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A TREATMENT OF TIES IN PAIRED COMPARISONS'

By Jacpir Singa? anp W. A. TaompsoN, Jr.

The Florida State University

1. Introduction. This paper extends the results of Thompson and Remage
(1964) and Remage and Thompson (1966) to cover the treatment of ties in
obtaining maximum likelihood paired comparison rankings.

An easily understood, nonmathematical description of this problem is the
following: Given the win-loss-tie records of the various major college football
teams in the nation, but ignoring the scores of the games, under minimal assump-
tions determine the national rankings of the teams. In particular, since all teams
do not play one another, determine how pairs of teams may be ranked indirectly
and which pairs cannot be ranked at all.

More important scientific motivations for the research arise in psychology
and other social sciences. For various sound experimental reasons the statistician
will frequently encounter paired comparison data. The members of a set X of m
objects are compared two at a time by a ‘“subject” who states his preferences
and indifferences. In this way two basic comparisons x; — z; and z—=z;, read
“‘x; preferred to z;”’ and “a; ties z;”, are established among the objects of X.
If these objects stand in some order then as a minimum we expect that the order-
ing relation will be transitive and asymmetric. Such a relation is called a prefer-
ence. In general, the basic comparisons will not immediately yield a preference
relation; some pairs of objects will not have been compared directly and an in-
direct method of comparison will have to be found. Indirect comparison is the
topic of Section 2. But indirect comparisons will usually be self-contradictory
and some basic comparisons will have to be deleted or changed in order to obtain
a preference. The cffect on ranking of changing the orientation of lines is studied
in Section 3.

In Section 4, to find a criterion for altering basic comparisons, we advance the
following stochastic model for paired comparison data with ties. The m objects
of X are independently (in the probability sense) compared in pairs. z; and z;
are compared on n;; = 0 independent trials; each trial having three possible
outcomes denoted respectively by x; — x;, ; — 2, and z;—=z; . Let 9 denote
the set of subscript pairs (¢j) such that 1 £ ¢ <j < m andn;; > 0 and letn
be the number of pairs in 9. We have n. £ (3') with equality holding in the
important case where every pair of objects is compared at least once. We con-
sider these basic paired comparisons to constitute a sample and we introduce the
population parameters w;; = P(z; — ;) and vi; = P(a:+—=x;). The probability
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that z; — x; oceurs s;; times and zi—a; oceurs t;; times (si; + s;; + ti; = nyy)
for each and every pair of items is given by

(1) TLa it (sait st tag) ™ i Pmsdindy

We may as well restrict our attention to those parameters with subscripts in g
since mi; + i + vi; = 1 and vi; = v;:, there are exactly 2n such functionally
independent parameters. Thus the parameter space Q@ consists of all =;; and v;,
with subscripts in 4; it is a subset of 2n dimensional space. We denote by = a
typical point of . In @ the maximum likelihood estimate of = is #, the point
with coordinates #:; = si;/n:; and 9s; = t;;/n:; . From (1) we have that the
log-likelihood function is a constant plus L(w), where

(2) L(r) = 2gnij(#i;log msj + #y:log mji + islog vi).

For T'(r), a relation in X to be defined in Section 4, let w be that portion of
the parameter space @ where T'() is a preference relation. Given paired compari-
son data on X we propose to estimate an order among the objects of X by
maximizing (2) with respect to = over the region w. Writing # for the resulting
restricted maximum likelihood estimate of r, then the estimated order is the one
determined by T'(#). The principle result of Section 4 (Theorem 12) is a neces-
sary condition for a ranking to be optimal.

Section 5 is a discussion of alternative approaches for treating paired compari-
son data with ties.

2. Use of indirect comparisons. Mathematically, paired comparisons are
relations. We will use the more precise mathematical language. Relations are
defined between pairs of elements of the set X = {x,, 25, -+, &n}, they are
subsets of X X X = {(&:, z;)}; if « stands in relation R to y then we write
xRy or (z, y) & R. An introduction to relation theory may be found, for example
in Cogan et al. (1958). The identity relation = is fundamental; 2 = y means
that « and y are the same elements. Definitions of various other relations and
their properties appear in the following two tables.

