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ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST
STATISTIC WHEN THE TRUE PARAMETER IS “NEAR” THE
BOUNDARIES OF THE HYPOTHESIS REGIONS!

By Paun I. FEpER
Yale University

1. Introduction. Let X1, X,, --- be a sequence of independent, identically
distributed observations each having a density function f(x, ) where 6 £ ©, a
subset of Euclidean k-space. Consider the likelihood ratio statistic for the test of
Hi:0 ¢ w vs. Hy: 0 € w2 where w; and w. are disjoint subsets of ©.

In 1938 Wilks [8] proved his classical result on the asymptotic distribution of
—2 log \, where

N = SUpsew, 117~ /(X;, 0)/supse 1 17=1 f(X;, 6).

He showed that if w; is an r-dimensional hyperplane in Euclidean k-space and w,
its complement, then if 6, the true state of nature, is in w1, —2 log A has an
asymptotic chi square distribution with k¥ — r degrees of freedom.

In 1943 Wald ([7], section 14) showed under somewhat stronger uniformity
conditions that if w; behaves locally like an r-dimensional hyperplane, w, =
® — w1, and the true state of nature is a sequence converging to w; at the rate
n_%, then asymptotically —2 log A behaves like a noncentral chi squared random
variable. In 1959 Silvey [6] obtained similar results by the use of Lagrange multi-
pliers.

In 1954 Chernoff [1] generalized the Wilks result to deal with cases where w;
and w, are not necessarily hyperplanes and their complements. He showed that if
6o (wlog taken to be 0) is a boundary point of both w; and w, (i.e. 6y € @1 n @),
and both w; and w; are approximable at 6§, = 0 by positively homogeneous sets
(cones) C; and C;, then under regularity conditions essentially those needed to
prove the asymptotic normality of the maximum likelihood estimator (mle)

(1) L{—21log \*} — L{infoc, (Z — 0)'J(Z — 0) — infoec, (Z — 0)'J(Z — 6)}
where
N = supsew, 11j=1/(X,0)/5upses, 150 7(X 5, 0),
J(6) = Es [(9 log f(X, 6)/86:)(8 log f(X, 6)/86;)]|

is the k X k Fisher information matrix with J = J (0) assumed strictly positive
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definite, and Z is normally distributed with mean 0 and covariance J ™. Note that
the statistic \ as used by Wilks is min (\*, 1).

This asymptotic distribution is precisely the distribution of the likelihood ratio
statistic for the test of 6 ¢ Cy vs. 8 & C; based on one observation from a N (6, J )
distribution with 6, = 0

This paper studies the behavior of —2 log \* when 6, is near the boundaries of
w; and w, in the sense that as in [7] the true state of nature is a sequence of points
fo, (not necessarily in w; or w,) such that 6, = 6, + o(1) where 6 & N @s .
Without loss of generality 6 is taken to be 0.

Two cases of interest are discussed in the main theorem.

(a) d(fon , wi) = O(n™H), ¢ = 1, 2 (where d(6, w) is the Euclidean distance
from the point 6 to the set w)

(b) max {d(Oon, w1), d(80n , w2)} is large when compared with n %

Case (a) givesrise to a noncentral version of (1). More specifically, the asymp-
totic distribution of —2 log \* is like that of the likelihood ratio statistic for the
test of 8 &€ —y1, + C1Vs. 8 & —v3, + C» based on one observation from a N(o,J )
distribution with 0 the true state of nature. C; and C, are positively homogeneous
sets and v1n , ¥2. are suitably defined k-vectors. The set v 4+ C denotes the trans-
late of C by the vector v (i.e. {v + w:w e C}). This result unifies the Chernoff
and Wald extensions of the original Wilks result.

Case (b) leads to a degenerate limiting distribution by the use of a different
normalization than in (a).

These results are more precisely stated in Section 3. In Section 4 an illustrative
example is presented in which k¥ = 2 and w, = {0:6, = 6,%}, w, = {6:6, < —6,3.
The asymptotic distribution of —2 log \* is examined for various sequences 6y, ,
each converging to 0.

2. Preliminary results. Let X,1, X,2, -+, X, be independent and identi-
cally distributed observations having density f(z, 6o,). Assume that 65, = o(1).

