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ON RECENT THEOREMS CONCERNING THE SUPERCRITICAL
GALTON-WATSON PROCESS

By E. SENETA

Awustralian Natronal University, Canberra

1. Introduction. We consider a Galton-Watson process {Z, ; » = 0,1,2,---}
initiated by a single ancestor, whose offspring distribution has probability
generating function F(s) = X 7= s'P[Zy = j], se[0, 1], and P[Z; = j] = 1
forany j = 0, 1, 2, ---. In the present note, we are concerned only with the
supercritical case, when 1 < m = KE[Z;] < o, in which case it is well known
that the probability of extinction, ¢, is the unique real number in [0, 1) satisfying
F(q) = q. We recall that the generating function, F,(s), of Z, is the nth func-
tional iterate of F(s) for the Galton-Watson process in general, and in the super-
critical case F.(s) — qasn — o for s ¢[0, 1). In particular F,(0) T gq.

Recently, a considerable amount of research has been devoted to refinements
of the classical theorem concerning the convergence of the random variables
(Zn/m™),n =0,1,2, ---, (for a history of the theorem prior to these, see Harris
[1]). In particular, an ultimate form of the theorem has been obtained by Kesten
and Stigum [2], [6], who prove that these random variables converge a.e. to a
random variable W, for which P[W = 0] = q or 1, and which has a continuous
density on the set of positive real numbers. Moreover E[Z; log Zi] < « <
PW = 0] = q = E[W] = 1.

It therefore follows that E[Z; log Z;] = »« < P[W = 0] = 1.

Thus while Kesten and Stigum have provided a complete answer for the
classical norming, by m”, of the random variables Z,, the limit r.v. may still
be degenerate at the origin. This leads us to ask whether there exists a sequence
of constants, ¢., such that (Z,/c.) always converge, in some sense, to a proper
non-degenerate r.v.

We provide a partial answer to this question by producing such a sequence, for
which the variables (Z./c.) converge in distribution to such a limit variable W,
for which P[W = 0] = ¢. Moreover E[Z log Z1] < » < EW] < « ¢, ~
const m”.

It is also shown that in this situation the random variables (Z,/c,) form a
submartingale, although this does not appear sufficient to assert a.e. convergence.

2. Preliminary considerations. It turns out that it is relevant to use, instead of
the generating function F(s), the function

k(s) = —log F(e™*), s =0,

which we shall call the cumulant generating function (cgf) of Z;. It is readily
checked that the cgf of Z,, k.(s) i.e.
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kn(s) = —log Fn(e—s)’ sz 0,

is in fact the nth functional iterate of k(s).

Under the assumptions made about the process {Z,}, it is readily seen that
k(s) is strictly monotone increasing and strictly concave for s = 0. We also note
in particular that k(0) = 0, k(0 4+) = m, and k(s) > sfor 0 < s < r, where
r = —log q;if ¢ > 0 then ris the unique solutionin (0, « ) of k(s) = s. Analogous
properties hold for k,(s), n = 2.

The continuity and strict monotonicity of k(s) for s = 0 imply that its inverse
h(-) = kK '(-) exists for values of s in a right neighbourhood of the origin (in
fact for 0 < s < —log F(0)) and has properties ‘“dual’’ to those of k(s). More-
over the nth iterate of i (s), h,(s) which is well defined for 0 < s < —log F.(0),
is the inverse of k,(s). (We note that —log F,,(0) = rforn = 1,since F,(0) T ¢.)
Some specific properties of ~(s) are emphasized in the proof of the following
basic theorem. -

TaroreM 2.1. For sc[0, r) the sequence hn(s)/han(s0) (where sye (0, 7)
1s fixed) approaches a finite limit H(s) which is positive for s (0, r), and is a
solution of the Schroder functional equation

(2.1) H(h(s)) = mH(s).

Further H(s) 1s, up to constant factors, the unique solution of (2.1) such that H(s)/s
s monotonic in (0, r).

Proor. Itis necessary only to check that the conditions in the note of Kuczma
[3] are satisfied. These are that (i) A(s) be continuous and strictly increasing in
[0, 7), (ii) A(0) = 0and 0 < A(s) < sforse (0, 7), (iii) limeop A(8)/s = m™,
and (iv) h(s)/s be monotonic in (0, 7).

All these follow from the properties of k(s) ; in particular (iv) is a consequence
of the convexity of h(s) (since k(s) is concave) in conjunction with A(0) = 0.

The fact that A(s) has properties stronger than those required for the applica-
bility of Kuczma’s result, leads to the following additional information on the
limit function H(s).

TuEOREM 2.2. The function H(s) vs continuous and strictly monotone increasing
[0, 7). Moreover H(s) — « as s — r—.

Proor. Since the function H(s) is the limit of a sequence of functions, each of
which is increasing and convex in [0, r), it is itself increasing and convex in this
interval.

Its convexity in (0, r) implies its continuity in this interval; while its mono-
tonicity in the same interval implies that lim,.o H(s) = H(0+) exists. Further,
since H(0) = 0 and H(s) is convex in [0, ) and positive in (0, r), H(0+) =
0= H(0).

To prove stréict monotonicity in [0, ) assume to the contrary that H(s) = ¢
= const., for s ¢ [a, B8] < (0, r) where 8 > a. Then ¢ > 0, since H(s) > 0 in
(0, 1), and H(s)/s = ¢/sin [a, 8], is strictly decreasing for s ¢ [a, 8], whereas by
convexity of H(s), it should be increasing. Thus we have arrived at a contradic-
tion.
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Finally from (2.1), letting s — r—,
H(r—) = m™H(r—)

in the sense that both sides are finite or infinite. Clearly, since 0 < m™ < 1,
Hir—) = «.