We now study various relations and their associations to one another. Qur

TABLE 1

Properties which a relation R may have
Name of property Property (for any %, y and z in X)
reflexive (z,z)e R
antireflexive (x,z) 2R
symmetric (z, ¥) € R implies (y, z) e R
antisymmetric (z,y) e R and (y, z) ¢ R implies x = y
asymmetric (z, ¥) ¢ R implies (y, z) 2R
transitive (x, y) e R, (y, 2) ¢ R implies (z, z) ¢ R

complete either (z, y) e R, (y,z) e Rorz =y
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TABLE 2
Common relations
Relation Defining properties
Equivalence reflexive symmetric transitive
Preference asymmetric transitive
Weak order reflexive transitive
Partial order reflexive antisymmetric transitive
Simple order reflexive antisymmetric transitive complete

goal in doing this is ultimately to determine when a set of basic paired compari-
sons will yield weak, partial, and simple orders as well as preference relations.
A weak order W determines (i) an equivalence relation £ defined by

(z,y) e Eiff (z,y) e W and (y,x)eW
and (ii) a preference relation ¢ defined by
(z,y) eQiff (z,y) e W but (y,z)eW.

Note that a simple order is a partial order. Also a partial order is a weak order
whose determined equivalence relation is the identity relation: distinct elements
cannot belong to the same equivalence class.

An equivalence relation E is consistent with any other relation R if (z, y) ¢ £
and (y, 2) € R imply (z, 2) ¢ R, while (x, y) ¢ E and (2, y) € R imply (2, z) ¢ R.
It is easy to prove that the equivalence relation determined by a weak order is
consistent with the determined preference relation and also with the determining
weak order. On the other hand we have:

TaeoreM 1. If E vs an equivalence relation consistent with a transitive relation

T, then W defined by
(z,y) e W iff either (x,y)eE or (z,y)eT

1s a weak order. E and T are the equivalence and preference relations determined by
W ift T is antireflexive.

This is an extension of a result proved in Cogan.

Given a relation R, then a path K in R from y: to y;, denoted by
[yl yY2, 00 yyl]r is a collection of pa'irs (yl 7y2) & Ry (y2 ) y3) & R7 ] (yl—l ) yl) &
R.Ifyi,ys2, « -+, y: are distinet then K is called an elementary path. A loop is a
path whose first and last points coincide. As a generalization of completeness we
say that R is semicomplete if for distinct x and y there is a path either from
z to y or from y to z.

An ordering of the elements of X will ordinarily be denoted by P or
(p1,p2, -, pm). A relation R on X is said to determine a partial rank ordering
(pro) P if (p;, ps) £ R whenever j > <. In the sequel we determine when a pro
exists and when it is unique. Proof of the following result can be found in Thomp-
son and Remage.
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THEOREM 2. (i) A relation R on X determines at least one pro iff 4 is loop free
(has no loops). (ii) A relation R on X determines a unique pro iff <t ¢s loop free
and semicomplete.

TueoREM 3. A transitive relation T is asymmetric (and hence a preference)
iff (1) T s loop free or (ii) T is antireflexive.

Proor. To prove that asymmetry implies (i), let (21, 2:) e T, (22, 23) e T, - - -,
(-1, 2x) €T, (2, 21) € T be a loop. By transitivity of 7, (21, ) € T and T' is
not asymmetric. That (i) implies (ii) is a trivial special case. Finally assume
(ii) but that asymmetry does not hold, i.e. (z, y) ¢ T and (y, ) ¢ T. By trans-
itivity (z, ) € T, denying the assumption (ii).

A bigraph consists of a set X = {2, 22, -+, Tm} of points and two disjoint
relations C and D, called undirected and directed lines respectively. Letting x
and y be arbitrary elements of X then C and D will have the properties (i)
(z,z) 2C v D, (ii) if (z, y) ¢ D then (y, ) £ D, but (iii) (y, ) ¢ C whenever
(z, y) € C. Geometrically, we represent a directed line (z, y) ¢ D by  — y and
an undirected line (u, v) € C by u—v.

