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ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS
OF A STATIONARY GAUSSIAN PROCESS!

By CLIFFORD QUALLS

Unaversity of New Mezico

1. Introduction. Let {£(f), —® < ¢ < »} be a real stationary Gaussian
process with zero mean function and having continuous sample paths with
probability one. Denote the covariance function by r (taking (0) = 1 for con-
venience), and the corresponding spectral distribution function by F. Let
w be the expected number of upcrossings of the level w by £(¢) in a t-interval
of length 1.

H. Cramér [4] in a recent and important paper proved that for a certain class
of these processes the number of upcrossings of a level tending to infinity during
a t-interval of length T behaves asymptotically like a Poisson process provided
the time 7' is measured in units of 1/u. Cramér’s requirements determining this
class of processes are:

(1) 7 (0) exists, or equivalently, [Z, NdF(\) < «,
and
(2) r(t) = O(t %) ast — o for somea > 0

In this paper we shall show that Cramér’s result applies to a significantly wider
class of stationary Gaussian processes by replacing his condition (1") by a con-
dition only slightly stronger than the existence of r” (0):

(1) A= —"(0) existsand [§ (N 4 77 (1))/tdt < =
for some 6 > 0,
or equivalently, [5log (1 + AN dF(N) < =.

(The equivalence of the two statements in condition (1) was proved in [9], but
now essentially the same proof can be found in a recent paper by R. P. Boas [3],
Theorem 3.) To be more precise, the result proved in this paper is the following
limit theorem.

TuroreM 1.1. Suppose the process £(t) satisfies conditions (1) and (2). Let
N(a;,b;) be the number of upcrossings of the level w by £(t) in the t-interval (a; ,b;).

The t-intervals (ay , b1), -- -, (a;, b;) are disjoint and depend on the level u in that
bi —a; = 7/u, i =1,---, 7, where 11, - - - , 7; are fixed positive numbers. Then
for every j-tuple of non-negative integers ky, --- , k;,

liMyso P{N(ai, b)) = ki, i = 1,---,5) = [[hae "7 /k,1
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Cramér proved his theorem in 5 lemmas. (See [5], pp. 258 ff, for a more re-
cent version of Cramér’s proof.) It is the second lemma, which deals with the
asymptotic behavior of the second factorial moment of the number of up-
crossings of a high level, that is decisive in the proof and that can be signifi-
cantly improved. The generalization of Lemma 2 is given in section 2, and the
difference between Cramér’s proof and the one given here will be discussed at
the end of that section. The reader is referred to Cramér’s work for the proofs
of the remaining lemmas, which apply without change.

We note here that a recent result of Yu. K. Belayev [2] overlaps part of the
result of this paper. A brief discussion of Belayev’s work is included in Section 3.

2. Generalization of Cramér’s Lemma 2. In this section Cramér’s Lemma 2
of [4] is shown to be valid under our weaker conditions (1) and (2). Lemma 2
was first proved by Volkonskii and Rozanov [10], and, in fact, Cramér’s paper
[4] is based on their work.

Before stating and proving Lemma 2, we ne ' a result and the notation con-
tained in Cramér’s Lemma 1. Let £(t) satisfy t e condition that N, = —7"(0)
< . Let N(T) be the number of upcrossings of the level u by £(¢) during
(0, T'). Suppose T = 7/u, where u = EN(1) = N exp{—u?/2}/2r and 7 is a
fixed positive number. Note that the expression for EN(1) is Rice’s formula,
which was shown to hold in this present context by both K. It6 [7] and N. D.
Ylvisaker [11]. Let M = [Tu™®), 0 < B < 1, where [ ] denotes the greatest
integer function, and let ¢ = T/M. Note that ¢ ~ W asu — ». Let £,(t) be
the process that is equal to £(¢) at times which are integral multiples of ¢ and
is the linear interpolation of £(f) between these times. The symbol N, will
denote the number of uperossings by the process &, . Cramér proved the following
as the main part of his Lemma 1:

Lemma 2.1. Let £(t) be as described above (1" (0) exists). Then EN (q) = qu
+ o(gu), as u — =.

In the original paper [4], Cramér proved this result assuming »*’(0) exists,
but in [5], p. 260, it has been proved in the form given above. An alternate proof
of Lemma 2.1 based on the estimation technique used by It6 [7] is given in [9].

