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1. Introduction and summary. A decision maker is confronted with & popula-

tions, w1, + -+, T, (say, k lots of items available for purchase) and a control
population o and must, on the basis of random samples of common size n from
mo, *-* , Tk, select those which are at least as good as mo. We suppose that

items are judged on the basis of a continuously distributed attribute X and that
a known fraction @ (0 < a < 1) of the items in the control population are
deficient (their X-values are too small). A population is considered to be better
than the control if it has a smaller proportion of deficient items; that is, letting
F;j,j =0, -+, k, denote the distribution function (df) of X for population
w; and 2.(F;) its ath quantile, =; is better than m if 24(F;) = za(Fo). We
also consider the possibility that Fy is known in which case o is called a standard
and is not sampled. In section 2 we propose a nonparametric procedure K based
on order statistics which guarantees a minimal preassigned probability pP*
that, when each F; is stochastically ordered with respect to Fy, all populations
better than the control will be selected; such a selection will be called a correct
selection (CS). The corresponding problem of selecting a subset containing the
best population (without any control) was treated in [11].

Since the trivial procedure R, of including all &k populations in the selected
subset also guarantees the probability requirement it is necessary to investigate
the expected number of misclassifications; this is done exactly in Section 3 and
asymptotically in Section 5. Exact results for known standard Fy are given in
Section 4. Some other aspects of the problem are briefly discussed in Section 8.

As a secondary problem we suppose that for some preassigned fraction 5
the decls1on maker considers a populatlon mi to be 8*-inferior to m if more than
100(a + & ) percent of the items in ; are as bad as at least one of the worst
100(a — &%) percent of the items in m ; i.e., m; is 8 -inferior if z._s"(Fo) =
X orsx(F;). In Section 5 we give asymptotic expressions for the smallest sample
size needed to guarantee that the expected proportion of §*-inferior populations
selected by R will be less than a preassigned number 8*. An equally reasonable
definition of 7; to be 8*-inferior is that more than 100(« -I— 26™) percent of the
items in ; are deficient. Our results with « replaced by o' = o + 8* also apply
to this problem.
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We show in Section 6 that for small values of §* a competing non-parametric
procedure S based on rank sums and a competing asymptotically non-parametric
procedure M based on sample means both require sample sizes proportional to
the square of that requlred by R to achieve the same degree of rejection of §*-
inferiors. For moderate 5*-values it is shown that S requires a sample size which
has the same order of magnitude as that required by R. In Section 7 we study
a related minimax procedure. We append tables for & = % of (1) the integer
constant ¢ needed to make procedure R explicit, (2) some required values to
make the minimax procedure explicit and (3) efficiency comparisons of S with
respect to E.

A Basic Inequality. Let X = {X;;,1 <j < n,0 £ 7 < k} denote the com-
bined sample, thus for each 7, X1;, - -+, X, are independent random variables
having the df Fi(z). We regard w = (Fo, F1, - -+, F,) as the unknown “param-
eter’” and, for an arbitrary function ¢, use the symbol E(X) to denote the
expected value of ¥(X) computed under the assumption that « is the true
parameter value. The following lemma is used extensively in this paper; we
state it without proof since it follows easily from Lemma 2.1 of [1].

Lemma 1.1. Let ¢(x) be non-increasing in each xj,j = 1, -+, n, and non-
decreasmg i each i 1= ] =n1=7=kandletw = (Fo,Fl, ceey Fy)
and o = (Fo, F, - F) satisfy Fo(z) < Fy (z) and Fi(z) = F/ (x) for
1 =1, , k and all z, then

Ey(X) = Eop(X).

2. The problem and the proposed procedure R (Unknown F,). Based on a
common number n of observations from each of k¥ + 1 populations (m, ™,
-, m), all n(k + 1) being independent, we want a procedure R that selects
a subset of the &k populations which (with high probability) will contain all
populations better than mo, i.e., all m; with z.(F:) = z.(Fo). To make this
more precise, we say F; is as good as Fy uniformly iff Fi(z) < Fo(z) for all z
and that F: is worse than Fy uniformly iff za(F:) < z(F,) and Fi(z) = Fo(z)
for all z. Let @ denote the space of all possible (k + 1)-tuples w = (F,, Fi,
, F) and let Q, denote the subspace of © consisting of those w such that for
each7 (1 = 1,2, ---, k) either F; is as good as Fy uniformly or F; is worse than
Fy uniformly.
For any preassigned P* with 27 < P* < 1 we want the procedure R to be
such that

(2.1) P{CS|R} = P* whenever wey.
For any fixed « with 0 < « < 1 we assume that

(2.2) 1=n+1Da=<n

and define the integer r by the inequalities

(2.3) r=m+4+ Da<r+1.

It follows that 1 < » < n.
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We now define the procedure R = R(c) in terms of an integer ¢ and the order
statistic Y;;, where Y;; is the jth order statistic in a sample of size n from =; ;
since the F; are unknown we take Yo; to mean — « for each <.

ProcepurRe R. The procedure R(c) puts =; in the selected subset for each
1(t=1,2,---, k) iff

(24) Yiiz Yico.

The procedure R will be defined as that R(c) for which c is the smallest integer
(0 = ¢ = r) such that R(c) satisfies (2.1).

In order that the non-randomized procedure be non-degenerate we limit the c-
valuesto 0 =< ¢ < r — 1. We shall show that for any e and kavalueof ¢ = r — 1
may not exist for all pairs (n, P*) but if P* is chosen not greater than some
function Py = Po(n, «, k), then a value of ¢ < r — 1 does exist that satisfies
(2.1). P, will be evaluated by setting ¢ = r — 1 in the P(CS) and we show that
P, approaches unity as n increases. The values of P* between Py and 1 can be
handled by the degenerate procedure Ro(¢ = r) or by a randomized combina-
tion of the procedures for ¢ = r — 1 and ¢ = r. The expressions for the P(CS)
ete. derived below all hold for 0 = ¢ = r unless explicitly stated otherwise.