We will speak of the bigraph [X, C u D], or simply C u D when the set X is
understood. Bigraphs having no undirected lines are digraphs. Digraphs have
been studied from the present point of view by Thompson and Remage (1964)
and in general by many authors including Harary and Moser (1966). Our reason
for studying bigraphs is that they are a very convenient way of representing
paired comparisons geometrically. The objects are represented by points, the
preferences and indifferences by directed and undirected lines. We think of C
and D as basic or direct comparisons which are usually incomplete and incon-
sistent and we wish to define indirect comparisons in terms of C' and D.

A loop (path) in C u D which is not entirely in C' and hence includes at least
one directed line is a circuit (directed path). Note that the bigraph C u D is loop
free iff it is circuit free and C' = ¢, the null set. The following figure illustrates
a few concepts.

1) (i1) (1i1)
xl xl xl
x4 x2 xa x2 x4 x2
x3 x3 x3

The bigraph (i) is circuit free but is not loop free since [x3, zi, @3]
and [z1, 22, 1] are two paths in C with end points the same. The bigraph (ii)
has circuits [21, 23, 2, 1] and (23, 24, 2, 21, 23] whereas the bigraph (iii) is
loop free.
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Given a bigraph C u D of direct comparisons, how may we establish order
among the objects of X? We begin by defining various indirect relations in
terms of C'u D. Let z and y be arbitrary elements in X and define an equivalence
relation I, a weak order W and a transitive relation T in the following way:

(v, y) ¢ Eiff n = y or they are in the same loop of C' u D,
(3) (x,y) e Wiff 2 = y or there is a path from z to y in C' u D,
(%, y) & T iff there is a directed path from z to y in C u D.

It D determines several pros then 7' uses the indirect comparisons to decide
among them; a pro determined by T is a pro determined by D but the converse
is not true. Note that E is the equivalence determined by W that E and T are
consistent, and also that (z,y) ¢ W iff either (z,y) ¢ E or (z,y) ¢ T. However, T'
is not necessarily the preference relation determined by W. In fact, T may
not be a preference relation. We have: .

TueorREM 4. The following conditions are equivalent.

(i) C u D is circuit free.

(ii) T 4s a preference relation (necessarily determined by the weak order w).

(iii) T us loop free.

(iv) T determanes at least one pro on X.

Proor. It is easy to see that (i) implies (iii). Conversely, assuming (iii),
then T is antireflexive from Theorem 3. If there is a circuit in C' u D, then it will
contradict the antireflexive property of 7. Hence, (i) and (iii) are equivalent.
Since £ and T are consistent and (z,y) ¢ W iff (z,y) ¢ E or (z,y) e T, it follows
directly from Theorems 1 and 3 that (ii) and (iii) are equivalent. Finally (iii)
and (iv) are equivalent from Theorem 2.

CoroLraryY. T determines a pro (p1, Pz, =+ ,Pm) on X such that (piypin) eW
Jori=1,2,.-- m — 1iff C u D is semicomplete and circut free.

Proor. If T' determines a pro then C u D is circuit free. If in addition
(Pi,pi) eWiori = 1,2, -+, m — 1 then since W is transitive, C'u D is semi-
complete. On the other hand if €' u D is circuit free then 7' determines a pro.
We only need to show that (p:, pi1) e W, butif C u D is semicomplete then
either (p:, pinn) € W or (pia, p:) € T. The latter possibility denies that
(pl y T pm) is a pro.

Theorem 4 says that if indirect comparisons between objects are to yield some
asymmetric and transitive relation then C'u D must be circuit free; certain pairs
of objects may however not be comparable. The corollary says that if in addition
all pairs are to be comparable, either by equivalence or preference, then C v D
must be semicomplete.