The following notation is used throughout:

(a) L(X™,8) = J12.1f(Xua, 6) denotes the likelihood function.

(b) 8 is the unrestricted mle.

(¢) b, is the mle restricted to ¢ < ©.

(d) |-] is a vector norm.

(e) || ]| denotes a matrix.

(f) dg(0)/36 represents the k X 1 column vector whose ¢th component is
3g(0)/06; .

(g) d(6, w) is the Euclidean distance from the point 6 to the set w.

(h) I(8, ¥) denotes.the Kullback-Leibler distance (or information) between
f(z, 8) and f(z, ¢) and is defined as f log [f(x, 0)/f(x, ¥)If(x, 6) du(z). It is
well known that I(6, ¥) = 0, with equality if and only if f(z, 8) = f(z, ) except
for a set having Py measure 0.

The calculus of O, and o, is used without any explanation. The reader is
referred to Pratt [5] for a rigorous discussion of the properties of these quantities.
Loosely speaking, one can operate with them as with O and o.
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The following regularity conditions will be imposed. Assumptions (R2)-
(R4) are essentially conditions (a), (b), and (¢) of [1] and guarantee the asymp-
totic normality of the mle. Additional assumptions are needed to handle technical
difficulties that arise in the consideration of the triangular array X,y , Xps, -+ -,
Xon -

(R1) If {60, is any sequence such that 6o, = o(1), then § = 0,(1) and §, =
0,(1) where ¢ is any subset of ® such that 0 ¢ .

There exists a neighborhood N of § = 0 such that forall § ¢ N

(R2) alog (-, 0)/36;, 8" log f( -, 6)/86:06; exist and
supjs | 9" log f(x, 6)/98:90; — 8 log f(x, 0)/80:00,| < H(x)g(r)
where EoH (X)) < M and g(r) approaches 0 as r — 0.
(R3) |of(x, 0)/06s < F(z),  |*f(a, 0)/aoiao,~[ < F(x)

where EoF(X) < .
(R4) J(6) = || Eo{ d1og f(X, 6)/06; 9 log f(X, 0)/38;}| is finite and strictly
positive definite.

J (@ log f(x, 0)/86:06,) F(z) du(z) < w,
(R5) J (9" log f(, 0)/88:00,)°F () du(z) < =,

[(8 log f(x, 0)/86:060,)f (z,0) du(z) < ©, 4,5 =1,k
(R6) For every 6 > 0, lim inf.o infiyj5s 1(6, ¥) > 0.

REMARKs: (i) Condition (R3) is needed to invoke the Lebesgue dominated
convergence theorem to justify the differentiation of [ f(z, 8) du(x) twice under
the integral sign. This implies that

Eo {(8/00) log f(X, 8)} =0 and
Eo{ (9 1og f(X, 6)/36:)(9 log f(X, 6)/86;)} = —Ee{0*log f(X, 06)/06:00,}.

(ii) It can be shown by an application of the Lebesgue dominated convergence
theorem, conditions (R2) ~ (R5) imply that if 6 ¢ N, n ¢ N then I(%, 6) can be
differentiated twice with respect to § under the integral sign. This implies

(8/06)I(n, 0) = —E,{(3/36) log f(X, 6)},
16°I(n, 0)/96:00,]| = || —E\{8" log f(X, 0)/86:96} -

(1ii) Condition (R6) is a local identiﬁa;bility condition around 8 = 0.
Lemma 1. Under conditions (R1) — (R5)

(2) (a) n*B — 6n) = n'TA + 0,(1)
where A = A(00,) = 0" D ny (8/96) log f(Xna, on)
(3) (b) Lin'(d — 60)} — N(0, J).
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Proor. The law of large numbers and central limit theorem for double se-
quences are applied to the classical method of proof of asymptotic normality of
the mle. Q.E.D.