Letting P{CS | R} be denoted by Po(R) we now introduce other functions,
some of which were suggested by Lehmann [7]. Some of these functions can be
used as alternative criteria for developing new procedures. Let k; denote the
number of mi’s at least as good as o , i.e., such that z.(F;) = z.(F,); we denote
the set of subscripts of these 7; by I and refer to the corresponding set of popula-
tions as the superior set. Then k. = k — ki is the size of the set I of subscripts
of m’s in the inferior set.

Let P1(R) denote the expected proportion of the & superior populations that
are correctly classified under procedure R. Let P:(R) denote the expected pro-
portion of the k, inferior populations that are misclassified. If there are no su-
perior (inferior) populations then we define P, = 0 (P, = 0).

If we define a loss function L = L(R; F,y, F:, --- , Fy) as the total number of
misclassifications then we can write the expected loss or risk E{L | R} = P3(R) as
(2.5) Py(R) = k[l — Py(R)] + k:Po(R).

Obviously we would like B to be such that Py(R) and P:(R) are large while
Py(R) and P;(R) are small. We shall therefore be interested in deriving the
inf Py(R), inf P.(R), sup P:(R), sup P;(R), each taken over Q.

3. Exact expressions for P;(R). Let dH. +(y) and H,;(y) denote, respectively,
the probability (density) element and the df of the rth order statistic ¥,; in a
sample of size n from the df F;(y). It is well known (and easy to show) that

(3.1) dH,i(y) = r(F ()1 — F(y)I" ™ dFi(y),

(3.2) H.i(y) = 2i= (DFII — F:i(y)"7 = GIF:(»)),

where G,(p) = I,(r,n — r 4+ 1) denotes the standard incomplete beta function
(3.3) G, (p) = r(}) [E27' (1 — 2)" 7 dx.
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Using the above notation, the probability of a correct selection under pro-
cedure R is given by

(34) Po(R) = P{Y,; = YV, po,iel} = [Z0]Licr, 1 — Hyi(y)] dH —o0(y).
Similarly we obtain

(3.5) Py(R) = ki Ziezl 2wl — H,i(y)] dH - 0o(y),

(3.6) Po(R) = ke Diery [Z [l — Hyi(y)] dH,_n(y).

These in turn yield an exact expression for Pi(R).

We now obtain the infimum (or supremum) of these over €, . Consider Py(R).
Since G,(p) is strictly increasing in p, it follows as in [11] that the infimum of
Po(R) over Q, is obtained by setting Fi(y) = Fo(y) for 72, and minimizing
over ki, . Thus we obtain

(3.7) info, Po(R) = minocs < JZu [1 — Hro(y)]"* dH,—co(y)

= [ill = G dGro(u) = Jo(k)  (say).
Since G,(u) is decreasing in r for any u (see e.g. [11]) it follows that
(3.8) Jo(k) =k [3 Gro(w)[1 — G,(u)] dG.(w)

is an increasing function of ¢. Since J.(k) = P{CS | Ry = 1 it follows that our
primary P*-requirement in (2.1) has a solution for any n, which is as expected
since the degenerate procedure obviously satisfies (2.1). Below we shall consider
what values of P* allow us to take ¢ < r — 1 and avoid the degenerate procedure
R, of putting all k populations in the selected subset. Table 1 gives (r — ¢)-values
for procedure R for some specified P* when a = %.

Similarly, we obtain the supremum of P;(R) (which is the same as the infimum
of Pi(R)) by setting F.(y) = Fo(y) for I ¢ I, and maximizing (3.6) over k.,
obtaining

(3.9) infg, Pi(R) = supg, Po(R) = [Zu[l — Hw(y)] dH,—c0(y)
= [t = G(w)]dGro(u) = Jo(1).

To find the supremum of P3(R) over @ we first show that J.(1) = %
for 0 £ ¢ = r. Integration by parts in (3.9) gives

(3.10) Jo(1) = [§Gro(u) dG,(u)

and we note that Jo(1) = %. Since G,(xj is decreasing in r for any fixed z it
follows that J.(1) = % for 0 = ¢ =< r. Hence, taking the supremum for fixed %;
and then the maximum over % ,

(3.11)  supe, P:(R) = maXo<k, <« {k1supe, [1 — Pi(R)] + k2 supe, P2(R)}
= maxogklék{kl[l - Jc(l)] + (k - kl)Jc(l)} = ke]c(l)-

In order to use the procedure R with ¢ = r — 1 and avoid the degenerate pro-



TABLE 1
Largest values* of r—c for which inf Py(R)Z P* fora = 2 andr = (n + 1)/2

P* = 750
n k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=09
5 1 1 1 1 1 0% 0% 0%  OX
15 6 5 4 4 4 4 4 3 3
25 10 9 8 8 8 7 7 7 7
35 15 13 13 12 12 12 11 11 11
45 19 18 17 16 16 16 15 15 15
55 24 22 21 21 20 20 20 19 19
65 29 27 26 25 25 24 24 24 2
P* =900
5 1 0% 0% 0% 0% 0% 0% 0¥  OX
15 3 3 3 3 3 3 2 2 2
25 8 7 7 6 6 6 6 6 5
35 12 11 10 10 10 10 9 9 9
45 16 15 14 14 14 13 13 13 13
55 21 19 19 18 18 17 17 17 17
65 25 24 23 22 22 21 21 21 21
P* = 950
5 0¥ 0% 0% 0% 0% O 0¥ 0% 0K
15 3 3 2 2 2 2 2 2 2
25 7 6 6 5 5 5 5 5 5
35 11 10 9 9 9 8 8 8 8
45 15 14 13 13 12 12 12 12 1
55 19 18 17 16 16 16 16 15 15
65 23 22 21 20 20 20 20 19 19
P* = 975
5 0% 0%  O% 0% 0% O 0% 0K 0¥
15 2 2 2 2 1 1 1 1 1
25 6 5 5 4 4 4 4 4 4
35 10 9 8 8 8 7 7 7 7
45 13 12 12 11 11 11 11 11 10
55 17 16 16 15 15 15 14 14 14
65 22 20 19 19 19 18 18 18 18
P* = .990
5 0% 0%  OX 0X 0%  OK 0%  0X 0%
15 2 1 1 1 1 1 1 1 1
25 5 4 4 4 3 3 3 3 3
35 8 7 7 7 6 6 6 6 6
45 12 11 10 10° 10 10 9 9 9
55 16 15 14 14 13 13 13 13 18
65 20 18 13 17 17 17 16 16 16

* Based on the equation J.(k) = P*;see (3.7). Other r-c values for n > 65 can be ob-
tained from Table 3 of [11] by entering that table with the value of k increased by one.
The italicized entries are the only values that differ from the corresponding entries (with
k shifted by one) of Table 3 of [11]; in each case this value is exactly one larger than the
value in [11].