Note that W need not be a partial order on X even if C' u D is cireuit free since
the equivalence relation £ determined by W is not necessarily the identity rela-
tion. We have

Lemma. W is a partial order iff C = & and D is circuit free.

The proof consists of observing that the equivalence relation E determined by

W is the identity relation iff C u D is loop free.
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In part, the next theorem treats the question of when it is possible to de-
termine a unique pro on X.

TuroreM 5. The following conditions are equivalent:

(i) C = &, D is circust free and semicomplete.
(i) W 1is a simple order.

(iii) T <s loop free and complete.

(iv) T determines a unique pro on X.

Proor. From the lemma, C = & while D is circuit free iff W is a partial order.
But D is semicomplete iff W is complete. Thus (i) and (ii) are equivalent. From
Theorem 2, T determines a unique pro iff 7' is loop free and semicomplete.
Therefore, (iii) and (iv) are equivalent. Finally we see directly that (i) im-
plies (iii). On the other hand, when 7' is complete then C u D is semicomplete
and from Theorem 4, C u D is circuit free when 7 is loop free. It remains to be
seen that C = . Assume (z:, z;) ¢ C. Since T' is complete there is a directed
path K either from z; to z; or from z; to x; in C u D. In either case K combined
with (z:, z;) ¢ C forms a circuit in C u D. This contradicts that 7' is loop free
and the theorem is proved.

The next result gives the canonical form of a unique pro; its proof is from the
previous corollary.

CoroLLARY. T determines a unique pro (p1, p2, ***, pn) on X iff C = &,
(pi,pin) eDfore=1,2,---,m — 1,and (p:, p;) € D fors > j.

3. Changing the orientation of lines. In general a bigraph will not be circuit
free and it will be necessary to change the orientation of some of the lines in
order to obtain a pro. By ‘‘changing the orientation” we mean changing the
direction of a line, assigning a direction to an undirected line, or changing a
directed to an undirected line. C; u Dy is a subbigraph of C u D if C; € C and
D, C D. A subbigraph C; u D; is maximal circuit free (mef) iff it is circuit free
but not properly contained in any other circuit free subbigraph of C u D. In
the next section, for a particular context, we will show that rankings determined
by mef subbigraphs constitute an optimal class.

Let Cy u Dy be a mef subbigraph of C u D. Define a set of directed lines #;
such that (z;, z;) ¢ F1 iff (x;, x;) € C/C1 and there exists a directed path from
2; to z; in Cy u Dy . For (2, x;) € C/Cy there is a directed path from either x;
to x; or x; to x; but not both, otherwise C; u Dy would not be mef. It follows that
F, is asymmetric and F; = & iff C/Cy = . Next we may observe that for
(z:, x;) e D/Dy , there is either a directed path from z; to z; in Cy u Dy or a path
joining x; and z; in C; but not both. Define another set of directed lines F; such
that (x;, x:) & F2 iff (x;, ;) ¢ D/D;y and there is a directed path from z; to x;
in Cyu D;. Finally define a set of undirected lines F; such that (z:, z;) ¢
F; iff (x;, ;) € D/D; and there is a path joining z; and z; in C; . Note that F, is
asymmetric whereas F;; is symmetric. Also Fou Fy = Ziff D/Dy = &. F1uFuFs
is the set of lines obtained by changing the orientation of the lines in (C/C:) u
(D/Dy).

Our next theorem says that C; u D; and C; u Dy u Fyu Fy u F3 determine the
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same preference relation. That is, it is immaterial whether we delete lines or
change their orientation. We will write, for example, T(C; u D;) to mean that the
relation 7" of (3) is defined by C, u D; .

TurorEM 6. Let Cy u Dy be a mef subbigraph of C u D. Then T(Cy u D) de-
termines the pro P iff ¢¢ is @ pro determined by T(Ciu Dy u Fiu Fyu Fy).

