{n})$$

$$\leq P((\sum_{n=1}^{\infty} d_{i}'^{2})^{\frac{1}{2}} > \lambda f_{n}' \mid \Omega_{n}) + P((\sum_{n=1}^{\infty} d_{i}''^{2})^{\frac{1}{2}} > \lambda f_{n}'' \mid \Omega_{n})$$

$$\leq M/\lambda + M/\lambda = 2M/\lambda < 1.$$

Thus  $\phi_n \leq S_n(f') + S_n(f'') + 2Mf_n' + 2Mf_n''$  almost everywhere. Theorem 1. If  $f = (f_1, f_2, \cdots)$  and  $g = (g_1, g_2, \cdots)$  are martingales relative to the same sequence of  $\sigma$ -fields, f is  $L^1$  bounded, and  $S(g) \leq S(f)$ , then g converges almost everywhere.

Proof. Clearly,  $S_n(g) \leq S(f)$ , so that almost everywhere  $S_n(g) \leq S_n(f') + S_n(f'') + 2Mf_n'' + 2Mf_n''$ , f' and f'' as above. In view of the remarks at the beginning of this section, it will suffice to find a stopping time t such that  $ES_t(g) < \infty$  and  $P(t < \infty)$  is arbitrarily small.

Let K be a positive number. Let t be the first time one of the terms  $S_n(f')$ ,  $S_n(f'')$ ,  $f_n'$ ,  $f_n''$  exceeds K.

Then on  $\{t = \infty\}$ ,

$$S_t(g) = S(g) \le S(f) \le S(f') + S(f'') \le 2K$$

and on  $\{t < \infty\}$ ,

$$S_{t}(g) \leq S_{t}(f') + S_{t}(f'') + 2Mf_{t}' + 2Mf_{t}'' \leq (K + |d_{t}'|) + (K + |d_{t}''|) + (2MK + 2M|d_{t}'|) + (2MK + 2M|d_{t}''|) \leq C + C|f_{t}'| + C|f_{t}''|$$

for some constant C, since either  $d_t' > 0$  and thus  $d_t' \leq f_t'$  or  $d_t' \leq 0$  and thus  $d_t' \leq K$  since  $f_{t-1}' \leq K$  and  $f_t' \geq 0$ . Thus  $E(S_t(g)) < \infty$ , and  $P(t < \infty)$  can be made arbitrarily small by making K large.

THEOREM 2. Let  $f=(f_1,f_2,\cdots)$  be an  $L^1$  bounded martingale and g a martingale relative to the same sequence of  $\sigma$ -fields. Let  $e=(e_1,e_2,\cdots)$  be the difference sequence of g. Then if  $e^* \leq f^*$  the three sets  $\{\sup_n g_n < \infty\}$ ,  $\{g \text{ converges}\}$ , and  $\{S(g) < \infty\}$  are equal almost everywhere.

PROOF. Again writing f = f' - f'', where f' and f'' are nonnegative martingales, we have  $f^* \leq (f' + f'')^*$ , and f' + f'' is a nonnegative martingale, so from now on we may and do assume that f is nonnegative. Since  $e^* \leq f^*$  implies that  $e_n^* \leq f^*$ , and  $e_n^*$  is  $a_n$  measurable, we have, by (4), that  $a_n^* \leq f_n^*$  almost everywhere.

Now let t be the first time that  $f_n$  exceeds K > 0. We have that on  $\{t = n\}$ ,  $e_n^* \leq f_n^* = f_n$ , and on  $\{t = \infty\}$ ,  $e^* \leq f^* \leq K$ . Thus if  $\hat{g}$  is the martingale g stopped at t, and if  $\hat{e}$  is the corresponding difference sequence, then  $E(\hat{e}^*) < \infty$ . Thus by Theorem 4 of [1] and a result on page 320 of [2], the three sets  $\{\hat{g} \text{ converges}\}$ ,  $\{S(\hat{g}) < \infty\}$ ,  $\{\sup_n \hat{e}_n < \infty\}$  are equivalent. By making K large we make  $P(t < \infty)$  arbitrarily small. Therefore, since

$$P(\{\sup_{n} \hat{g}_{n} < \infty\} \triangle \{\sup_{n} g_{n} < \infty\}) \leq P(t < \infty),$$

$$P(\{S(\hat{g}) < \infty\} \triangle \{S(g) < \infty\}) \leq P(t < \infty)$$

$$P(\{\hat{g} \text{ converges}\} \triangle \{g \text{ converges}\}) \leq P(t < \infty)$$

where  $A \triangle B = (A \cup B) - (A \cap B)$ , we have the result.

In particular, if f is a martingale and  $E(d^*) < \infty$  then f satisfies the conditions of Theorem 2, since if  $h_n = E(d^* \mid \Omega_n)$  then  $(h_n, \Omega_n, n \ge 1)$  is a martingale and  $d^* \le h^*$  a.e.

COROLLARY. If f and g are martingales relative to the same sequence of  $\sigma$ -fields,  $g^* \leq f^*$ , and f is  $L^1$  bounded, then g converges almost everywhere and  $S(g) < \infty$  almost everywhere.

PROOF. The condition  $\sup_n |g_n| \le f^*$  implies that  $\sup_n |g_n - g_{n-1}| \le 2f^* = (2f)^*$ . Thus g satisfies the hypotheses of Theorem 2, and  $P(\sup_n g_n < \infty) \ge P(f^* < \infty) = 1$ .

The following example shows that the hypothesis that f and g are martingales relative to the same sequence of  $\sigma$ -fields cannot be entirely removed. First we give an  $L^1$  bounded martingale f and then a martingale g which although satisfying  $S(g) \leq S(f)$  diverges on a set of positive measure.

Let  $\Omega = \{1, 2, \dots\}$  and  $P(\{k\}) = 1/k - 1/(k+1)$ . Define f by

$$f_n(k) = n$$
 if  $n < k$ ,  
=  $-1$  if  $n \ge k$ ,

and g by

$$g_n(1) = -2 \sum_{j=1}^n 1/(j+4),$$

$$g_n(2) = 2,$$

$$g_n(k) = g_n(1) \quad \text{if } n < k-1,$$

$$= g_{k-2}(1) + k \quad \text{if } n \ge k-1,$$

for k > 2.

Now

$$\sum_{j=1}^{\infty} \left[ -2/(j+4) \right]^2 < 4 \, \sum_{j=1}^{\infty} \left[ 1/(j+3) \, - \, 1/(j+4) \right] = 1.$$

Therefore, at 1,  $S(g)^2 < 1 = S(f)^2$ , and at k > 1,  $S(g)^2 < 1 + k^2 \le S(f)^2$ , implying  $S(g) \le S(f)$ .

It is easily checked that f and g are martingales. Now f is  $L^1$  bounded since it is bounded below. But  $g_n \to -\infty$  at 1. If  $e_n = g_n - g_{n-1}$ , n > 1, then by adding  $-e_k$  instead of  $e_k$  for selected k we can make the resulting martingale oscillate between  $-\infty$  and  $\infty$  at 1, still keeping  $S(g) \leq S(f)$ , and similar transforms provide counterexamples for Theorem 2 and the corollary, if the same  $\sigma$ -field condition is removed.

**Acknowledgment.** I am greatly indebted to Professor D. L. Burkholder for much helpful advice and criticism.

## REFERENCES

- [1] BURKHOLDER, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] KRICKEBERG, K. (1965). Probability Theory. Addison Wesley, Reading.