# Degenerate cases in which all the populations go into the selected subset with prob-
ability one.

2079
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cedure R, for ¢ = r, it is necessary to specify P* not greater than Py, where P,
is the value of inf, Py(R) for ¢ = r — 1. From (3.7) we obtain

(3.12) Py =n [§[Gorn(0)0" ™ dv = J,_i(K).

An asymptotic expression for (3.7 ) is derived in Section 5. The value of
b, = info, Pi(R) for ¢ = r — 1 (which also holds for Pywith & = 1) is

(313) Pr=n [0Gurn(0)o™ do = ()7 T I = 1m0,

This is also the value of P;, i.e., supg, Py(R) forc = » — 1. The smallest value
that can be specified for P* under Q, using procedure R is easily seen to be
1/(k + 1), obtained by setting ¢ = 0 in (3.7).

It is also of some interest to investigate the infimum Py of Po(R) under the
set @ of all possible configurations. The least favorable configuration here will
occur for fixed Fo when for each iel,, F; is as large as possible subject
to za(F:) = 2o(Fo). We thus obtain % binomial distributions with probability
1 — a at x«(Fo) and the remaining mass at — . Then

(3.14) info Po(R) = mimi g, <u Gro(a)[ 27 (Ma’(1 — o) "R
= G,—(a)[l — G,(a)]".

To get an upper bound for (3.14) we first show that G.(r/(n+1))is decreasing
in 7. Writing

(3.15) Grn((r + 1)/(n 4 1)) = Grpu(r/(n + 1))
(= n)) TR (1= 2) " dg
and integrating G,.(r/(n + 1)) by parts gives
G(r/(n + 1)) = Gra((r + 1) /(n + 1))
(3.16) = (/v + 1) ((n —r+ 1)/(n + 1))*
= (n—r) fﬁﬁ,}_’ﬂl()”“) (1 —z)" dz].

Since the maximum of 2" (1 — )" " Misat ¢ = r/(n + 1) we obtain from (3.16)
for any r

Ge(r/(n 4+ 1)) = Gea((r + 1)/(n + 1))
(3.17) 2 (N0 +1)((n—r+41)/(n 4 1))"

M= =)0 =7+ 1)/(n+1)) [T (1 — 2)2da] = 0.
Hence from (3.17) and the fact that 7/(n + 1) = a, we obtain
(3.18) Gr(a) 2 G:(r/(n+ 1)) 2 Gu(n/(n + 1)) = (n/(n + 1)) > 1/e.
Thus from (3.14) we find that for any c-value
(3.19) Py < (1 —1/e)*
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which does not depend on «, 7 or n. Since this is less than (.65)" for any values
of r, n, o we cannot use the least favorable configuration over @ as a tool for
formulating a ranking problem with the usual P*-requirement.

4. Procedure R; for known standard. In this case we do not sample the known
standard and the form of the procedure changes. Let z, s(Fo) denote the
(o —B)th quantile of Fy where 8 correspondsto ¢/(n + 1) in Section 2.

PrOCEDURE R;. For each ¢ (1 = 1,2, - -, k) put F; in the selected subset iff

(41) Y”' é T a8

where § is the smallest number between 0 and o for which (2.1) holds.
Corresponding to the results in (3.4) through (3.9) we obtain for R

(42) Po(R:) = P{CS|RY} = P{Yyi = ap;icl} = [lir, [1 — Hyi(zas)],
(4.3) PiRy) = kit Diery [L — Hyi(%amp)],

(4.4) Po(Ry) = ks ' Dier, [1 — Hoyi(Zasg)l,

(4.5) info, Po(R1) = [1 — Hu(aep)l = [1 — G — @) = J&'(k) (say),
(4.8) info, Pu(R:) = 1 — Hyo(Tag) = 1 — Go(a — B) = Jg' (1),

and the last result also holds for sup P:(R:) over Q; .

Ifr/(n +1) =2 $thena = 2 and 1 — 2 < z for £ = «. It follows that for
r/(n+1) = 3
(47) 1= Gu(a) =r(}) [oa (1 — )" da

= (P 22" — 2) " de = Gi(a),

so that Jo'(1) = 1 — G.(a) = %. Since J4 (1) is strictly increasing in 8 for
0 =8 = a,it follows that Js'(1) = % for 7/(n+ 1) = % and any B with
0 < B £ «. Hence, corresponding to (3.11), we have for r/(n + 1) = %,

(4.8) supg, Ps(R:) = maxocs, < {kll — J5 (1)1 + (b — k) J5 (1)} = kJ§'(1).

Since J5 (k) approaches 1 as 8 — o we need not be concerned with the quanti-
ties Py, P, , etc. when Fy is known.

If we take the least favorable configuration over the set @ of all possible con-
figurations then we obtain, as in (3.14) through (3.19)

(4.9) infg Po(R1) = [1 — Gr(a)] £ (1 — 1/)" < (.65)".
Hence the terminal remark of Section 3 also holds for the case of known Fy .

5. Asymptotic properties of procedure R. Procedure R is constructed so that
with high probability it retains those populations at least as good as the stand-
ard; it eliminates only those populations which, on the basis of a sample, appear
to be definitely inferior. In this section we define a non-parametric measure,
8.(F, Fy), of the inferiority of a population with df F compared to the control
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population with df Fy . It will be seen that 0 < §.(F, Fy) < min (e, &) provided
F(x) = Fo(z) for all z and Where a=1-— o

8*-Inferior populatwns For 6%, a specified number between 0 and min (a,
1-— a) F is §*-inferior to Fy if F(z) = Fo(x) for all z and 8.(F, Fo) = &*. Let
Py(5* | R) denote the expected proportion of §*-inferiors in the subset selected
by R; if there are no 8*-inferiors then we define Py(6*|R) = 0.