Let S, = {6:|6] < 8,} with 8, converging to 0, but sufficiently slowly so that
B = 0(8,), 6 = 0,(8,). Define

gn(0) = Ho,,{log [f(X, 0)/f(X, 0on)}}
and %(0) = n_l ZZ:] log[f(Xna ) 0)/f(Xna ’ 007&)]'

Within the sequence S, of shrinking neighborhoods, ¢.(8) and §.(8) behave like
two paraboloids, with maxima at 6y, and § respectively and second derivative
matrices uniformly close to —J. More precisely

LemMa 2. Let 6, = o(1) be any sequence such that 6y, = 0(8,) and 6 = 0,(8,).
For |0] < 6

(4) 9:(8) = —3(0 — 00.)'[J + 0(1)]1(0 — 6on),
(58) 99.(0)/00 = —[J + 0(1)](6 — Oo),
(6) 0u(0) — Gu(8) = —3(0 — 8)'[J + 0,(1)1(0 — §)

with o(1) and 0,(1) applying uniformly in 0 for |6] < 6, .

Proor. Equations (4) and (5) follow immediately from the expansion of ¢,(6)
and 9¢,(60)/960 in Taylor series about 6o, , and the observation that ¢.(6.) =
—I(0on 5 00n) = 0, 39(00,)/360 = Eo,, {0 log f(X, 00,)/00} = 0 for n sufficiently
large, and 0°¢,(0)/86:00; = 8°gn(60n)/00:90; + pn = —Jij + €n - pn for n suffi-
ciently large, where e, = 0(1) and p. £ Ej,, {H(X)8,} < Ms, for n sufficiently
large

Equation (6) similarly follows from the Taylor series expansion of ¢,(6) about
6 by noting that 8¢,(0)/30 = 0 with large probability (wlp) as n — % and
3°2(0)/00:00; = n™" D51 9" log f(Xna, 60n)/90:00; + R = —J (60a) + 0,(1)
+ R, = —J + & + 0,(1) + R, where R, < 6,n" > r s H(X,ea), whenever
|6] < 6, . Thuswlp asn — ®, e, + 0,(1) 4 Rn is uniformly small for all |6] < 6, .
Summarizing the above yields Lemma 2. Q.E.D.

The rate of convergence of 8, to 6y, will now be considered. Define ¥, as the
closest point in @ to 6y, , in the sense of Kullback-Leibler information.

LEMMA 3. If d(0on , ) = O(sn) with s, = o(1), then

<7) ¢0n — O = O(Sn),
(8) b, — 0o = O,(max [s,,n ]).

Proor. From equation (4) and the fact that 6,, = o(1), it is readily seen that
g.(0) = 0(1). Thus 0 = g.(¥om) = ¢(0) = 0(1), and (R6) implies Yo, = o(1).
Choose 8, in Lemma, 2 sufficiently large so that [Yo.| 4 [60s] + s = 0(8,). Let
7, be any point in @ closest in Euclidean distance to 6o, . By hypothesis 7, — 6o, =
O(s,). Thus 9, ¢ S, for n sufficiently large, and so

0= gn(Yon) = gulm) = 0<3n2)7
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the last equality following directly from (4). Equation (4) immediately implies
(7).

Equation (8) will now be derived. Since 8, is the restricted mle,
0 = ga(8e) = Gu(Won) = (B — ¥0u)'(n™" 22521 (9/96) log f(Xua, You)}
(9) + 500 — ou) [In™ 20500 (8% 1og S(Xona, ¥0u)/30:063]| (B — vou)
+ [0, — Youl"0p(1).

Equations (5), (7), and remark (i) imply Fs, {0 log f(X, ¢0.)/d60] =
3gn(Yon )/ 30 = O(s,). By arguments similar to those used to prove the asymptotic
normality of the mle, one can show

Lin™ 2251 1(8/80) 1og f(Xua, You) — Boo,{(8/96) log F(X, You)} 1} — N(0, J).

In particular,

(10) w7 2aer (9/96) log f(Xaa, ¥on) = Op(max (7% sal).
Denote max [n", sa] by %, . Combining equations (9) and (10) and noting
0™ 2oamt 0" 1og f(Xna s ¥0u)/96:805] = —J + 0,(1),

it follows that

(11) 0 = (B, — ¥0.)Op(tn) — $(8p = o) T (8 — Yo0u) + (6o — vuul0p(1).
Thus

(12) bo — You = O0p(ua).

