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CONVERGENCE RATES FOR PROBABILITIES OF
MODERATE DEVIATIONS!

By James AveEry Davis
Université de Moniréal

1. Introduction. In {15] Rubin and Sethuraman consider sequences {X,} of
independent random variables with partial sums S, = > i Xi. Under ap-
propriate- moment conditions on the X, asymptotic forms are determined for
P[S, > c¢(nlg n)Y. As in this paper, they also study the two sided deviation
problem, P[|S.| > ¢(nlgn)’], and term expressions of the above forms, proba-
bilities of moderate deviations.

In this paper, the convergence rate problem is studied for both

P[S.| > c(nlgn)’] and Plsupisza |Sk(klg k) > cl.

For random variables with mean zero and finite variance, it follows from the
central limit theorem that P[[S.| > c(nlg n)*] tends to zero. Theorem 1 of this
paper completely solves the convergence rate problem for probabilities of moder-
ate deviations under the preceding moment conditions. Theorems 2 and 3 result
from a study of the convergence rate problem when, as in [15], moments higher
than the second are assumed finite.

In the last section some of the properties of moderate deviations are abstracted
and analogous theorems presented in a somewhat more general setting. Here the
proofs are merely outlined when similar to earlier arguments.

Throughout this paper sequences {X,} of independent identically distributed
random variables with common distribution function F are considered. A median
for the random variable X is denoted by u(X), and ®(x) represents the standard
normal distribution funetion. [x] stands for the largest integer less than or equal
to z and lg x is the function defined by

lgz =log.xz for =z >1
=0 otherwise.
Also positive constants are written ¢, with or without subscripts.

2. Moderate deviations. This section deals exclusively with probabilities of
the form P[|S.| > ¢(nlgn)* and PlsupesnlSc(klgk) ™} > c] for sequences of
independent identically distributed random variables. In Theorem 1 character-
izations are given for such sequences with EX, = 0, EX,” < o in terms of each
of the above probabilities. Lemmas 1 and 2 are useful here and in later arguments.
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Lemma 1. Let X be a random variable and o > 0. Then
>on(lgn)MPIX| > nlgn] < «

if and only if E|1X|*™ < .
Proor. Let y(x Ig ) = « for £ > 1. Then ¢ is monotonic, hence has an in-
verse. Letting ¥ = ¢(|X]|), one may show by a standard argument that

> on*(gn) MPlY >n] < «

if and only if E|Y 1g Y|**" < o. By inverting Y this is seen to be equivalent to
the conclusion.

Lemma 2. Let {A,} be a sequence of independent events. If Y PlA,] is finite
then

Plu 4.] 2 20 Pld,] — 20 PlAa] 25 PIA ).

Proor. Proceed by induction when only finitely many terms are positive. The
inequality is then preserved after taking limits.
TuaroreEM 1. The following three statements are equivalent.

1) EX, = 0, EX)® < =.
2) e lgn(™)P[S. > e(nlgn)t] < o forall €> 0.
3) Dr i PlsupesalSi(klg k)7 > € < w  forall e> 0.

Proor. Note that according to Erdos’ result [3], statement 1) is equivalent to
7=t P[|S,| > ne] < o for all € > 0.
To show that 1) = 2), let,for1 = k = n,

Xin = X1 if Xi < e(nlgn)t

Il

0  otherwise,
and let Sun = D it Xin -
Then
D= lg n(nHP(Sa| > e(nlgn))
< 2imlgnPlXal > e(nlgn)’] + 1g n(n™)PlSul| > e(nlgn)'].
By Lemma 1,
EX® < o = Y walgnP[|Xi] > e(nlgn)?] < .

Thus the series of first terms above converge, and one may deal only with the
truncated random variables Xy, . Let X}, be the symmetrized random variables,
ie, Xin = Xm — X in Where Xin and Xi, are independent and identically dis-
tributed.
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By Markov’s inequality [13], p.158,
PlS5] > e(nlgn)l] < E(Sum) e n(Ign)™
= ME(X)® + 15n(n — 1)E(Xi) E(Xi)?
+ 90n(n — 1)(n — 2) {E(X5)3% e (nlg n) >

Here the equality follows by symmetry (odd moments vanish), independence,
and identical distribution. Consider the first term in the expansion

S lgn(m™E(XL) (g n)™
< Yaan(gn) " in (klgh)® - Pl(k—1)1g(k—1) < (X*)* < klgkl

= > (kg k)’Pl(k — 1) 1g (k— 1) £ (X*) < k lg k]2 2= n"(Ig n)™
S e (klg B)P[(k — 1) lg (k— 1) £ (X)*<klgh] < .

