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REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES!

By Ricuarp A. OLSHEN
Stanford University

1. Introduction. Hewitt and Savage [6] have shown that finitely additive
exchangeable probabilities on a product space are integral averages of power
product probabilities. They prove this result as a corollary to their theorems on
the countably additive case. This note adapts their technique to the study of
more general invariant probabilities. From results of Farrell [4] and Choquet
and Feldman ([7], Section 10) it is concluded that finitely additive invariant
probabilities are averages of finitely additive ergodic probabilities.

In a countably additive context it seems necessary to impose restrictions on
the Borel field being studied and on the maps used to define invariance and
ergodicity. Relaxing the assumptions of one type must be balanced by strengthen-
ing those of the other (in addition to [4] and [7], see [1] and [12]). Here, however,
the field of sets can be arbitrary, and the maps are assumed only to be measura-
ble. Rather than state a host of theorems which can be proved, one particular
case is proved in detail. Later on it is explained how the techniques can be applied
to other problems. Several definitions of ergodicity are proposed and related
to the one used. The final section contains a subjective probability interpretation
of invariance and ergodicity.

2. A representation theorem. A homomorphism from one field of sets to
another is a map which preserves finite unions, finite intersections, and comple-
ments. The notions of isomorphism and automorphism are defined in the obvious
ways. A o-homomorphism (isomorphism, automorphism) in addition preserves
countable unions and intersections.

Assume Q is a set, § a field of subsets of @, and 7" a 1-1 bi-F-measurable map
of @ onto . T" and its powers can be viewed as automorphisms of §. A finitely
additive probability u on & is said to be invariant if u(4) = w(T4)[= u(T"4),
n = +1, +£2 ... ] for all A ¢ F; u is ergodic if there do not exist § > 0 and
Al y A2 y t0t & F fOI' which é < M(An) <1-— 6, limm,n—>oo ,U(An A Am) = O, and
w(An A T7'4,) — 0 (A denotes symmetric difference). Let 9(F)[&8(F)] be the
set of finitely additive invariant [ergodic] probabilities on & and let ® be the
smallest o-field of subsets of &§(F) containing all sets of the form {» | » ¢ &§(F),
v(A) = o}, where 0 = « = 1, and A4 is a fixed set in &.

(1) THEOREM. 9(F) s not empty. For each u ¢ 9(F) there is a unique countably
additive probability N on ® satisfying

(2) p(d) = [e v(4) d\(»)
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Jor all A & 3. (It is clear that, conversely, if for a finitely additive probability u on
T there exists a N on ® satisfying (2) for all A ¢ F, then u & 9(F).)

Proor. By Stone’s representation theorem for Boolean algebras ([11], Section
8) there is an isomorphism ¢ of § onto the field © of compact open subsets of
some compact, totally disconnected Hausdorff space S. Call S “the” Stone space
of ; any two such are homeomorphic. For B ¢ 0 define UB = (T (¢ 'B)).
Of course U and its powers are automorphisms of ©. Moreover, there exists a
homeomorphism ¢ of S with itself for which B = UB for all B ¢ © ([11],
Section 11). Let o(©) be the o-field generated by 0; it is essential to notice that
o(0) is the Baire o-field of S ([5], p. 221). Because ¢ and ¢ take Baire sets to
Baire sets, U can be extended uniquely to a o-automorphism of (). 9(F) and
&(F) are in obvious 1-1 correspondence with 9(0) and &(0) respectively. Each
finitely additive probability # on 0O is in fact countably additive, and so admits
unique extension to a countably additive probability on ¢(©). To see this, it is
enough to demonstrate that By, B, -+ in ©and BiD By D -+, Nim Bi = &
imply #(B:) — 0 ([5], pp. 39 and 54). But this condition is trivially satisfied,
for since the B’s are compact and have void intersection, some B; is already void.

Recall that if » is any countably additive probability on ¢(©) and for
A, B £ ¢(0), the distance from A to B is defined to be n(A A B), then ¢(0)
is a complete semi-metric space, and moreover that every member of the space
is the limit of a Cauchy sequence of elements of ©. Easy consequences of these
facts are as follows: (a) 9(0) = 9(a(0)); (b) if » £ 9(a(0)) then v £ §(0) iff
there does not exist B ¢ ¢(0) for which »(B A UB) = 0,0 < »(B) < 1. The
existence of such a B implies that of a C satisfying UC = C, 0 < »(C) < 1—for
example, take C = lim sup U"B.

An argument given by Choquet (see [7], pp. 81-2) and (a) imply 9(F) is
nonempty. Briefly, the set of all finite, signed, countably additive Baire measures
on S can be viewed as the dual space of the Banach space of continuous, real-
valued functions on 8. With those measures given the weak™ topology, the maps
U"n =0, £1, £2, - - - induce continuous linear transformations of the (com-
pact, convex) set of countably additive probabilities, ®, onto itself. And 9(c(0))
is the subset of ® consisting of fixed points for the maps U". The Markov-
Kakutani fixed point theorem ([3], p. 456) implies 9(c(©)) is not empty, and
hence that 9(F) is not empty.

In view of the existence of ¢, (a), the remark following (b), and a theorem
of Farrell ([4], p. 460), for each u & () there exists a unique (countably addi-
tive) probability A on the o-field of subsets of §(©) generated by sets of the
form {n | 7€ 8(0),7(C) £ «;0 £ a = 1, C £ ¢(0)} satisfying

(3) #(B) = [ew@ n(B) d\(n)

for each B ¢ ¢(0). In particular (3) holds for each B ¢ 0. Yet for such B, 5(B)
viewed as a function of 5 ¢ &(0) is measurable with respect to the o-field ®
generated by sets of the form {7 |7 ¢ &(0), 7(C) £ ;0 £ a £ 1, C ¢ 0}. Thus

for B & 0, X can be cut down to, @ and (3) still holds. But now (1) follows in
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view of the correspondence between & and ®, 9(©) and 9(5F), and &(0) and
&(%). [

Making use of a familiar countably additive result ([9], p. 110) it is not diffi-
cult to show that &(F) consists of those u for which u(4 n T7(B) is Ceséro
summable to u(A) u(B) for every A, B ¢ 5.