Finally, the sequel depends heavily on the following result, which we state
as a lemma, without proof.

LemMa 2.1. Suppose {fmy(s)}, n = 1, is a sequence of functions defined for a
corresponding sequence of intervals [0, a.), and each is continuous and strictly
monotonic increasing, with fuy(0) = 0 and fuy(s) — « as s — a.— for each n.
Suppose further that fuy(s) — f(s) as n — o« for s€[0, a) where for each n,
© = a, 2 a > 0, and where f(s) is continuous and strictly monotone increasing
m [0, a) such that f(s) — © as s — a—. Then, for the tnverse functions, asn — «

Far() =), s€[0, «).

3. Extension of the classical results. We shall prove the results announced
in Section 1 in several stages.

TuEOREM 3.1. There exists a sequence of positive constants ¢, , (¢ — ®) such
that the random variables W, = Z,/c. converge in distribution to a proper non-
degenerate random variable W such that PIW = 0] = q. The cgf of W, K(s),
satisfies the Poincaré functional equation

(3.1) K(ms) = k(K(s)), s=0,

and is the unique strictly monotone increasing concave solution of 1t with K(0+4) = 0,
apart from a scale factor (i.e. the only other such solutions are K(s/c), 0 <
c¢= const).

Proor. Consider the sequence of random variables W, , where W, = R.(s0)Z»
where so € (0, r) is fixed. Then the cgf of W, is k,(h.(s0)s), and its inverse, well
defined for a neighbourhood of the origin, is h.(s)/ha(s0).

Now, in fact ha.(s)/h.(8) — «© as s — a,—, where a, = —log F.(0), and
an = 7. Moreover h,(s)/h,(s0) — H(s) for s [0, r) from Theorem 2.1, where
H(s) is continuous and strictly monotone increasing in this interval, with
H(s) — « as s— r—, from Theorem 2.2. Hence by Lemma 2.1,

bn(hn(s0)s) — K(s), s 20,

where K(-) = H™'(-), and so is concave, continuous and strictly monotone
increasing in [0, « ). The continuity theorem (for Laplace transforms) then yields
the assertion of convergence in distribution to a proper rv, with ¢, = 1/hx(s0),
where h,(s) — 0asn — .

Since H(s) satisfies (2.1), it follows that K (s) satisfies (3.1); the uniqueness
assertion for (3.1) follows from that of (2.1) also, by a consideration of inverses.
Moreover, the possibility of W being degenerate at a single point, i.e., K(s) =
const s(const = 0) is excluded in the case const = 0 by the strict monotonicity
of K(s); and in the case const > 0 since then substitution of K(s) in (3.1)
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yields that Z; has a linear cgf, which contradicts an initial assumption concerning
the degeneracy of Z; at a single point.

Finally the concentration at O of the distribution of W may be determined by
considering K(s) as s — oo : let us call this limit K(w) (< «). Then (3.1)
yields K(»=) = k(K(%)) in the sense that both sides are finite or infinite. It
is now easy to see that K(w) = r (r £ «) so that P[W = 0] = q.

In conclusion to Theorem 3.1 we note that any sequence of positive constants
¢n , for which the Z,/c. tend in distribution to a proper non-degenerate random
variable, must be essentially unique. This is a direct consequence of Khintchine’s
theorem on convergence of (positive) types (see e.g. [4], p. 203). From the proof
of Theorem 3.1 it then follows that, as n — o,

(3.2) cn ~ const/h,(so).

It is now relevant to explore briefly the connection of the above results with
those of Kesten and Stigum. First we notice that if E[Z; log Z;] < «, the results
of these authors, together with the theorem of Khintchine, imply that h,(sy) ~
const m " as m — o, and that E[W] < o, where W, here and in the sequel, is
the limit rv of Theorem 3.1. On the other hand, %,(sy) ~ const m " implies, from
Theorem 3.1 and the Kesten-Stigum results, that £[Z; log Z;] < «. Hence to
show that

(3.3) E[W] < © & h,(sy) ~ const m " & E[Z;log Z1] < «

we need only show E[W] < o = h,(sy) ~ const m ". From (2.1) by iteration
H(s) = m"H(h,(s)) for se (0, 7); and since H(sp) = 1

(3.4) 1 = H(ha(s0)) (hn(50)) ™ m"ha(50), n 2 L
We note that since £,(s) is convex, and its slope at the origin is m™", m"h,(s0)/
sg > 1 forn = 1; and recall that %4,(s;) — 0 as n — «. We remark also that
H'(0+) exists and is in fact 1/K’'(0+).
From the identity (3.4) it therefore follows that H'(0+) is positive or zero,
depending on whether limu.. m"h.(s) < o« or = co. Thus
K'(0+) = E[W] < © & h,(s)) ~ const m™".

Finally, let us note that the sequence (W,) where W, = %.(s0)Z,, is a sub-
martingale, since W, is Markovian and

E[Wn+1an] = hn+1(so)mZ,L =' mhn+1(80>Wn/hn(80> > Wn

since mh(h,(80))/ha(80) > 1 asin the last part of the proof of (3.3).

However, in order to assert a.e. convergence of the W, to W, it appears that
some condition of the nature E[W,] < C = const for all n, is required ([4],
p. 393). Since

EW,] = hu(so)m”

it follows from the above discussion that E[W,] is bounded if and only if



2102 E. SENETA

E[Z, log Z;] < o, in which case we already know that a.e. convergence takes
place since (Z,/m") is a martingale, with mean one for every term, and hence
converges a.e.

In conclusion, we remark that the recent paper [5] contains an assertion
(Theorem c¢) closely related to our subject matter.

The author is grateful to the referee for some helpful suggestions.
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