Equation (8) follows directly from (7) and (12). This completes the proof of
Lemma 3. Q.E.D.

ReMARK. In analogy with results on the rate of convergence of 6 to 6y, , one
might expect that 8, — Yo, = OP(n_%) rather than O,(u,) as stated in equation
(12). It is interesting to note that thisis not true in general.

TFor example let ¢ = {0:0, = —|6i|}. Suppose |0ox| = s, where s, = o(1),
n~* = o(s,). Further, suppose that the data consist of N(8, I') random variables
and 0, is within distance o(n~*) of the negative f:-axis.

In this case IX-I. distance is merely half FEuclidean distance. It is well known
that for the exponential family, 6, is that element of  which is closest (in K-L
distance) to 8. Thus, in this instance, 8, is any point in ¢ closest to 6 in the Euclid-
ean sense. Since 6y, and § will be on qpposite sides of the 6,-axis with probability
approximately %, 6, — Yo. 7 Op(n*).

However, if ¢ is convex, then (8¢, (Yo )/ 06} (0 — 60,) < Ofor §eon N and n
sufficiently large. From equation (9) and the central limit theorem it then follows
that , — Yo, = 0p(n").

3. The asymptotic distribution of —2 log \*. The asymptotic distribution of
—2 log \* will be derived for the case when 6y, , the underlying state of nature,
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Diacram 1

is “near” the boundaries of both hypothesis spaces. As was indicated in Section 1,
the limiting distribution depends on the manner of convergence of 6o, to O.

First, the following definitions will be introduced. Definition 1 appears in [1]
and Definition 3 in [4].

DeriniTiON 1. A set C is positively homogeneous if 0 ¢ C implies k6 ¢ C for all
k> 0.

Let {£,} be a sequence of points in @ such that & — 6 and let c"” =t +C
denote the translate of the set C by the vector &, .

DzriNiTION 2. A set ¢ 75 sequeniially approximable at o with respect to { £} by the

positively homogeneous set C if for every 5, = o(1)
SUPzep, D, infygc(")]y - xl = 0("77»); SUDyectm) b, infze, l?/ - :CI = 0(nm).
where D, = {z; |2 — &| < 4}

Intuitively, this says that around 6, , ¢ and C behave similarly.
DeriniTION 3. The Levy distance between two cdf’s F and @, is defined to be

0.(F,G) =inf{8:F(x —8) — 86 = G(z) = F(z +6) +4, forall =z}.

Remark. (See [4], Section 9.) It is well known that 6.(-, -) is a metric and
convergence in this metric is equivalent to convergence in distribution.

Before stating the main theorem it is necessary to introduce some further nota-
tion and to prove a preliminary lemma.

1. F,*(x) = P.{—2 log \* < 2}, where P,(-) is the probability measure
corresponding to the parameter 6y, .

2. Q(w) = w'Jw, where wis a k-vector and J = J(0) is the Fisher information
matrix.

3. g(z, T1, T2) = infoecl Q(Z + T — 0) —_ infogcz Q(Z + Ty — 0)

4. Z, = n'J "4 (6s,) with distribution induced by P, (- ).
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5. Gu(2, 1y y72) = Pulg(Zy , 11, ) = af, G(z, 11, ) = Plg(Z, n, y T2) S x}
where L{Z} = N(0, J ).

Lemuma 4. SUDP|ry| ge,l7el e BL[Gn( Y T, T2), G( 5 1, 12)] — 0.

Proor. Given ¢ > 0 there exists an n;(¢) and a K = K (€) such that for
n > nl(e), P{|Z,| > K} < ¢, P{|Z| > K} < e In the compact region {lz]| = K,

1| = ¢, |n] £ ¢, glz, 71, ™) is um'formly contmuous Thus there exists

an 7 = g(e ) such that |g(z, 1, 7'2) g(z, o' , T2 )] < efor |n| £ ¢ |r| = ¢

| < ¢ |T2| = ¢ ol £ K, |n — | £ n,|r — 7’| £ 5. Therefore, when 2, =1,
’

Ty T1, To obey these constraints
Gu(@, 71, 1) = Plg(Zn, m1, 1) S 2} S P{g(Zn, 1, m) S 2,|Za| S K} + ¢
SPYZu,n, ) St +¢|Z) K} +e=< Gy (z+ 61, 1) + e
Interchanging 71, 7, and 7, 7’ and replacing x by * — ¢, we have