Recall that R(c) is the selection procedure defined by (2.4). In this section
we obtaln asymptotic expressions (n — ) for 1nf91 Py(R(c)) and
supe, P2(8* | R(c)). We use these to obtain asymptotic expressions for the mlm-
mum sample size required by proeedure R to guarantee for specified P* and 8%,
info, Po(R) = P*, and supg, P2(8* | R) = B*.

A measure of mfemomty Let F(x) = Fo(z) for all z and let §(F, F,) denote an
arbitrary non-parametric measure of the degree of inferiority of F to Fy. § is
non-parametric if and only if for continuous F and F,

(5.1)  &(F, Fy) = 8(F(Fy"), U), where U is the uniform (0, 1) df.
Being a measure of inferiority (degree of stochastic smallness) 6 should also
satisfy
(5.2) Fo=F=4F,F) =0
and
(63) F'(z) = F(z) = Fo(z), forall z= 5(F,F,) = &F, F).

Let g be an arbitrary non-decreasing function of bounded variation on (0, 1);
a general § satisfying (5.1)-(5.3) is

8(F, Fo) = [ (3(F — Fv)) dg(3(F + F)).
One example of such a § is already familiar, namely
8(F, Fo) = [ (F — Fo) d3(F + Fo)) = [ FdF, — 4.

The measure 6.(F, Fo) which we propose is obtained by setting g(u) = 0 or 1
according as u < a or 4 = a. It is easy to see that under the assump-
tions F(x) = Fo(z), for all z, F and F, continuous, this choice of ¢ gives

(54)  bu(F, Fo) = infe {3(F(z) — Fo(2)):3(F(z) + Fo(z)) = of.

Notice that if F(x) 4+ Fo(z) = 20 then F(2) = a + 8.(F, F,) and Fo(z) =
a — 8a(F, Fy) so that 6.(F, F;) < min (a, &). We can also express (5.4) as

(5.5) 8(F, Fo) = infy{d: Fo (e — d) = F ' (a + d)},
provided we define Fo™'(u) = inf, {z: Fo(z) > u} and F*(u) = sup. {z: F(2)
u}. Thus 6.(F, Fy) is the smallest non-negative d such that z._s(Fo) =

.’Ea+d(F ) .
Asymptotic expressions for info, Po(R(c)). It follows from (2.3) that r/n — «
as n — . We shall consider two rates of growth as n — « for ¢ in the pro-
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cedure R(c); Case (i) n%¢ — (aa)'A where A is an arbitrary non-negative
number and @ = 1 — « and Case (ii) for some ¢(0 < € < @/2), ¢ < ¢/n =
a — e Case (i) is involved in questions of Pitman efficiency and Case (ii) in
questions of Bahadur efficiency.

Casg (i). From (3.7) we conclude that

info, Po(R(c)) = P{Yvi = YVieen,i =1, -+, K},

where F; = --. = F, = F, are continuous. We can assume any convenient
continous form for this F, ; in particular, if Fo is exponential then Y,; and Y,
are sums of independent random variables, from which it easily follows (see,
for example, [11]) that (letting ® denote the standard normal df)

(5.6) limyq info, Po(R(c)) = [Zo [®(x + A)]F dd(z),

where n % — A (ac‘z)%. The integral in (5.6) occurs frequently in the literature of
selection procedures and is extensively tabulated among others by Milton [10]
and Gupta [5].

Case (ii). In this case clearly info, Po(R(c)) — 1. Since infq, Po(R(c)) =
PlY;Z Yrp,l 7= Fklwhen F, = --- = F, = Fy, it is clear that

P{ le < Yr_c,o} = 1 - infnl Po(R(C)) é kP{ le < Yr—-c.O};
where Fy = F,.
The event {Y,1 < Y,._.o is the same as the event that at least » observations

from population 7, are among the 2r — ¢ — 1 smallest observations from m,
and m; together. Thus

(5.7) PV < Vrod) = 25557 (1) Gormdtimn) /(020
from which it is easy to obtain

(5.8) P{Ya < Vi) £ (0 — ¢) (1) (7)/ (2rZem1) 5
and

(5.9) P{Yn < Yod 2 (i) (1)/(2r2m1).

Sincer/n — aand 0 < € £ ¢/n < a — ¢ we can apply Stirling’s approximation
to (5.8) and (5.9) to obtain:

P{Yn < Yieod & Ka-((r —¢/2)/(r — €))7 ((r — ¢/2)/7)"
((n=r4¢/2)/(n =714+ )" ((n—r+¢/2)/(n —1)";

(5.8) implies that there exists an ¢ > 0 depending only on e and « such that
K. < n'/¢ and (5.9) implies that there exists an ¢ > 0 depending only on e
and « such that n™%" £ K, .

Thusif ¢/n — 7,0 < v < a,

(5.10)  limp.e {—n " log [1 — info, Po(R(c))]}
=I(a —7v,a—7/2) + I(e, a — v/2),
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where I(z,y) = zlog (z/y) + (1 — z) log ((1 — z)/(1 — y)) is the Kullback-
Leibler information number.

Asymptotic expressions for supg, P2(8% | R(c)). Let I.(5*) denote the set of
subscripts of those F; which are §*-inferior to Fy and let kq(8™) be the number of
subscripts in I(8*). Then Py(8* | R(c)) is just (3.6) with ks and I replaced by
ky(8*) and I.(8*) respectively. The supremum of 1 — Hyi(y) = 1 — G.(Fi(y))
over & subject to 8(F; , Fo) = " occurs when

Fo(x), — o < & < Zasr(Fo),

(511) ~ Fi(x) =a+ 8",  Zesp(Fo) £ 2 < Taysr(Fo),
Fo(x),  Zaysr(Fo) S 2 < 0,
= F*(Fo(z)), say.
Thus )
(5.12) supg, Po(8* | R(c)) = P{Yn = Y, .4},

where the latter probability is computed under the assumption that Fo(z) is
continuous and Fi(z) = Fi*(Fo(z)).