Proor. The “if” part of the theorem is obvious since C; u Dy is a subbigraph
of CruDyuFiulF,uF;. Conversely, it will suffice to show that there is a directed
path from z to y in €7 u Dy whenever there is one in C; u Dy u F1 u Fyu Fj.
Consider a directed path K from z to y in C,u Dyu Fiu Fou Fs . If (24, 2;) is a
line of K belonging to F'; , then there exists a directed path from z; to ;in Cy u Dy ;
replace the line (2:, ;) by the corresponding directed path. Similarly for each
line of K belonging to ', or F; replace the line by the corresponding path in
Ciu D . In this way we have a directed path from x to y in C; u D; corresponding
to K.

From Theorem 4 we have the

Cororrary. If Cyu Dy is a mef subbigraph of C u D, then CiuDiu Fiu Fau Fy
18 circutt free.

The following theorem says that there is a possibility of determining a unique
pro even if the original bigraph C u D is not loop free, that is, there are some tie
relations.

Tueorem 7. Let Cy u Dy be a mef subbigraph of a complete bigraph C u D.
Then T'(Cy u Dy) determines a unique pro iff C; = .

Proor. Irom Theorem 5, 7(C; u D;) determines a unique pro only if C; u Dy
is loop free which implies that C1 = . To prove the converse observe that if
C: = & then loop free is the same as circuit free. It remains to show that D, is
semicomplete. Consider any two elements z and y in X. Either (, ) ¢ C u D or
(y, x) eC u D since C u D is complete. Now if there is no path between z
and y in Dy, then Dy u {(2, y)} if (2, y) e CuDorDyu {(y,z)} if (y, z) e D is
also circuit free. This is a contradiction to the maximality of D, .

The significance of Theorem 7 is that given a complete bigraph C u D if it is
desired to find a unique pro, then we must look only for mef subgraphs D; of
C u D. But given a bigraph C u D, there may not exist such a subgraph and in
that event it is not possible to determine a unique pro.

The next question is: when there are mef subgraphs D; of C u D, how may we
enumerate them? Theorem 8 is a result in this direction, we give it without proof.
If [p1, p2, -+, Pul is an elementary path in C' u D such that (p:, pin) € D
fors = 1,2, ---,m — 1, then we will call it a Hamilionian (H) path in C u D.

TuEOREM 8. Given Cu D and an H-path P in it, then Dy = {(p:, p;) € D% < j}
1s the unique mcf subgraph of C u D such that T(D,) determines P as a unique
pro.

The following is essentially a result due to Thompson and Remage; it can
be proved from Theorems 7 and 8.

TurorEM 9. If C'u D is a complete bigraph, then there is a one-to-one correspond-
ence, gwen by Theorem 8, between the mef subgraphs D1 of C u D and the H-paths
in Cu D.



A TREATMENT OF TIES IN PAIRED COMPARISONS 2009

4. Estimating a maximum likelihood preference relation. The previous section
gives ad hoc procedures for determining ordering relations on X when a subject’s
preferences and indifferences can be given as a single bigraph. But frequentlv
a pair of objects will be compared more than once and, in any case, it is desirable
to attempt to derive ordering relations from a general theory of statistical in-
ference.

We are now ready to define the relation 7T'(«) announced in the introduction.

DEFINITION. (:L‘i, :L‘j) SD(ﬂ") iff m;; > Max (1r]'i, 'Yij)- (xi, $j) & C(T) iff Yis
> max (i, mj). (2, ;) € T(x) iff there is a directed path from z; to z; in
C(r) uD(w).

If mj = mji = For mi; = 4 > §or mj; = v4 > % (this region is indicated by
the dotted lines in Figure 1) then no line in €' u D () is defined between z; and
x; . This definition satisfies all the specifications of a bigraph for which results
were developed in Section 2. In the future for brevity we will write C u D ()
for the bigraph [X, C'(x) u D(x)]. Note that this definition is not an assumption
about the behavior of the subject; it is a statement of that aspect of his behavior
which we wish to study.

