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NECESSARY CONDITIONS FOR ALMOST SURE EXTINCTION OF A
BRANCHING PROCESS WITH RANDOM ENVIRONMENT!

By Warrer L. SMiTH

University of North Carolina

1. Introduction. In this note we shall be considering what may be called a
branching process with random environment (BPRE); it will be a sequence {Z,} of
random variables forming a particular sort of Markov chain.

Let {{x} be a sequence of independent and identically distributed random
variables, to be known as environment variables, taking values in some (possibly
abstract) space Z. Suppose that every point { ¢ = has associated with it a prob-
ability generating function ¢;(s),0 < s < 1, of an integer-values random variable.

The BPRE develops as follows: Zy = 1; Z,41 is the total number of offspring
resulting from Z, parents, each such parent having a random number of off-
spring governed by the pgf ¢¢,,,(s) independently of other parents and of the
environment variables other than ¢, . This model is clearly the same as the
classical Galton-Watson branching process except that we allow family-size
distributions to vary stochastically from generation to generation. However, all
families of a given generation are governed by the same distribution of family
size. Thus the separate family trees springing from different parents in a given
generation, which are independent in the classical Galton-Watson process, a fact
which renders the classical Galton-Watson process so tractable, are dependent
in the BPRE.

The BPRE will be discussed more fully elsewhere (Smith and Wilkinson,
(1967)). In the present note we are concerned with proving one theorem which,
taken with Theorem A below (whose proof will be given in the aforementioned
reference), settles at an acceptable level of generality the question: under what
circumstances will the BPRE almost surely become extinet?

At this point we need some definitions. We shall suppose the means of the
family size distributions

$n = det 1imx1~1 (1 - ¢{n+1(s))(1 - 8)_17 n=12"--- ’

are independent and identically distributed proper random variables (i.e.
P{t, < »} = 1). We shall also write

T = det $1,1(0)

for the probability that a parent of the nth generation shall have no offspring.
We shall additionally suppose that {5.} constitutes a sequence of independent
and identically distributed random variables. To avoid triviality we shall assume
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P{n. = 0} < 1, since the alternative possibility obviously implies P{Z, > 0} = 1
for all n.

We can now quote:
TarorEM A. Suppose that &|log £.| < «. Then

(a) The BPRE {Z,} will almost surely become extinct, i.e. P{Z, > 0} — 0 as
n— o, if §log & = 0;

(b) If & log & > 0 and if, additionally,

(A1) 8llog (1 — )| < =,

then P{Z, >0} tends to some strictly positive limit as n — o, i.e. extinction is not
almost sure.

The theorem we prove in this paper is as follows:

TuaroREM 1. If there is a ¢ > 0 such that P{Z, > 0} = c for all n, i.e. if extinc-
tion s not almost certain, and if &|log &.| < o, then it 1s necessary that the following
two conditions both hold:

() glog & >0,  (ii) &log (1 — nn)l» < o,

The method of proof in the present note is entirely different from that used by
Smith and Wilkinson (1967) to prove Theorem A. It will be noted that both
theorems prove that extinction of the BPRE is almost sure if & log £ =< 0; thus
two different methods are available for proving this partial result.

All this work, it should be noted, assumes the family size distributions have,
almost surely, finite mean values. Work remains to be done for cases when this
assumption is invalid. In this connection we close this note with a specific ex-
ample of such a situation, and show that, for this special example, the necessary
and sufficient conditions for almost certain extinction are quite different from
those obtained in Theorems A and 1.

2. Proof of Theorem 1. For every A > 0, let us write
‘I/()\) = 8"77)-

We need two preparatory lemmas.
LEMMmA 2.1. If0 < ¢ < 0,0 < wy < o, then

(2.1) 2o Tw) <«

if and only if m > 1 and &|log (1 — 5,)] < .

Proor. The function ¢(\) is non-increasing and so the series (2.1) must
obviously diverge if u1 = 1. Therefore suppose u > 1.

Now,if 0 <9 =1, m > 1,

[Sn ™ dr < 22y 2 50 dr.
If we set 2 = ¢ ‘" log (1/9) we find
© —x % e lug7 © —z
fc_lmlog(l/n) € (dx/x> = (lOg ) Zrzl - fc—llog(l/n) € (dx/m)

Let us write G(u) = P{n, < u} for the df of 5, . From the above inequalities
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and the fact that
v € “(dz/x) ~log (1/y)
asy | 0, it follows on taking expectations that (2.1) converges if and only if
(2.2) Ji=clog {(log (1/u))7"} dG(u) < o
for some small e > 0. Butif 1 — ¢ < % =< 1, we can find § > 0 such that
(1—w) =log (1/u) £ (1 +81 —u).
Thus (2.2) will hold if and only if
(23) [icelog {(1 = w)™} dG(u) < =,

and this result establishes the lemma.
LemMma 2.2. If p = & log &, and we choose anyu > €° then there exists k > 0
and & > 0 such that