Analogous to the two cases studied for Py(R(c)) we consider as n — o,

Case (i) n % — (a)?4 and n¥s* — (a&)*f, where A and f are arbitrary non-
negative constants, and

Case (ii) ¢/n — v, 0 < v <5 §* fixed, 0 < §* < min (a, &).

In case (i) an argument similar to that used for infe, Poy(R(c)) yields

(5.13)  limg.. supe, P2(8 | R(c))
= [fl+&x+ A) —&(x — A)]dd(z) + 8(4 — H28(f) — 1.

In case (ii), by introducing U, and U,_.., where U,; and U,_. o are the rth
and (r — c¢)th order statistics from two independent uniform (0, 1) samples
each of size n, we can write (5.12) as

supe, Pa(8* | R(c)) = P{Un Z Us—eo, Un < a — 8"}

(5.14) 4+ Pla— 6" = Upp,a — 8" S Un < a+ 8%
+ P{Un 2 Urcp, e + 8* £ Uy}

Thus
(5.15) supe, PA(6* | R(0)) S P{Usoo < a — 8% + P(Un 2 a + 5
and

supe, P2(8* | R(¢)) 2 P{Usco S @ — 8"} -Pla — 8" £ Un < a + 8%
(5.16) 4+ P{Un = a+ 8" P{Ureo < a + 5%

XNPUsoSa—08 +PUL=a+ 6" as n— .
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Letting W(p) denote the sum of n Bernoulli random variables with parameter
p, the right side of (5.15) which is the same as the second expression in (5.16)
can be written as

(5.17) P{W(a — ") =7 — ¢ + P(W(a + ) < 1}.

Then it follows from standard results on large deviations (eg. [4] Theorem 1)
applied to (5.17) that

(5.18)  limg.e { —n" log [supe, P2(8* | R(c))}}
=min[I(a —v,a — 8), I(a, & + &)1,

where I(z, y) is defined after (5.10).

Approzimations to the sample size. Let n( P*, 8%, 5" | R) be the smallest sample
size required by procedure R to achieve infg, Po(R) = P* and supg, P2(8* | R)
< B*. We now derive asymptotic expressions for n(P* g%, 6% | R) valid in three
regions in the domain of the specified quantities ( P*,B* 5%); the first two regions
correspond to cases (i) and (ii).

Recon (). Let 0 < * < P* < 1 be fixed and ¥ small. Clearly, as * — 0,
n(P*, 8%, 8% | R) — «. It follows from (5.6) that n e — A*(az)?, where A is
the solution of the right side of (5.6) equated to P*. Also, it follows from (5.13)
that n26* — f*(aa)? where f* is the solution of the right side of (5.13) equated
to B with 4 replaced by 4™

Thus we have

(5.19) n(P*, 6%, 8" | R) = aa(f*)*/(8")"
and
(5.20) ¢~ ntA*(aa)’.

Recron (ii). Let 0 < g* < 1 and 8* > 0) be fixed and P* be close to 1.
It is easy to prove that ¢/n — 8"; for if not thenfrom (5.15) and (5.16) one con-
cludes that

limy.., SUpe, P.(5* |R(c)) = 0, ¢/n £ 8% — ¢

=1, ¢/n = 8" + ¢

for any ¢ > 0, but in fact supg, Py(5* | R(c)) = g* = 0, 1. Hence ¢/n — 6" and
consequently v of case (ii) equals .
Therefore from (5.18) we have

(5.21) limpow {—n " log (1 — P*)} = I(a — 6%, 0 — 8%/2) + I(a, a — 8%/2).

I

Thus we have
(5.22) n(P* 6% 6" |R)
~ —log (1 — PH[I(a — 8%, a — 6*/2) + I(a, « — 8*/2)]"
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and, of course,
(5.23) ¢ & nd.

REecron (iii) Let 0 < P* < 1 and 0 < 8 <™ min(e, @) be fixed and 8% small.
As in region (i) we have n ¢ — A*(a@)? so that ¢/n — 0. Since
g* = supe, P2(8* | R(¢)) we have from (5.18) (withy = 0)

(5.24) n(P* 8% 6| R) ~ —log 8*/min [I(a, a — &%), I(a, a + 6%)].

6. Efficiency comparisons with competing procedures.

A non-parametric competitor S. LetRj; (1 £ 1 < k,1 < j £ n) denote therank
of X;; among X, -+, Xuno, X1s, - -+, Xni (the smallest has rank 1) and let
R.; = X% R . Procedure S (d) puts m; in the selected subset iff

(6.1) R:2d,

where d is an integer not less than n(n + 1)/2. Procedure S is determined by
setting d equal to its largest value satisfying the condition ifg, Po(S(d)) = P*.

S is intimately related to a simultaneous inference procedure proposed by
Steel (see [9] p. 143); in fact the d value needed to carry out S can be obtained
from tables of the critical values of Steel’s procedure with 1 — P* corresponding
to the significance level. To see this, notice that R.; is non-decreasing in observa-
tions from ; and does not depend on observations from ;s , ¢ 5 0, . Then by
an obvious application of Lemma 1.1 we conclude that Py(,S(d)) is minimized
over &, when F, = Fp = --- = F;, = Fy. Under this hypothesis the distribution
of (R.¢, -+, R.) is the same as that of n(2n + 1) — R, ---,n(2n + 1)
— R.;). This is proved by taking F;, 0 < ¢ < k, to be uniform. Thus YV;; =
(1 —Xu%),0=7¢=k 1=j= n,are independent uniform random variables
and if S;; denotes the rank of Y;; among Yy, -+, Yao, Y1, -+, Yui, then
clearly Sj: = (2n 4+ 1) — Ry . The array {S;; ;1 £ ¢ =k, 1 £ 7 £ n} has the
same distribution as {R;; ;1 £ ¢ =<k, 1 =<j = n} so (R, ---, R.;) has the
same distribution as (D2_; S, -+, 2. 8%) = (n(2n + 1) — Ry, -,
n(2n + 1) — R.;) and consequently