Gu(z — ¢ 1, 7'2,) S Gu(z, 11, m2) + e

Thus
(13) 82[Gn(+y 71, 1), Gu(+, 7y B S € for n = my(e).
Similarly
(14) 6L[G(7 T1, 7'2), G(; Tl,; 7'2,)] =
There exists a finite set {(Tu y ), (12, T2), *-*, (7im, 7em)} such that
|7 = ¢, |124] c,z = 1 2, -+, m, and for every (n, ) With [r] £ ¢, |7 < c,
there exists a (Tl, 0 )8{(1’11, T21), cr (Tlm, sz)} with '7'1 —_ Tll
n, |2 — 7| £ n. Since L{Z,} — L{Z} and ¢g(-, 1, 72) is continuous

inz, L{g(Z, , 7a, 72)} = L{g(Z, 7:1, 7:2)} for each 7. Hence
(15)  6u[Gn( -y 10y 72:), G(+, T1i, T25)] S €
for n > ny(e T, 721, ¢, Tim, Tom), i=1,--,m
By the triangle inequality
0lGa( 71, 70), G-y 11, 7)) £ 84[Gu(y 11y 1), Gu( -y 7, 72)]
+8ulGa(, 7, ), Gy i, 1)+ G, o), G, )]

Let my = max (m, mz). For n > n,, equations (13), (14), and (15)
imply 8.[Gr( -, 71, 72), G(-, 71, 72)] < 3¢ for all |74] = ¢, |7s| £ ¢. This completes
the proof of Lemma 4. Q.E.D.

THEOREM 1. Under regularity conditions (R1) to (R6), the asymptotic behavior
of —2 log \* ¢s as follows:

Case 1. If d(6p, , w;) = O(n_%) 1 =1, 2, and w; , wp are sequentially approxi-
mable at O with respect to (£}, © = 1, 2, by disjoint positively homogeneous sets C,
and Cy , then

(16) 6L[Fn*7 G( *y Vin 'YZn)] —0

untformly in o such that |yw| < c, where vi, = n%( Oon — Ein), 1 =1, 2.
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Case 2. If (6o, , w:) = O(sn), 1 = 1, 2 where s, — 0, n's, — o, and w , wy
are sequentially approximable at 0 with respect to { £} by disjoint positively homoge-
neous sets C; , 1 = 1, 2, then

(17) —(2/7&8,;2) lOg N = inff?ec; Q('Yln - 0) - inf(hcz Q("Y2n - 0) + Op(]-)

whereyin = 8y (0 — £n),t = 1, 2, and the 0,(1) term s uniformly small for all
fon such that |ym| < c.

Before proceeding to the proof of the theorem, it may be of interest to make the
following remarks:

(a) In Case 1, if L{g(Z, 1, 72)} is continuous for all |7;| =< ¢, || = ¢, then

(18) sup: |F."(2) — G(&, vin, veu)] — 0

uniformly in 6y, such that |yuw| < ¢, 7 = 1, 2.

(b) If the hypotheses are strengthened to assert that v, — v:, 7 = 1, 2, then
—2 log \* or —2 log \*/ns,” has a limiting distribution which is obtained by
substituting v, for v,, in equation (16) or (17) respectively.

(¢) Case 1 with n%0, — 0 (and &, = £, = 0 for all n) includes the Chernoff
result, which deals with the special case where 6, = 0.

(d) Suppose C; is an r-dimensional hyperplane in %k-dimensional Euclidean
space and Cs its complement. If n*6, = 0(1), then a limiting chi squared distribu-
tion with k — r degrees of freedom is obtained, just as in the original Wilks result
[8]. If n¥00, = O(1), then a noncentral chi squared distribution results, as stated
in Wald ([7], section 14). For example, if 160, — 7o , then

L{—21log \} — x*(k — r;«) with & = } infeec, Q(vo — 0).

We now proceed to the proof.