Here the last inequality obtains by integration by parts, i.e.,
2 (lgn)™ = 0k (Ig k)™).

The last series converges because EX* < « = E(X ")? < . Similar arguments
hold for the other terms in the expansion. Thus since condition 1) on X, implies
1) on X', 2) has been demonstrated for the symmetrized random variables.

By the weak symmetrization inequalities [13], p. 245,

“ 2 lgn(m™)P)S.| > e(nlgn)t] < »
= D n=elg n(n PS8y — u(Sa)| > e(nlgn)f] < «,
where p denotes the median. By [13], p. 244,
(A) l(8s) — ESa| = [u(8a)] £ (26°(8a))! = (2nEX)")E,
Then we have
o > 2aalgn(n ) (PllS. — u(8a)| > e(nlgn)]
= e lgn( PS> e(nlgn)t + (2nEXH)Y
= X n=lg n(n)PYS.| > 2¢(nlgn)l]

and 1) = 2) is proven. The converse, 2) = 1) is demonstrated in the proof of
Theorem 5.

Now it will be shown that together 1) and 2) imply 3). Let ¢ be chosen such
that 2° < n < 2°*". Then

Plsupezna |Sel (B lg k)™ > ¢ < Plsupsi<i |Sil (B lg k)™ > .
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Now again consider the symmetrized random variables X;" and S,

PS8, > e(nlgn)l

1%

P[Sns > €(21‘+1 lg 2i+1)%]

v

P[(S: > e(2F 1g 2™ and Dy X = 0]
1P[Ss: > (27 1g 271}

%

%

1P[S5: > 2¢(2°1g 29)Y).

The above inequalities are due to the symmetry and independence. By the above
and the symmetrization inequalities, one obtains

2n=lg (PS> e(nlgn)l] < o forall >0 implies
(B) = > 2 %=lgn(n™)PIS.* > e(nlgn)?
= 2o DAL g n(n PS> e(n lg n)Y
= 12 %, 1g 2°P[S5: > 2¢(27 1g 297,

With the above inequality the convergence of 3) for symmetrized random vari-
ables mayv be demonstrated.

D mman  Plsuprza S (klgk)7E > ¢
< D% Plsupezer S (kg k)™ > o
1 25 Plmaxy cecoitt S (kg k)™ > o]
T Dt Plmaxe <eczitt S > (27 1g 27)]
2205 2 PS> e(27 1g 2))Y)

A TIA

IIA

Here the last inequality comes about from Levy’s inequalities [13], p. 247, and
the earlier ones from the subadditivity of the measure. Now this last sum is
exactly

I

2 7 jP[Ssi+1 > (27 1g 29)7]
< 2(1g 2) 7 Do 1g 27T P[Shi > 1e(27 1g 27
< e malgn(n PS> te(nlg n)] < w.

Here the last inequality is an application of (B). Hence 3) is satisfied for sym-
metrized variables.
Again by the symmetrization inequalities [13], p. 247,

> n T Plsuprs. St (kg k) > € < o
= 2 e Psupiza (S — u(8:)) (kg k)™ > ¢ < w.

Now by an argument as in (A) it can be shown that the median term does not
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affect the convergence, and one obtains that
2 n=en” Plsupiza [Si(k g k)7 > 2¢ <

for all e. Thus 1) and 2) = 3).
In order to show 3) = 1), apply Lemma 2. First it must be shown, however,
that

D PlIXy > e(klg k)Y < o.
Let Ar = [|Xi| > e(k lg k)?*]. Note that P(4:) = P[|X1| > e(klg k)*] by the
identical distribution of X’s, and also that the A;’s are independent events.