(6.2) info, Po(S(d)) = P{mini<;<x Ry = df
= 1 — Plmaxicick B.s > n(2n 4+ 1) — d},
where these probabilities are computed under the assumption that F, = F, =
<o = Fy, = Fy. If (6.2) is equated to P*Ithen d=mn(2n41) + 1 — r*, where
#* can be obtained by entering Table VIII, p- 250 of [9] at significance level
1 — P*.
For fixed P* from (57), p. 151 of [9] we obtain

(6.3) dn(2n + 1)/2 — A™[(2n + 1)/24),

where A* is the solution of the right side of (5.6) equated to P*.
- Proportion of inferiors selected by S. Let F* denote an arbitrary (not neces-
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sarily continuous) df on the interval 0 < w < 1 such that F*(u) = u. We shall
say that a df F; is F*-inferior to Fy if Fi(z) = F*(Fo(x)), for all z; Py(F* | 8)
denotes the expected proportion of F*-inferior populations in the subset selected
by S and if no populations are F*-inferior then we define Po(F* | ) = 0. Again
applying Lemma 1.1 we conclude that

(6.4) supg, Po(F* | 8) = P{R.. = d},

where the latter probability is computed under the assumption that Fy(z) =
F*(Fo(x)).

From Lemma 3.2 of [2] we conclude that W = n%{ (R. — n(2n + 1)/2)/n*
— (3 — [ F* du)} has the same limiting distribution (n — ») as

Y =n"t Z;;l [Fo(Xp) + 1 — F*(Fo(on)] — 211,%(1 - fF* du).

For purposes of analysis suppose that F* depends onn and as n — o, F*(u)
approaches u at such a rate that n*( [ F* du — %) = 0(1), then by application
of the central limit theorem (as stated in [8], p. 295) we conclude that Y is
asymptotically normal with mean zero and variance §. Hence from (6.3) and
(6.4) we obtain

(6.5) supg, Po(F* | 8) ~ ®{274* — (6n)}([ F* du — 1)},

where @ is the standard normal df.
From (5.11) it is clear that F; is 6*-inferior if and only if it is F*-inferior with

(6.6) F*(z) = Fi*(z) = x, 0<z<a—0 or at+d =zz<1,
=a+6*, a——6*§x<a+6*.

So if Py(8* | 8) denotes the expected proportion of §*-inferior populations in
the subset selected by S we have from (6.5),

(6.7) supg, P2(8% | 8) ~ ®(274* — (24n)%™),

provided n'6* = 0(1).
Defining n(P*, 8%, 6* | 8) as in Section 5 it follows from (6.7) that for fixed
0 < 8* < P* < 1 and small §*

(6.8) n(P*¥, 8% 8% | 8) ~ (F — 2774%)%/24(5")",

where ®(z*) = g*.

Asymptotic relative efficiencies for S compared to R. Comparison of (6.8) with
(5.19) shows that for small 6* the sample size required by S is proportional to
the square of the sample size required by R. Thus the Pitman efficiency of S
with respect to R is zero. It should be noted that if the extrema are taken over
a smaller class than Q; (such as a location parameter family) then the sample
size comparison need not be so unfavorable to S, indeed, S may even require a
smaller sample size than R.

Next we consider an efficiency comparison of the sort urged by Bahadur [3].
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Here we hold 6 and 8* fixed and study the behavior of the sample size as P*
approaches one.

In view of (6.4) and (6.5) and the asymptotic normality of E.; the assumption
that supe, P2(8* | 8) = 8* determines d and implies

(69) d = ER.+ O(VarR.)} = n’{2 — [ F.* du} + 0(n*") 0’1 — 2(5%)%).
From (6.2) one obtains after some algebra using Bonferroni’s inequality
(6.10) —n""log [1 — infg, Po(8)] ~ —n " log P{R.1 < d},

where the latter probability is computed under the assumption that Fi = F.
In [12] it is shown that

(6.11) limy., — 2" log P{R.. < d} = 2e,(2(5%)%),

where ¢,(p) is given by the numerator of (3.4) of [6]. From (6.10) and (6.11)
we obtain, for fixed 8* and 5* and P* approaching unity,

(6.12) n(P*, 8%, 6% | 8) &~ —log(1l — P*)/2e,(2(5%)*
and comparing (6.12) with (5.22) we have
(6.13) n(P% g% 6% | R)/n(P*, 6% 6" | 8)
= 26,(2(6%)*) /I (a — 6%, & — 8%/2) + I(e, « — 6%/2)]7 .

We shall call the right side of (6.13) the Bahadur efficiency of S with respect to
R; note that it is independent of 8*. Using line 13, p. 1762, of [6], e.(2(5*)%)
can be evaluated by entering column 2 of Table I on that page for up = 2 !
-[2(6%)* 4+ 1]; we also do some additional calculations of e,(-) and in Table 2
we tabulate this and the Bahadur efficiency of S with respect to B for a = 1.

Ar asymptotically nonparametric competitor M. Let X; be the sample mean
from «;, 0 < ¢ < k, and let ©,(B) be the subset of @, on which vy (Fy)/o*(Fy)
B < « where ¢’ (F,) and »:(F,) denote the variance and fourth central moment

of Fy. If ¢*(Fy) is known it is possible to carry out the procedure W(d) which
retains those populations in the selected subset for which

(6.14) X = niX, — o(F) d.
It follows from Lemma 1.1 that
(6.15)  info,s) Po(W(d)) = infe, [ [I — Fo'”(z — d)]* dFs'™ (),

where Fy'™ is the df of n*(X’o — u(Fy))/o(Fo) and the second infimum is taken
over those Fo for which »(F,)/o*(Fo) < B. If d remains bounded as n — o
then using the Berry-Esseen bound

|Fe™ (z) — ®(x)| £ Crs(Fo)n™¥/a*(Fy) < CB'n™,
where C is a constant and v;(F,) is the third absolute central moment of F,,

one can easily prove that the right side of (6.15) approaches the right side of
(5.6) with A = d.
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TABLE 2

Bahadur efficiency of S with respect to B and of M with respect to R
(with Fo normal df) when o = %

Bahadur Efficiency* of

1(2—5*3'-;’) llog (1 + : :

o* o 26,(2(6%)?) 2108 5+ S with M with
+1G33-3) it (39%)  respect respect
toR to R

.050 .0,2707 .047665 . 031579 .03058 .05833
.100 .01012 . 054442 .0:2561 .1186 .2531
.150 .02312 .0,6085 .01319 .2632 .5705
.200 .04201 .01931 .04217 .4596 1.0040
.250 .06764 .04756 .1025 .7031 1.5150
.300 .1013 .1002 .2061 .9892 2.0350
.350 .1453 .1911 .3596 1.3150 2.4750
.400 .2035 .3428 .5661 1.6850 2.7820
.450 .2847 .6048 .8416 2.1220 2.9560

500 2 log(d) = .4315 2 log(2) = 1.3860 % 3.2130 o

* See (6.13) and (6.24) ; here Fyis assumed to be the normal df.