Proor. Case 1. From Lemma 3, 6,, — 00, = Op(n %) and b,y — 0on = 0,(n?).
From Lemma 1, 6 — 60, = J A (60,) + 0p(n?) = 0,(n?). From Lemma 2,
equation (6),

log L(X™,8) = ngn(0) = ngu(6) —4n(0 — 6)'[J 4 0p(1)1(0 — 8)

with 0,(1) applying uniformly in 6 for |§| < &, . Thus
—21og M = —2[log L(X™, b.,) — log L(X™, 4,,)]
= nfinfpen, (§ — 0)'[J + 0,(1)1(6 — 6)

— infpe, (6 — 60)'[J + 0p(1)I(6 — )]
nfinfoe, Q(J A + 60 — 0) — infow, Q(J A + 60u — 6)]
1 (X, 8,)
where 4 = A (60,) and 7(X™, 66,) = 0,(1). Shift the origin to &, . Thus
—2log \* = infauw, QEAT A +0} (0n — E1n) — 730 — )]

— infpm, QT4 + 0t (60n — &) — 00 = &a)] + 7(X™, bon).
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Define
—2log N ., = infow, QA4 + 1 — 1} — £)]
— info, QAT + 72 — 0} (8 — Eu)] + 7(XT, b0n),

where 71 and 7, are any vectors such that || = ¢, || = c. Since w; is sequentially
approximable by C;, ¢ = 1,2,and J ‘4 + n~ o= 0,(n7Y),

—21log A* ., = infeec™ QI TA + 11 — n}(6 — )]
— infaeel™ QAT + 1o — n}(0 — £)]
+ up(J74, ¢) + (X", Gou)

where |u| é and p(J 1A c) = op(1).
Let 6 = 0 — &, = 0 — &y . Then

—2 log A:‘;,,z = mfml QIn'J A + 7 — 6%] — mfwwz QIn'J A + 1 — 6™
+ up(J 4, ¢) + r(X™, fon).
Define F,(z, 71, 72) = Pa{—2 log )\n = x}. Obviously,
SUD|ry| <o,lral < 02lFn(+y 71, 72), Gu(+; 71, 72)] > 0 as n — .
Thus, from Lemma 4 and the triangle inequality,
(19) SUD|ry| <erlrgl <e 0ulFn( ey 71, 72), G+, 71, 72)] >0 as n— .

Since F.*(z) = Fn(%, Y1n , ¥2n), the substitution of vin , v2« into equation (19)
yields

(20) 6L[Fn*; G(y Yins Y2u)] —

Since this is true for every sequence {6p,} such that |v:.| =< ¢, the result in Case 1
follows.

The proof of Case 2 is similar to that of Case 1 and is omitted.

For the sake of completeness, the behavior of n™" log \* will be discussed for the
case when 0 is bounded away from at least one of the hypothesis spaces. This is in
the spirit of results obtained by Cox [2] and others, if not explicitly mentioned by
them.

Suppose that 0 is the true state of nature and that y; is the closest point to 0
inw;, ¢ = 1, 2, in the sense of Kullback-Leibler distance.

TareorEM 2. If for every e > 0 there exist neighborhoods Uie, Use such that

Y1 € Use, Yo & Use and
Eofsupyev;, log [f(X, 0)/f(X, ¥} < e i=1,2,

then

21) 07 Tialogf(Xa, b)) = 07 Lialogf(Xu, ) +0p(1),

1, 2.
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In particular
(22) 7 log N = 0 D a1 log [f(Xa, ¥1)/f(Xay ¥2)] + 0p(1)
1(0, ¥2) — 1(0, 4a) + 05(1).

4. Example. The following example illustrates the dependence of the asymp-
totic distribution of —2 log A* upon the manner of convergence of 6o, to 0.

Let k = 2 and w; , w, be the regions 6, = 6,° and 6, < —6;" respectively.

(i) Suppose 8y, = 0. This is the case dealt with by Chernoff [1]. It is easily
verified that «; and w, are sequentially approximable at 0 with respect to {1, = 0}
and {&, = 0} by the positively homogeneous sets C1 and C; , where Cy = {6, = 0},
Cy = {6, < 0}. Thus, asymptotically —2 log N behaves like the likelihood ratio
statistic for the test of 6; = 0vs. 6, < 0based on one observation from a N (0, J ')
distribution. Obviously, y1» = Y22 = 0 and

L{—2log \*} = L{infs, 50 (Z — 0)'J(Z — 6) — info,co (Z — 6)'J(Z — 8)}

where L{Z} = N(0, J ).