Uit Ay € Uiz, [18e] > 2e(k Ig k)Y,
thus
PlUiL i1 4] = PIUALISi > 3e(k Ig k)]
= Plsupeznm |Se(k1g k)~ > 2el = 0.
From hypothesis 3) and the fact that the last term is non-increasing in m, it
must tend to zero; see [1], Lemma p. 113. That is, P(lim sup 4;) = 0.

Now apply the Borel zero-one criterion [13], p. 228, and

2 PIXi| > e(klg k)] = 2o PIXi| > e(klg k)] = 2o PlAi] < oo.
To complete the proof of 3) = 1), let N be such that ) n—y P[|X.| > e(nlgn)l] <
8 < 1. Then

© > D ey Plsupesa |Sk(k g k)7 > 3
2 2 5w PIUi [ Xnial > e((n 4 k) Ig (n 4 £))]
¢ m=w 1 20 Pl Xnskl > e((n + k) Ig (n + k)]
¢ PIXy| > e(klg k) D fcan™
¢ Do PIXa| > e(klg k)i 1gk
where the third inequality is of course obtained by Lemma 2.

Since this last series converges, Lemma 1 is applied once more taking « = 0,
and the desired result EX," < o is obtained. From the hypothesis 3) one easily
obtains S./n —... 0, but since EX* < o, the strong law of large numbers yields
Sn/n —as. EX; and hence EX; = 0. Thus 3) = 1), and the proof of Theorem 1
is complete. ‘

In Theorem 2 random variables with several finite moments are considered.
The result demonstrates the conditions that a prescribed convergence rate im-

poses on the individual random variables.
THEOREM 2. I} the series

2o n P (1g n) OB HP(S,] > c(n g n)?]

converges for all ¢ > ¢y > 0 then EX, = 0 and E|X:|""** < . Also for ¢y < 1
then EX.® < 1 and forco > 1, EX?® < o’

v v

1\
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Proor. Take ¢, = (Ig n) 0" and apply Theorem 5 to obtain EX; = 0 and
EX.® < . Thus (3) of Theorem 2 can be used togive Y, P[|X.| > 2(nlgn)l] <
« by the zero-one argument given previously. Since the sequence of above terms
is monotone decreasing one obtains nP[|X,| > e(nlgn)* — 0 for all ¢ > 0. Let
= [Sa| > e(n 1g )] and notice P[M,, ] — 0 as in the proof to Theorem 5
Wlth on = (g n)}. There is an N such that for all n =z Nandallk,1 £k < n
P[|Sn — Xi| < e(nlgn)] > > 0. Now fixn = N, let A = [|Xi| > 2¢(nlgn)¥,
By = [|8a — Xl < e(nlgn)?]for1 < k < n and proceed as in [3] using the
fact that nP[4,] — 0. That is, since 4x n B, € M, , P[M,] = P{U/ (4 n
Bi)] = ynP[A.], ¥ > 0 and independent of n. Now since the random variables
are identically distributed one obtains

Z ncOZIZ(lg n)(co2/2)+1P IXII > 20(n lg n)%] < o,

An application of Lemma 1 gives the desired result £|X 0 < oo,
In showing EX,® < 1forc < 1 Katz extension of the Berry-Esseen theorem
may be used since the existence of ¢’ + 2 moments has been established. Let
2 2
g = EX 1.

P[|S4] > ¢(nlgn)!] = P[Sue™n Y > co(lg n)?Y
= 28(—co '(Ig n)Y) — |PSwen7¥ > o (g n)
— 28(—co ' (Ign)H))|.
Now by [10], one obtains
|P[[Sae 7| > e (Ag n)*] — 28(— co Mg n)})| < k/nc""?

with k£ > 0. Also using the approximation to the tail of the normal distribution
[5], p. 166:

28(— co (g n)?) = d(Ig n) I, d>o0.
Now from the above inequalities
P[|Sa| > c(nlgn)t] = d(g n)n~"*" (1 — k(g n)*d_ln"““zm)“ﬁmﬁ)).