Now to review. We wish to estimate an order among the objects of X by
maximizing the likelihood (2) with respect to = over that portion of the sample
space where 7'(w) is a preference relation. According to Theorem 4 this is the
region where C u D(r) is circuit free. Writing # for the resulting restricted
maximum likelihood estimate of , then the estimated order is the one determined
by T(#). As noted earlier # may not be unique and we 'may obtain several rank
orders. Let u be the subset of w where (2) assumes its maximum.

Figure 1

Yi4

(0,1)

}

> max{w

Yij i3°"44
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The following lemma will be needed.

Levmma. Let f(t, &) = a1 log & + az log o + a3 log &3 and S = {(4, &):
ts > max (i, b))} where i + & + 6 = 1,4 20,0 = a1 = a2 £ a3,
and a1 + a2 + as = 1. The unique mazimum of f over the complementary region
S occurs at (4, 8) = (a1, 2(az + a3)).

Proor. V*(—f) is positive semidefinite, hence f is a concave function with
absolute maximum at (a1, a2). The maximum of f over § occurs on one of the
bounding faces: Bi = {0 S &4 Sty = &3} or B, = {0 = & < #; = &}. The maximum
on B is f(}, %); on By the maximum is f(a1 , 3(az + as3)). But f(ar, 3(a: + a3))
= f(3, 3) equality holding when a; = (a2 + a3) = 3.

TreorEM 10. For any (ij) € 9 and any # ¢ p etther (74, 74) = (#4, Vi)
or (i, ¥4) s obtained by pooling the two largest members of the triple #4, i,
7?']'1‘ s i.e.,

(Fi, ¥i5) = G(Fg + F45), 5(Fi5 + 94)) of #4 = #Rjsand §45 = 75
= (3(#y + #30), Yu) of 5 2 Fu5 and #50 = Fi5

(#3j, 5(R5e + 94)) of 7 = Rjeand 94 2 74,

Proor. We prove the case where #;; = 4, = #;;; the other five cases are
analogous. Assume (#, §i) # (#4, 4i). Define w(é, t) to be obtained
from # by substituting # for #.; and & for 4; while holding the other components
of # fixed.

Let ' = x(#4, 45) (we retain this definition of =’ throughout) and
7 = 7(3(#45 + 94), 3(#4 + 95)). # and # are circuit free but #” is not since
L(x') > L(#). Any circuit in C u D(«’) must involve (z;, ,), therefore #; >
max (#j;, 9+) but #;; = max (#;;, ¥:;). Now from the Lemma we have

#i5log 3(#4 + Fi) + i log 3(# + F4) + #4i log #5
= #4log 7y + Fi log ¥4 + 4 log 7
Since # differs from 7 only in the components corresponding to (4j) it follows
that L(#) = L(#). But since # is circuit free, # = # which proves the theorem.
Observe from the theorem that if (7, 94) ¥ (#4, §4) then there is no
line between z; and z; in C v D(#); hence, C u D(#) is a circuit free subbigraph
of C u D(#). Let (74, i) denote the pooled alternative of the theorem and
let 8 = {7: (wij, vi;) = (%4, F45) or (745, ¥4;) for ij € 9}. 8 depends on the par-
ticular collection of paired comparisons which have been observed and contains
only a finite number of distinet points, many of which will not be circuit free.
Note that in view of the previous theorems, u € 8. The following is obvious:

COROLLARY. max, L(m) = maxeng L(7).

Following Thompson and Remage it is interesting to observe that the de-
termination of 7 preserves an important information theory interpretation which
adds to its intuitive appeal. From information theory we define the uncertainty
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U;; of a single comparison of z; and z; to be
Ufij = - (Tij log iP5 + 55 log s + Yij log ’Yj]‘).

The uncertainty of all n,; independent comparisons of z; and z; is n;U; and the
uncertainty of all comparisons is > ni;Usy; = U(x), say. Without any loss of
generality we follow the information theory convention of taking 2 as base for
the logarithms.

LeMMA. If 7 & B, then L(7w) = —U(x).

Proor. Consider any = & 8. The Lemma will be proved if for all (¢j) ¢ d,
(w4, v4;) is such that

(4) =Uy = #ijlog miy + #jilog mji 4= 945 log vis.