When ¢*(F,) is unknown, its estimate S;® = Dot (X0 — X0 (n — 1)
has the property that sups, P{|1 — So/o(Fo)| = ¢ =< B/ne', ¢ > 0. Define
procedure M (d) by replacing o(Fo) by So in (6.14). Then it is easy to establish
that

(6.16) limnsw {info, sy Po(M(d)} = [2,{®(z + d)}* dd(2).
With the further restriction that o(F.) = .-+ = o(Fy) = o(Fy) and
ve(F:)/c*(F;) £ B, ¢ = 0, ---, k, one can use the pooled estimate S* =

DD ke (X — XYk + 1) (n — 1) in place of S* and (6.16) will remain
true.

We denote by M the procedure M (d) with d determined so that limn.
info, 5y Po(M(d)) = P*; it follows from (6.16) that d — d*, the solution of the
right side of (6.16) equated to P*.

Proportion of inferiors selected by M for fixed Fo. We define 6 -1nfer10r popula-
tions as usual, thus Fi(z) is 8™ -inferior to F, iff Fi(z) = F.* (Fo(z)), where
Fi*(Fo(z)) is the right side of (5.11). Letting Py(8* | M) denote the expected
proportion of 8*-inferiors selected by M and ©:(F,) denote 2 with Fy held fixed,
it follows from Lemma, 1.1 that for any ¢ > 0

(6.17)  supe, @y Pa(8" | M) < P{X, 2 Xy — n 7% (Fo) (1 + ¢)d}
+ P{|1 — So/s(Fo)| > ¢

where the first probability on the right is computed with Fi(z) = F\*(Fo(z))
and the second probability depends only on Fj . It follows easily from (6.17) that

(6.18)  limn.. Supg, (ryy Pa(8* | M)
= ®(274* — (n/2)"[w(Fo) — uw(F*(Fo)))/o(Fy)),
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provided 6 — 0 such that
(6.19) nllu(Fo) — w(F*(Fo))]l = ¥ [53000 (& = acse(Fo)) dFy = O(1);

zq—3*(FQ)

here u(F) denotes the mean of the df F. Assuming F; has a positive derivative
at its ath-quantile and denoting it by fo(z.) (6.18) becomes

(6.20) liMpoe SUpe,re) P2(8% [ M) = ®(27%" — (20)}(6%)*/o(Fo)fo(2a)).
Thus for fixed Fy, P* and 8* we have (as §* — 0)
(6.21) n(P* g% & |M) ~ (& — 27d")(fu(za)o(F0))?/2(5%)",

where ®(z*) = .

A symptotic relative efficiencies of M compared to B. Comparison of (6.21) and
(5.19) shows that M, like S, requires sample sizes proportional to the square
of that required by R for small 5*.

In order to obtain Bahadur efficiency comparisons analogous to (6.13) for
fixed Fy one (essentially) needs a “large deviations” result for the i-statistic
computed from a sample drawn from F,. To the authors’ knowledge such a
result is known only when Fy is normal. Indeed if F1 = Fj is normal then 7 =
(Zn)%(X'l — X,)/8o has the t-distribution with (n — 1) degrees of freedom.
Klotz [6] shows that for a sequence r,, approaching a positive constant 7q ,

liMmpaw — 2" log P{T < —n'ra} = log(1 + o) /2.

Arguing as in the discussion leading up to (6.12) we conclude that with Fj
normal, 8" and g* fixed, as P* — 1,

(6.22)  n(P*, 8% 8" | M) ~ —21log(l — P*)/log(1 + (e, §%)),
where (with ¢ denoting the standard normal density function)
(6.23) e, 8) = 2 {e(@7 (@ — 8%)) — ¢(@7(a + %)) — 257 (a — 5V}
Thus, combining (6.22) and (5.22),
(6.24) n(P%, 8% 8" | R)/n(P%, 8%, 6" | M)
~ log(1 + ro'(e, 8"))[2{I(a — 6%, & — 8%/2) + I(a, a — 6%/2)}]7.

We call the right side of (6.24) the Bahadur efficiency of M with respect to R
when Fy is normal; (6.24) is tabulated for « = % in Table 2. Since F, is normal
it is not surprising that M becomes more efficient for larger values of 5*.

7. A minimax procedure R'. Another problem of interest to us is to define
for a given b = 0 the risk function

(7.1) Py(R') = Py(R') + bl — Py(R")]

and find the c-value such that for unknown F, the procedure R’ = R(c¢) mini-
mizes the maximum of Ps(R’) over @, . This defines a new procedure R’ that
does not depend on any specified P*; we refer to it as the minimax procedure
and with J.(-) as defined by (3.7) obtain in a straightforward manner
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(72) supe, P4(R,) = MaXo<k; <k {kl[l - Jc(l)]
+ (b — k1) Jo(1) + B[l — Jo(kn)}.

If k& is not large then we resort to a numerical computation for each value of
k1 in (7.2) to obtain the maximum, since an analytic maximization is difficult.
Then the required c-value for the minimax procedure R’ is the integer (with
0 < ¢ = r) that minimizes these maximal values. Table 3 gives c¢-values and
the resulting minimax risks for « = %, b = k, 2k, 3k, k* and selected values of
nand k.

The trivial procedure R, that selects one of the 2* possible subsets at random
without looking at any observations has the constant risk

(7.3) Pi(RY) = k/2 +b(1 — 27%),

which is an upper bound for the minimax risk for procedure R'.