(2.4) 8¢ | Zy > 0} = ke

for all sufficiently large n.
Proor. By the weak law of large numbers,

—1
Wt Yalogt—p, o e,

in probability. Thus, if A, is the event {£& - - - &, < wi"}, P{4a} — 1 asn — .
For some fixed small § > 0 let B, be the event {P{Z, > 0| &, ---, &} = 8.
Then A, and B, are measurable with respect to the os-field generated by &, & .
SN En) and

P{Z" > 0} = fAnn""Bn +fAnan +f"'An P{Zn > 0 I 217 e E”} dP'
Thus, if P{Z, > 0} = ¢ > 0 for all n,

¢ =81 — P{4d.n B, 4+ P{A.n B} + P{~ A,}

and it follows that there exists a x > 0 such that P{4, n B,} = « for all large n-
Now write

117 — 3,:13,:2 e gn
* P{Zn>0|£1;£2"‘7£n}'

It is an easy excreise to show that 8{Z, | &, - -+, &} = & - - - & and hence infer
that 8{Z, | &, &, + -+, & ; Zn > 0} = W, . Therefore, for any A = 0, by familiar
convexity arguments, ,

(2‘5) g{e—)\zn l ;cl ) E‘l sy TN En 3 Zn > 0} 2 6_)\“7".

On the event .4, n B, we have W, < § ‘", and so (2.4) follows at once from
(2.5) and the lemma is proved.
To prove the theorem we note first that

(2.6) P{Zypa > 0} = P{Z, > 0}&{1 — [¢r,,,(0)]% | Z, > 0}
= P{Z, > 01&{1 — W(Z,) | Zo > O}.
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The proof of (2.4) has depended only on the environment variables

¢1,¢2, -+, ¢n and variables related thereto. These are all independent of
n = ¢t,,,(0). Thus in (2.4) we may take ¢™ = 5, and deduce
(2.7) &Y(Zn) | Zn > O} = 3 K¢(57'm")

for all m = mo . But (2.6) implies
P{Zny > 0 <[5 8l — w(Z,) | Z, > 0},
so we discover that
0 <c=[lim{l — 5 Ky(5w)},

for all n. By a well-known result on infinite products this implies the convergence
of

(2.8) 2o (7w,

If p < 0 we can choose w1 < 1 and obtain a contradiction with Lemma 2.1.
Thus if p < 0 extinction must be almost sure.

If p > 0 then (2.8) converges for some u; > 1. Lemma 2.1 then shows that
we must have &|log (1 — 7.)| < .

Ifp=0,8et 8, = > log & ; the following argument will actually deal with
p = 0. Suppose first that P{£, = 1} < 1, then, by well-known recurrence prop-
erties of the random walk, for any large K > 0 there is a random integer N,
P{N < «} = 1, such that Sy < — K, i.e. fbo -+ & < € . Since G{n | &, &,
s B} = Bk - Eait follows that 8Zy < ¢ ¥, implying that P{Zy = 1} £ ¢
and hence a.s. extinction. If, however, P{&, = 1} = 1, then &Z, = 1 for all n;
thus, for any small € >0, P{Z, > ¢} <e But P{1 =7, < €} —0, as
n — o, because of the obvious transient properties of the chain {Z,}; thus a.s.
extinction is again proved.

3. An example with infinite mean family sizes. Suppose a is a real constant,
0 < a < 1, and that the environment variables {{,} are real and such that,
almost surely, 0 < {» < 1 for all n. Let us then set

b, (s) =1 — (1 — 8)% 0<s=1.

It is not difficult to show that ¢, (s) is indeed a pgf and that the mean of the
associated probability distribution is infinite. Furthermore, elementary computa-
tion will show that these generating functions have a very handy property:

bra(dr,(5)) = 1 — &a0a(1 — )7
By repeated use of this algorithm we have that
Sea(@ran( o B0(s) 0 )) =1 — Gt i - 0 (L= 9™
Thus, if II.(s) is the pgf of Z, , we have
Ma(s) = 1 — (1 — 8) &kt o+

an—1
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Let us set ¢(\) = &". Then we see from the last equation that m.(s) —> 1
if and only if the infinite product

15 ¢(a™)
diverges to zero. This will happen if and only if
=1 [1 — ¢(a™)] = .

Arguments similar to the ones employed in proving Lemma 2.1 then show that
extinction is almost sure if and only if

8 log* log (1/§1) = o
or, in other words, if and only if
& log™log (1 — ¢r,(0))| = .

Thus, for almost sure extinction, the probabilities ¢¢,(0) of no offspring from a
given parent have got to be “much nearer’”” unity, in a probabilistic sense, than
would be the case in the situation covered by Theorem 1.
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