We know that (ms, vi) = (%4, 94) or (74, ). In either case we obtain
(4) after some algebraic simplification.

TurorEM 11. Mazximizing the likelihood over w is equivalent to minimizing the
uncertainty over the set w n B.

Proor. From the previous lemma and corollary

max, L(7w) = max.ng L(w) = —mineng U().

If m = 3, we can determine # without much difficulty. However, when m > 3,
it will be worthwhile to have a systematic method for determining # and u
in general. The following result helps by establishing a connection with the
material of Section 2.

TureoreM 12. C u D(#) is a mef subbigraph of C u D(#).

Proor. We have observed that C u D(#) is a circuit free subbigraph of
C u D(#).If C u D(#) is not mef, then there must exist a line /, say between
z;and z;,in Cu D(#) but not in C u D(#) such that luD uD(#) = Cu D(x")
remains circuit free (7 is as previously defined). Also (#ij, ¥4) = (#i, Fi)
since [ is not in € u D(#). Therefore L(x') > L(#). This contradiction to the
definition of # proves the theorem.

Define g = {m & B8:C u D(x) is a mef subbigraph of C'u D(#)}. nis called the
estimation set.

COROLLARY. uwC o

The number of points in 7 equals the number of distinct mef subbigraphs of
C u D(#). One may, therefore, enumerate all the points in n by enumerating
all the mef subbigraphs of C u D(#). The points in # which minimize U(w)
are the ones in u. Before considering a numerical example we present onc further
result. Define £ = {7 & 8:D(x) is a mef subbigraph of C u D(4#)}.

TuarorEM 13. If C u D(#) s complete, then T'(#) determines a unigue pro
ff tnuws= .

Proor. If T(#) determines a unique pro, then from Theorem 5 C u D(#)
= D(#. Also from Theorem 12 # ¢ £ but # ¢ u by definition so # &£ £ n u. On
the other hand if ¢ n u % &, then there exists # such that D(#) is a mef sub-
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bigraph of C u D(#). Since C' u D(#) is complete, it follows from Theorem 7
that 7'(#) determines a unique pro. This completes the proof.

Note that £ n x may be a null set for two reasons. First, £ = &, that is, there
exists no mef subbigraph D(x) of C u D(#) and one cannot determine a unique
maximum likelihood pro on X. Second, £ # & but{ n u = &, this means L(#)
> L(w) for all 7 ¢ £ In this case, for the sake of determining a unique pro,
we may wish to select only those points = ¢ £ for which L(7) is maximum or
equivalently U(x) is minimum. However, the unique pro determined this way
would not be maximum likelihood. In short, to determine a unique pro, it is
necessary that £ = . The determined pro will be maximum likelihood whenever
tnup = .

We now consider a numerical example. The data used is hypothetical. There
are four treatments and each possible pair has been compared 6 times. The
data is presented in Table 3 using the notation deﬁned in Section 1.

The resulting bigraph is not circuit free:

*1

X3

All possible mef subgraphs are enumerated in Figure 2.

We see from the uncertainty column of Table 4 that u contains only one point
m but, from Figure 2, ¢ consists of four points 72, 75, 75 and = . Obviously
¢ nu = . In agreement with Theorem 13, we find that 7(#) cannot determine
a unique maximum likelihood pro. However, if we restrict ourselves to £, then
points 7, and w3 yield minimum uncertainty. The preference relations 7'(ms)
and 7 (m;) respectively determine the orders (&, s, @1, 22) and (s, 2, T3, 4).