Under the assumption ¢* > 1, choose a ¢ > ¢ suh that c/2 o < G Then for all
sufficiently large n the last expression above majorizes dn "> /2(Ig n)* and the
contradiction can now be obtained:

2=y 0P (1g n) P HP(S, | > o(n g n)l]

2/2)—(c2/202)—1 241)/2
> %dZ:’___Nn(Co 12)—(c%/202) (lg n)(co /2 _

Thus EX,* < 1 for ¢ < 1.
If co = 1 the convergence rate certainly implies

D n P P[S.] > e(nlgn)] < w
The Berry-Esseen theorem then gives

> sup |P[Sa0 'n ™t < 2] — o(z)] <
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for all ¢ > 0. Thus
2T P8 > e (Ign)Y] — (1 — ®(eoT(Ig m)H))| < .

Then 2.2 **P[S,| > ¢(n lg n)}] < « if and only if > n %1 —
®(co*(Jg n)?) < » which in turn converges and diverges with

Z n—(%-‘—é)(lg n)—% exp ('—%620'_2 lg n) — Z (lg n)—%n—-(%-f-e-‘r%czlaz)'

Thus 2¢ + ¢*(¢) > 1forall e > 0 and ¢* = o for all ¢ > ¢ . This implies
¢’ = o which completes the theorem.

Theorem 3 demonstrates how the moment conditions on the random variables
imply a convergence rate for P[supxzn |Sk(k 1g k)_%l > ¢]. The following proposi-
tion is needed.

ProposITION 1. Let a > —1,b = 0, and ¢y = 0. If EX; = 0 and EX,® < =,

D =1 n°(lg n) Plsupesa |Se(k 1g k)72 > ¢] < o
for all ¢ > ¢ if and only if
w=in*(Ign)°Pl|Sa| > e(nlgn)’] <

forallc > ¢ .
Proor. Fix ¢ > ¢ and choose o > 1 such that ¢/a* > ¢ .

D min®(lg n) Plsupeza | Sk(k lg k)| > ¢]

(1) = 2% (Ig o) Plsupsze |Se(k 1g k)7 > o
< e i & VP D Plmax . <icai+t [Se(k 1g k)Y > ]
< D i &P YR PImax e chcai+t
08 = w(Si — Star+n)l(e’ Ig &)
> ¢ — maXei gecaitt [1(Sk — Staitn)|(e Ig ') 7]
(2) S 02 i &P Y PImaXei ckeaitt |(Se — w(Se — Staitn))
(@ 1g )Y > ca™
(3) < 2t &P Y5 Pl Stait| > ca (o 1g o)
= ¢ i1 P[|Situ| > ca (o’ 1g NI o
(4) = a2 Fa VPP S| > o (o Ig o))
(5) S 62 i o A P8 > ! (nlg n)]
(6) = 2 nan’(lgn)’P[lS.] > ca”(nlgn)’] < w.

Step (1) obtains as follows. If o < n then
Plsupisn |Sk(k1g k)7¥ > ¢] £ Plsupiza |Se(k lg k)7H > .
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Thus

2t n(Ig n) Plsupszn | Si(k 1g k)™ > ]
< Plsupssas |Se(k g k)7 > ] 52004 (g n)®
< cai(“ﬂ)(lg ai)bP[supkgae |Sk(k 1g k)_*[ > cl.

(2) is obtained as in step (A) of Theorem 1.
Step (3) follows by Levy’s inequalities, Logve [13], p. 247, and

g o™ < caM (g o)} forall j= (a— 1)L

ca (a
(4) follows from
I P = 0(a7PY.
Another application of Levy’s inequalities yields (5). For o’ < n < o',
Pl|Stan| > ca*(a’ Ig o))
< Plmaxei<i<a [Sp — p(Sk — Sa)| > ca(d Ig o)}
— MaXai <k <n [W(S; — Sa)l]
< Plmaxai<i<a |Se — p(Se — Sa)| > ca” (o’ 1g o)}
< 2P[|8.] > ca*(nlgn)l.
Thus,
P(|81ait| > ca(o Ig )]
< 207 (a — 1)L PUSA > cat(n g 1))

Finally, for o’ £ n < o', (6) follows from

P < en*(lg n)”.