Let mi = [p "] and & = miq. Note my ~ g tand t; ~ ¥ as u — «. With
this notation, we state the following generalization of Cramér’s Lemma 2.

THEOREM 2.2 Let £(t) satisfy

(1) A= —¢"(0) exists and [3 (A 47" (t))/t dt < o for some s > 0, and

©2") r(t) > 0ast— .

Then

limyaw B{ N (t1)[Ny(t1) — 1}/EN(t,) = 0.

Proor. Note that by stationarity EN,(41) = mugu + o(mugu) ~ qas u —
and also that N,(t;) < N(#4), so that it suffices to show

limy.w E{N(4)IN(t) — 1]}/¢ = 0.

Under the conditions that r” (0) exists and that the spectral distribution F has
a continuous component, Ylvisaker [12] (improving the work of Cramér and
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Leadbetter [6]) obtained an integral expression for E{N (#)[N(t,) — 1]} finite
or not See also [5], p. 204. Note condition (2) of Theorem 1.1 implies condition
(2" ) which in turn implies that F has a continuous component. After performing
the reduction in [5], p. 262, and another reduction which uses the fact that
r(st, 82) == Eg(sl).f(sg) depends only on ¢ = [s; — ss|, the integral expression
becomes:
EAN(6IN (1) — 10} = 2[o* (b — t) exp {—u’/(1 4+ )} A(¢)B(, u) di,
where
A() = D1 — %) — )/20(1 = ) > 0,
B(t,u) = [¥ [§ za1zae(z, 20) day des

o 1s the density of o bivariate Gaussian distribution with mean vector (—#, h)
. . 1 —p
and ecovariance matrix £ = 1)
-

ho=ru(l 4 7) [(1—=17)/0u(1 = ") — ("D
and
= (=) ()1 = ) = ().
Here 7, 7/, and +” are all functions of ¢. It is a result of these reductions that
o] < 1for¢ = 0. We then have

(/OE{NWIN(L) — 1} £ 2(4/g) [ exp {—w’/(1 + r)}A()B(t, u) dt.
Since t1/¢ = m1 ~ 1/u as u — =, we may replace the expression on the right by
= C- [otexp {—%*(1 — #)(1 + #)A)B(, w) dt, C = 4x/N\

It suffices to show that lim,.., / = 0. The following lemma will be needed to
complete the proof.

LemMa 2.3. Under the conditions that v (0) exists and r(¢) — 0 as t — o,
we have

(i) B(t, ) is a decreasing function of |h|,

(ii) B(¢, u) is a decreasing function of p, and

(iii) 0 = B(t,u) = 1.

Proor. If ¢(21, 2.) is a bivariate normal density with mean vector (u;, us)
and covariance matrix A = (X\;;), we can use the inversion formula for the
characteristic function of ¢ to see that a¢/ Ou; = —d¢/dz; and 9dp/0N;; =
&¢/d2:02; , 1 # j. Consequently

AB(t, w)/dh = fo fo 2122(0¢(21 , 22)/0h) dz dz,
= [T [T @12:{00/ 021 — 8¢/82) dzr dzs (since py = —hand pz = h)
= [T [5 (21 — 2)e(21, 22) dey das (integrating by parts)
= exp {—h/(1 + o)} [T [T (21 — @)ooz, 22)
coxp { —h(z1 — 22)/(1 + p)} dey dz.
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where ¢, is the density of N(0, ). By symmetry,

(3B/oh) | w0 = [7 [5 (21 — 22)e0(21 , 22) d1 dzs = 0.
Now consider exp { —h(z1 — 22)/(1 + p)} = w(z1 — 22) to be a weighting factor
in the integrand of 6B/dh. For h > 0, w(z1 — ;) > lif and only if (21 — 2,) < O,
and therefore dB/dh < 0. Similarly for A < 0, 6B/6h > 0 which establishes (i).

To prove (ii), it suffices to consider dB/dp and use the fact that dp/dp =
— 8%/ 32102, -

Now by (i) and (ii) we have

0 = B(t,u) = B(¢,0) = lim,,; B(t,0).
In this limiting case, the bivariate Gaussian distribution becomes singular with
the mass being distributed along the line z; = 2, and has marginal densities
¢(21) and ¢(2:) both of which are N (0, 1). Therefore
lim,,_,_l B(t, O) = f?)o Z12<p(2’1) dey = %
This completes the proof of the lemma.