Of course the definition of &(F) is contrived so that &(F) corresponds to
countably additive probabilities on ¢(©) which are ergodic in the usual way.
And it is implicit in (2) that &(F) is the set of extreme points of 9(F). Yet it
may be of interest to see what becomes of other definitions of ergodicity when
applied to (2, F). For example, u ¢ 9(F) might be called ergodic if there does
not exist A & & for which A = T7'4,0 < u(4) < 1. That this would have been
ridiculous is clear from the following example. Let @ be the set of bilateral se-
quences of 0’s and 1’s, § be the smallest field containing the cylinders, and T
be the shift. It is easy to verify that @ and ¢f are the only members of F in-
variant under 7, and so every member of 9(F) would be ergodic by this defini-
tion. (With @ given the ordinary product topology, F is a base of compact open
sets, and so @ is its own Stone space.

It may seem reasonable to call u & 9(F) ergodic if there does not exist B ¢ §
for which (B A T7'B) = 0,0 < u(B) < 1. Unlike the case with ¢(©) and U,
this definition is not identical to the one just discussed, and it is true that a u
not ergodic in this sense is not ergodic according to the definition adopted.
Probabilities ergodic in this sense need not be extreme in 9(F), however, as is
illustrated by an example. Let (Q, ) be as in the previous paragraph. Suppose u
is a measure on § induced by any sequence of exchangeable random variables
which are neither independent nor identically 1 with probability « and identically
0 with probability 1—« for some positive & < 1. Then it follows from deFinetti’s
theorem ([2], Chapter 4; [6], p. 486) that the only sets B ¢ F satisfying
u(B A T7'B) = 0 are @ and &, and that u is not extreme in the exchangeable
probabilities on &, let alone in 9(F).

3. Generalizations. Apparently several times in Section 2 77" or ¢~ was con-
sidered when reference to the inverse was unnecessary. The reason for this was
to keep notation consistent with that of more general problems than the one
being studied. What follows is an outline of several results similar to (1), some
generalizations and some not comparable. The interested reader will have no
trouble filling in the details himself.

Suppose @ is a set, F a field of subsets, and 3 a family of F-measurable maps
of @ into itself. Then T & 3 implies 7~ can be viewed as a homomorphism of &
(though the same is not necessarily true of 7'). A finitely additive probability
pon & isin 9(F) if u(A) = uw(TA) for each T ¢ 3 and A ¢ F; it is in &(F) if
there do not exist § > 0 and A,,A;, - ¢ F for which § < wu(d,.) <
1—8, limy now p(An A An) = 0, and p(An A T A,) — 0 for each T ¢ 3.

Again the Stone space argument can be employed. If U on © corresponds to
T7, T & 3, there may not be a homeomorphism of the Stone space corresponding
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to U, bul at least there is o unique continuous map £ of S into S satisfying
UB = £'B for each B ¢ 0 ([11], p. 32). Hence the results of Farrell ([4], p- 460)
and Choquet and Feldman ([7], pp. 82-3) apply to yield a number of theorems
similar to (1). Of course, that ¢(F) is not empty does not follow from the Markov-
Kakutani fixed point theorem unless the maps in 5 commute under composition.
Yet other fixed point theorems can be employed in specific situations (see [8],
Section 5; [3], p. 457).

With the definition ol crgodicily given in this section, every member of &(F)
iy an extreme point of 9(F). And the present definition is analogous to that of
Phelps ({7], p. 81). Farvell’s definition would have u ¢ 9(F) ergodic if there does
not exist B ¢ o(0) satisfying both B = UB for each U on ¢(0) (corresponding
toa T™) and 0 < »(B) < 1, where » on ¢(0©) corresponds to u & (). For
conditions that a p ergodic in Farrell’s sense be in &(F) see ([4], p. 452; [12],
pp. 196-7). In general his definition is not equivalent to either definition men-
tioned in the last section.

It seems pointless to present a catalogue of representation theorems including
results on the nonemptiness of 9(F) and the uniqueness of the representation.
But perhaps one striking fact deserves mention. Namely, the existence of a
representation of the form (2) requires not only no assumptions on © and &,
but also no assumptions on the maps 3 other than their measurability. The
only qualification is this. If £(0) is not weak™ closed in 9(s(0)), the o-field ®
in (1) must be enlarged in a manner similar to that deseribed by Bishop and
deLeeuw (see [7], pp. 31 and 83; [6], p. 481).

4. An interpretation. Onc reason for being interested in finitely additive
probabilities is & sympathy with the notion of subjective probability ([2]; [10]).
Thus it may seem intercsting that both invariance and ergodicity admit subjec-
tive interpretation. [or purposes of illustration, assume again that Q, &, and T
are as in the examples of Section 2. Each u on & determines a law for the coordi-
nate process Xa(w) = w(n), the nth coordinate of w. If u represents your beliefs
about X', , and n represents time, then p is invariant for you if the probability
of any pattern of 0’s and 1’s of finite length is invariant under shifts in the time
label. up is ergodic if, for you, the A of (2) is a point mass (cf. [10], p. 53). The
frequentistic notion of ergodicity ([9], pp. 104-5) involving averages figuring
in the ergodic theorem does not fit comfortably into the framework of subjective
probability (ef. [2], Chapter VI; [10], Chapter 3).
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