The converse of the proposition is obvious.
Using the above result, the proof of Theorem 3 is reduced to showing that

20 Ag ) VP8, > e(nlg )] < .

TaporeM 3. If EX, = 0, EX\® < 1, and E|X,|"" < o for some integer
el = 1, then

D (g n)(”"z—le[supkén 18Kk 1g k)7 > ¢

converges for all ¢ > ¢ .
Proor. Setting ¢, = co'(Ig n)* with ¢* = EX, one may proceed as in
Theorem 2:

P(|8.] > ¢(nlgn)'] = PlISu(s7n™H)| > t]
< |P[ISuc ™07 > ta] — 2B(—t,)] + 28(—t,).
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Now because t, = co "(Ign)? = ((1 4+ 8)c’ Ign)? for some & > 0, an applica-
tion of an 1nequahty due to Esseen [4], p. 73, gives

|P[[:Sno ™" n_’l > t] — 20(—ta)] £ /(1 + tn°°2+2)n°°2’2.
Again by the approximation to the normal distribution in the tail,
28(—ta) < oty e

Thus, replacing ¢, by co™*(Ig n)?, each term of the original series may be
bounded:

n U 0) CPEPYS,| > o(n lg )]

< 03(n (lg n) 3/2 —[(c2/2a2)—(co2/‘z)+1](lg n)—[(c02/2>+1])

for all sufficiently large n. This sequence is summable for all ¢ > ¢ ; thus
2 2 1g ) TIPS, | > o(n g n)]

converges for all ¢ > ¢,. The hypotheses of Proposition 1 are satisfied and the
theorem is proven.

3. Generalizations. In this section sequences {¢,} with certain propertles of
(Ig n)* are considered. By restricting the rate of increase of {¢,} it is possible to
prove theorems analogous to those of the previous part. Lemmas 8 and 4 are ex-
tensions of the first lemma of the previous section.

LemMa 3. Let X be a random variable and {¢,} a non-decreasing positive se-
quence. Then

EX' < o = 0, P[|X| > nlps] < .

Proor. Take ¢/(ne,’) = n and proceed as in Lemma 1.

With the above a convergence rate is estabhshed for sequences {¢,} that may
increase somewhat less rapidly than (Ig n)®.

TaEOREM 4. Let {0} be a non-decreasing positive sequence such that

Z (l/n‘Pn4> < o,
If EX, = 0 and EX < w», then Z<pn2n—1P[|Sn| > nlp,] < .

If lim sup (n/e,") = 0 the centering at expectations vs unnecessary.

Proor. Asin Theorem 1 , using Lemma 3 one may show that the random varia-
bles may be truncated at np, . N ext, by much the same argument as the one used
in Theorem 1, it is shown that the convergence of the series of symmetrized
random variables is equivalent to the conclusion of the theorem. Again it must
be shown that

u(8a) /oan’] — 0.

With this information Markov’s inequality is applied to the truncated sym-
metrized random variables; i.e.,

PlISu| > on'] £ E(S85)'n"0,".
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Then this expectation is expanded and, as in Theorem 1, the hypothesis
D n'pn ' < o s just right to insure that . 0nt P[|Son| > 0an?] < w0,

which has been shown to be equivalent to the original conclusion. To demon-
strate the last remark of the theorem, assume that lim sup (n/¢,’) = 0 and
EX; < ».Then

2 5= @' (n)nTPlISy — B(8.)| > dm'e] < o,
but, as in (A) of Theorem 1, it is shown that this implies
2 & (n)n PS8, > nlp,] < »

with EX, = 0.
Before proving a converse to Theorem 4, the following lemmas are needed.
LemMmA 4. Let X be a random variable and {¢.} a non-decreasing positive se-
quence such that

n«’nZ = O(Zz:;l ¢k2)-
Then
EX’ < © & Dm0 PlX] > oun'] < .
Proor. Let ng,” < KD i ¢ for all n. Then
EX" £ 25-ng' (n)Pl(n — 1)gno < X° < nea]
S KD na (2 0d)Pl(n — Deha < X < npal
= K2 7= 6.’ PIX* > (n — 1)ghi]

which converges by hypothesis since ¢, < k[(n — 1)/(n — k)lps_, for n > k.
The converse is, of course, Lemma 3.
Lremma 5. Let {n} be a positive non-decreasing sequence. Then

nn = 0( 2 im1¢1) < om = 0(on).
Proor. Let
Mon = O( 2= 01).
Then there is a constant L, 0 < L < 1, such that
0 < Lngn £ Dok o1 < ngpn

because ¢, is non-decreasing. Now choose « such that 1 < a« < 1/(1 — L) and
again let [z] denote the greatest integer function. Then