TABLE 3
Hypothetical paired comparison data, m = 4, ni; = 6 for all i and j

Gj) el sii tii Sig (Tij,vij)

(12) 2 1 3 (3, %)
(13) 4 1 1 G, %
(14) 0 4 2 0, %)
(23) 1 3 2 G, %)
(24) 1 2 3 3 )
(34) 4 0 2 2, 0)
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Figure 2

(1) (i) (1ii)

Xy X 1
X, %, X, %, LA X,

X3 *3 3

(iv) ) (vi)

X1 o1 *1
4 *2 %, *2 4 *2

X, X, X3

TABLE 4
Points in the estimation set
mcf subgraphs wEén Uncertainty
d th

corrgpo;d?ng T (w2, y12) (13, v13) (m1a, y14) (w3, v2s)  (mos, v2a)  (mw3e, y3e) +(log:10)-6
i), m 8 G, 9 ©, 3 G, ¥ %, %) 3, 0) 2.279224
(ii), e & 8 G 8 ©, 3 G =) G, %) 3, 0) 2.286507
@i, - G G  OH G G G, 0 2286507
(iv), m 3, ® (=, %) O, %) G, B & =) (G, 0) 2.324382
(v), ms 3, 8 (&, 8) O, & &) G, b % 0) 2.348982
(vi), s 3, %) 3, 8 ©, 3 &, ) G, 3) 3, 0) 2.303824

5. Alternative approaches. The follovs}ing alternative model was suggested
by a referee. It is appealing and has interest here because it reflects a difference
in philosophy. Suppose that

(5) vij = (mogmi)t.
Then the likelihood function is

—1_sgtitij sjithtij
TLs mai 1sis Vo Loy )7 imiy T4 0mgii 30
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30 that, in effect, (5) makes a tie equivalent to half a preference in each direction.
Now the whole machinery of Thompson and Remage (1964) and Remage and
Thompson (1966) can be used to solve the maximization problem.

Equation (5) is an appealing assumption about the subject’s behavior but
it is an assumption and he may or may not behave this way. The assumption
amounts to regarding a tie as a case where the subject had a slight preference
one way or another but random error obscured the direction. In some cases we
should regard ties in this way but in others we should regard them as actual ties.
The present paper concerns the case when ties should be taken literally.

Two other approaches for treating actual ties were considered, both of them
use a concept of stochastic bigraphs different from that of Section 4.

DuriNiTION. (@), ;) ¢ D(7) iff w5; > 750 5 and (2, x;) e C(w) iff wij = w5 .
(@5, ;) ¢ T iff there is a directed path from z; to z;in C u D (=).

The first alternative approach, like Section 4, maximizes the likelihood (2)
subject to the constraint that 7'(w) be a preference, but with the new concept of
stochastic bigraph. We obtain

THEOREM. For any (1) € 9, (%5, ¥i5) # (#j, ;) only if #:5 = #5 . In that
case (i, ¥ig) = (5(#; + #5), #i5).

The theorem says: to determine #, directed lines are made undirected and no
undirected lines are made directed. Consequently we can never estimate a
unique pro (recall Theorem 5) unless, of course, C u D(#) is loop free to begin
with. Often, in fact, the estimated preference relation 7'(#) would be an empty
set with no statements of preference being made. For example,

TueorREM. If Cu D(#) has an elemeniary circuit [y, Yo, 5 Ym, Y], then
T'(#) = &.

The second alternative approach leads to the relation
(6) (x, y)e R («) iff there is a path in D () from z to y.

A weak stochastic ranking (wsr) is defined to be a pro determined by D(w).
That is (p1, -+, pm) is & wsr iff mp,p, = mp,,; Whenever ¢ < 7. This concept is
a straightforward generalization of a familiar definition of wsr when m;; 4+ 7, = 1.
From Theorem 2 we have that D(w) determines a wsr iff D(x) is circuit free.
Thus this approach ignores the ties which we wish to treat.

We may prove that R(7) of (6) is a preference relation iff D(7) determines
a wsr. Hence maximizing the likelihood subject to the constraint that R(w)
be a prefercnee is the same as obtaining the maximum likelihood wsr. We find

TuroreM. For all (1) € 9 either (7ij , Yi5) = (fi5, 9i5) or (3(Re5 + #0), 945).

When no ties are observed the Theorem reduces to that of Thompson and
Remage. Also when n;; = 1 or 0 this second approach yields Slater’s (1961)
nearest adjoining order.
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