There exists a diagonal matrix D and an orthogonal matrix A = (A%, A®)
such that J = A’D?A. Transform the parameter space so that ¢ = T'J %9, where
T is the orthogonal matrix

<A(l)'DA/(Ju)%
A®'D7A/ ()}
and J = (Ji;), JF = (JY). It W = TJ'Z then L{W} = N(0, I). It is easy to
e2
@y
el
ot

Diagram 2
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show that
info, 50 (Z — 8)'J(Z — 0) — infoco (Z — 0)'J(Z — 6)
= info, 50 (W — ) (W — ¢) — infp,c0 (W — 0)' (W — o).

Thus L {—2 log \*} — L{U} where U = —W,2if W, = 0 and U = W if
W, < 0. This is the dlstnbutlon of a random variable which is +x*(1) with
probability £ and — x (1) with probability 2.

(ii) Suppose 6, = (n , 0). The reglons w; and w; are sequentlally approx1ma»
ble at 0 with respect to {£, = (n7%, %)} and {£, = (0}, —n~ )} by the
posmvely homogeneous sets C; and C, (defined as in (1)). In this case vy, =
(0, =n7%), 750 = (0, n7%) and $091 = 72 = (0, 0)". One can conclude from
equation (16) that —2 log \* has the same asymptotic distribution as in (1)
above.

(iii) Suppose 6o, = (0, n”*)". Asin (1), the regions w; and w, are sequentially
approximable at 0 with respect to {1, = 0} and {£&, = 0} by C; and C; . Obviously
Yin =7 = (0,1) =a = v = v,. Thus

L{—2log \*} — L{infs, 50 QIZ + a — 6] — infs,«n Q[Z + a — 6]}
where L{Z} = N(0, J7'). Perform the transformation ¢ = I'J0 and let W =
T'J'Z where T is defined as in (i). Then
info, 20 QIZ + @ — 6] — infa,co QIZ + @ — 0] = infy, 50 (W + T'a — o) (W

+ Tl — ¢) — inf,,« (W + T — o) (W + Tk — o)

where L{W} = N(0,I) and T'Jia = (J1o/ ik, 1/(J%)* )'. Thus, asymptotically
—2 log \* behaves like the random variable defined as

—(Ws + 1/ i Wy = —1/(J%),
(Wy 4+ 1/(J*)) if We < —1/(J%)},

where L{W.} = N (0, 1). This is a noncentral analogue of the distribution in
(1).

(iv) Suppose 80, = (n7%, 0)". The reglons wy and w, are sequentlally approx1-
mable at 0 with respect to {£, = (n%, ™)’} and {&n = (n7% —n7*)}. This
implies yi, = (0, —1) = —a = v; and 73, = (0,1) = a = v,. Thus,

L{—2log \*} — Liinfs, 20 Q(Z — a — 6) — info,0 Q(Z + a — 0)}

where L{Z} = N(0, J™).
By performing the same change of coordinates as previously, it is easily seen
that

L{—2 log \*} — Lf{inf,, 50 (W — T'J'% — ¢)'(W — I'Jla — o)
— infpco (W + T — o) (W + T'Jia — o))
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where L{W} = N(0,I)and T'Jla = (J 1/ J " 1/(J 22)%)'. Thus, asymptotically
—2 log \* behaves like the random variable defined as

(Wa — /(I i We < —1/(J®)},
—4W,/(J®) i —1/ () £ W, < 1/(JB),
—(Wy + 1/(JHN i W, = 1/(J®)L

(v) Suppose O = (0, n%). Then s, = n~* (where s, is defined in Case 2
of Theorem 1), w; and w, are sequentially approximable at 0 with respect to
(&1, = O} and {£, = 0} by Crand Cy, and yin = yan = (0,1) =a =1 = 75.
From Case 2 of Theorem 1,

—2n log \* — info,<0 [@ — 6]'T[a — 6]
in probability.
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