Llon]oreny = Z,Eﬁ{‘] Pk and —Npn = —ZI?=1 @k -
By adding the above inequalities and simplifying, one obtains

Olan) = ﬂ"n/(a(L - 1) + 1) =< kon.
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To show that g2, = O(en), one obtains for sufficiently large n
on Z Pk Z olafon]lk” 2 - Z olaf- - [onllkT Z ook,

independently of n.
For the converse, assume the existence of some & > 0 such that ¢ = ke, for
all n; then

Npon = Nkepn = kZiln-H or = kZill Ok .

TurorREM 5. Let {o.} be a positive non-decreasing sequence such that ne,” =

O( i) If
r o (W) P[S.| > enten)

converges for all € > 0, then EX:® is finite. Furthermore, if lim sup (n/@.’) > 0
then EX, = 0.
Proor. By the symmetrization inequalities,

Z:=l ‘Pnzn—lp[lsnl > en%ﬁon] < o = Zo':=l Sﬂn?n—lP[Sns > en%‘Pn] <

where 8.’ is, of course, the sum of the symmetrized random variables. It will now
be shown that the convergence of the latter series gives E(X,")* < <, and thus
EX12 < o,

First one must show that S.’e, "n* — 0 in probability. This is, of course,
clear from the hypothesis if ¢,” > n infinitely often for some 8 > 0. If 8,0, 'n~*
does not converge to zero, there is an ¢ > 0 and a subsequence {7} such that
N1 > 2Nk and

P[Ssnk > eoﬁonknk%] > €.

Let 7 be such that nx = j < 2m, and apply Lemma 5 to obtain the existence of
K such that g3, = Ko, for all n. Then

(2K)’o(m)mt Z o(2n) (2m)t > ()7
Hence

PSS > «(20) ()i 12 PISS > e0(2K) o(2me) (2n)]

P[S; > exp(m)ns’]

1P[S5, > eop(ni)ni’]

€/ 2.

The above obtains by symmetry and indell)endence. Then we have

2= (mnTPISY > eo(2K) nle(n)]

2 2 S ()TPISS > a(2K) e (4)]
Seod ims D ik, @' (1)1

2 %602;;1 10 (m)ne oy =

v v

\%

v

v
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because ¢ is non-decreasing. Thus this contradiction shows that S,*(o(n)n?) ™ —
0 in probability. Now by the corollary to the degenerate convergence criterion
[13], p. 317, one obtains

nP[X," > ep(n)n'] — 0,
and now Erdos’ method is used to obtain E(X*)* < «. Taking
Ay = [Xi’ > 26%’(”)"/%]

and

Bi = [2ta X < ep(n)nl],
one proceeds just as in Theorem 2 and obtains
© > D ne o (n)n ' PIS) > en'o(n)]
2 ¢ Xim ¢ ()PIXS > 2an’(n)]

By Lemma 4, since n¢’(n) = O( D p1 ¢ (k)) and e was arbitrary, E(X,")* <
. Thus EX;" < .

To show the last statement in the theorem, it is known that S,/n — EX; and
8./ (n'e(n)) — 0, but

8./ (nlo(n)) — EXm}/(e(n)) — 0.

Hence if n/¢’(n) > e infinitely often, i.e., im sup (n/¢’(n)) > 0, then EX;
must be zero.

The combination of these results gives an extension of Theorem 1 to a more
general class of sequences. For example taking ¢, = n? in Theorems 4 and 5
gives the previously mentioned result of Erdos [3].

Acknowledgment. I would like to thank the referee for many helpful comments
and suggestions. In particular by noting that the original hypothesis of Theorem 2
would be weakened to ¢, > 0 he has greatly improved the result and, in a sense,
made it complementary to Theorem 1.
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