This lemma makes some things obvious. We note that the integrand of J is
positive and is a decreasing function of u. We also note that E{N (t,)[N (¢,) — 1}}
is dominated above by the corresponding second factorial moment for the zero
level v = 0. Under hypothesis (1) in Theorem 2.2 Leadbetter and Cryer [8]
show that this second moment for © = 0 is finite. Therefore, under hypothesis
(1), one can see that J < o« by considering an interval twice the length of ¢ .

By the Lesbesgue dominated convergence theorem, we have, for any fixed
k>0,

limy.e, [5exp {—3u*(1 — 7)/(1 + r)}A()B(t, u) dt = 0.
Now consider
= Cfitexp {—%*(1 — r)/(1 + r)}A(t)B(t, w) dt
= C [ exp {—2u’(1 — r(str))/(1 + r(st) )} A (st1)B(sty , u)ts ds.
By Lemma 2.3, B(¢, u) is bounded. In addition, A (¢) is bounded for all¢ = k£ > 0,
since A (t) is continuous and by hypothesis (2") of Theorem 2.2
0 < A®t) < M(1 — P)/20(1 — 1) = N/2r as t— .
Therefore
0 < Ji < Cifisy, exp {—3u*(1 — r(st))/(1 + 7(sts))}ts ds.
But t; ~ ' =Kexp {—(4"/2)(8 — 1)} as u — «. So this last integral can be
replaced by
I = Cofipyexp (—@'/2)(B — 2r(st)/(1 + r(sh)))} ds,
and it follows that
I, = C2fllc/t1 exp {—-(u2/2)(ﬁ — €)}l ds
< Coexp {—(u'/2)(B — €)} =0 as u — o,
since 2r(t1)/(1 + r(t)) < e < Bfor all{ > k and k sufficiently large.
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This completes the proof of Theorem 2.2. It differs from Cramér’s proof in
that the existence of 7™’ (0) is used there to show A4 (¢) is bounded for 0 < t < o,
but here we allow A (¢) to be unbounded as¢ | 0.

3. Discussion. Note that the full strength of condition (2) in Theorem 1.1
was not used in Section 2. It is used to conclude the proof of Theorem 1.1. For
the proof of Theorem 2.2 all that was really necessary is

(1") E(N(T)IN(T) — 1)} < » and (2") r(t) >0 as t— o.

In fact we can replace condition (1) in Theorem 1.1 of this paper by condition
(1) if we wish. There are no known necessary and sufficient conditions on the
covariance function or spectral distribution giving E{N(T)[N(T) — 1]} < .
However condition (1) of Theorem 1.1 cannot be weakened too much as is
indicated by a counterexample due to Cramér and Leadbetter [6]. In fact our
condition (1) is slightly better (by actual example) than Hunt’s condition which
guarantees continuity of the sample derivatives of £(¢); namely,

5 og (1 + NI\ dF(\) < o

for some @ > 1. It is an open question whether continuity of the sample deriva-
tives is either a necessary or a sufficient condition for E{N(T)[N(T) — 1]} to
be finite.

It is interesting to note that condition (1) can be stated in terms of the co-
variance function r instead of its second derivative. Given Ay = —r" (0) < =,
the following two conditions are equivalent to condition (1).

(A) o (r(t) — 1 4+ Ing®)/f dt < o, for some &, > 0,

(B) 8 (Nt 4+ 7(2))/dt < », for some & > 0.

For the proof that 4 < B, write the numerator of the integrand of 4 as an
integral of (M + #'(¢)). Fubini’s theorem and a change of variable then gives
the result. Similarly, B & condition (1).

Recently Belayev [2] obtained a theorem similar to Theorem 1.1 with condi-
tions (1) and (2) replaced by

(1*) #(t) is twice differentiable and [+"(¢) — +"(0)| < C/[Inft|['"* ast — 0
for some C, ¢ > 0, and
(2%) r(t) = o(1/In¢), 7' () = o(1/(In¢)’) as t — .

Since condition (1*) is equivalent to Hunt’s condition (Belayev [1]), our con-
dition (1) is better than (1*). However condition (2*) appears to be better than
(2). This author was unable to determine the exact relationship between con-

ditions (2*) and (2). It is possible to obtain the combined theorem using con-
ditions (1) and (2%).
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