For the case of known Fy , the result analogous to (7.2) is obtained by recalling
Js'(+) of (4.5) and replacing J,(-) by J5' () in (7.2) and the minimax pro-
cedure R, is then defined by taking 8 equal to the value that minimizes the
maximum in the modified version of (7.2). The result (7.3) also holds for the
trivial procedure in the case of known Fj .

It should be noted that the minimax risk of R’ in Table 3 is not necessarily
monotonic in n for fixed k; we believe that this is due to our forcing ¢ to be an
integer. If we use a suitable randomized procedure we can presumably take
these “kinks” out of the minimax risk and make it monotonic.

8. Concluding remarks.

Related problems solved by procedure B. The problem of selecting all populations
with z.(F;) =< z.(Fo) so that the probability of a correct selection is no less
than P* is solved by the procedure which selects ; iff

(8.1) Yn-—-r-l—l,i é Yn—r+c+1,0 )

where r is the integer satisfying (2.3) and c is the solution of (3.7) equated to
P* and may be obtained from a table giving c-values for procedure R correspond-
ing to 1 — «. This statement is proved simply by noting that if X has df F(x)
then —X has df 1 — F(—z) so that —z;_(F) is the ath-quantile of —X.

The procedure defined by (8.1) also solves the classical problem of testing
at level 1 — P* that at least one population is better than my. Like Steel’s
procedure (Section 6 and [9], p. 143), it has the property that, with probability
at least P*, one may correctly assert that all populations for which (8.1) is not
true are better than .

We remark here that R has an unbiasedness property: if Fi(z) = Fj;(z) for
all z then R is more likely to select =; than =, .

Scores Procedures. Procedure S discussed in Section 6 can be generalized by
replacing the Wilcoxon statistic R.; in (6.1) by a two-sample scores statistic

(82) Ti = Z;;l Jn,Rji
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TABLE 3

Minimazx risk and c-values fora = %
(In each cell the risk is followed by the c-value)

b=%
k n=235 n =15 n =25 n = 35 n = 45
1 .'73810;1 .71524;1 714542 .68381;2 .67324;2
2 1.52380;1 1.53786;2 1.57092;2 1.52802;3 1.52644;3
3 2.52380;1 2.46214;2 2.41041;3 2.47198;3 2.40396 ;4
4 3.57444;1 3.46214;2 3.39306;3 3.33592;4 3.39736;4
5 4.58335;2 4.34115;3 4.37100;4 4.33592;4 4.28882;5
6 5.50002;2 5.26354;3 5.25160;4 5.31906;5 5.28882;5
7 6.41669;2 6.26354;3 6.25160;4 6.22698;5 6.28882;5
8 7.33336;2 7.26354;3 7.25160;4 7.22698;5 7.20160;6
9 8.25003;2 8.27246;3 8.25160;4 8.22698;5 8.20160;6
b =2k
1 .78570;1 .76893;2 .80347;3 .76401;3 .78966;3
2 1.83334;2 1.73646;3 1.74840;4 1.67184;4 1.71118;5
3 2.75001;2 2.65885;3 2.62900;4 2.65953;5 2.69760;6
4 3.66668;2 3.74372;4 3.70368;5 3.68094;5 3.60480;6
5 4.58335;2 4.67965;4 4.62960;5 4.63780;6 4.66315;7
6 5.66664 ;2 5.61558;4 5.59264;5 5.57952;6 5.59578;7
7 6.74997;2 6.57663 ;4 6.66672;5 6.65196;6 6.60633;7
8 7.88844;2 7.64070;4 7.68320;6 7.65256;7 7.65624;8
9 9.08283;2 8.70477:4 8.64360;6 8.60913;7 8.61327;8
b= 3k
1 .91667;2 .86823;3 .80347;3 .83204 ;4 .80132;4
2 1.83334;2 1.79062;3 1.75480;4 1.77302;5 1.79840;6
3 2.75001;2 2.80779;4 2.77776;5 2.78268;6 2.79789;7
4 3.83330;2 3.74372;4 3.74080;5 3.72440;6 3.73052;7
5 4.99996;2 4.76884;4 4.80200;6 4.78285;7 4.78515;8
6 6.33282;2 5.84946;5 5.76240;6 5.73942;7 5.74218;8
7 7.70276;2 6.82437;5 6.72280;6 6.69599;7 6.69921;8
8 9.16030;2 7.79928;5 7.71280;6 7.78174;7 7.77346;8
9 10.67226;2 8.77419;5 8.79200;6 8.78148:8 8.76546;9
b= k?

1 .73810;1 .71524;1 .71454;2 .68381;2 .67324;2
2 1.83334;2 1.73646;3 1.74840;4 1.67184;4 1.71118;5
3 2.75001;2 2.80779;4 2.77776;5 2.78268;6 2.79789;7
4 4.22176;2 3.89698;4 3.84160;6 3.82628;7 3.82812;8
5 6.59058;2 4.87455;5 4.87120;6 4.87860;8 4.86970;9
6 9.98484 ;2 5.84946;5 5.88672;7 5.85432;8 5.84364;9
7 14.46795;2 6.95030;6 6.86784;7 6.91215;9 6.89528;10
8 19.92744;2 7.94320;6 7.93736;8 7.89960;9 7.88032;10
9 26.39700;2 8.93610;6 8.92953;8 8.92870;9 8.92719;11
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with monotone scores Jn1 = Jnz2 = -+ = Jpna; let us call this procedure
S . It seems clear under the usual assumption (the step function J.(u) = J,,;,
(J—1)/2n £ u < j/2n,1 £ j £ 2n, converges in quadratic mean to a func-
tion J(u)) that S, will still have zero Pitman efficiency compared to EB. Under
some additional assumptions on J(u) (see [12]), there is a function I;(7,) such
that, when F, = Fy and r, is a sequence of constants approaching some constant

To,
(8.3) limpae [—n7 log P{Ty = nra}] = I;(r0).

In this case the Bahadur efficiency of S; with respect to R will be the right
side of (6.13) with the numerator replaced by I,(+*), where r* is the probability
limit of n~'T, when Fi = F\*(Fo) (see (5.11)), that is, »* = [} J[(F\*(u)
+ u) /2] dF,*(u).
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