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FURTHER SECOND ORDER ROTATABLE DESIGNS

By NormAN R. DraPER' AND AGNEs M. HERZBERG'
University of Wisconsin and Imperial College, London

0. Summary. This note provides some new second order rotatable designs.
The method of construction used is an extension of one introduced by Bose and
Draper (1959). Further extensions of the method are briefly suggested.

1. Introduction. The technique of fitting a response surface to data resulting
from experiments has gained wider and wider acceptance since its introduction
by G. E. P. Box and co-authors in the early 1950’s. A comprehensive bibliog-
raphy of response surface methodology is given by Hill and Hunter (1966 ).
A great many response surface designs are now available. Some of these (like
the original ‘cube’ plus ‘star’ type designs given by Box, see for example Cochran
and Cox, (1957) or Davies, (1956)) are frequently used and are sensible from
a practical viewpoint. Other designs are of theoretical interest only at the mo-
ment and the chance of their being used in an experimental investigation is
currently small, due to the number of points involved and/or the multiplicity
of levels. However, developments may make the latter useful at some future
time, just as large two-level fractional factorial designs suddenly became useful
in coding theory.

A particularly useful type of response surface design is the rotatable design
which, once the scales and the ‘“‘center” of the experimental variables have been
determined, provides equal information in all directions at any specified dis-
tance from the center of experimentation. While rotatable designs are by no
means essential, it is generally better to use a rotatable design rather than a
non-rotatable design, all things being otherwise equal.

The conditions for second order rotatability are given by Bose and Draper
((1959), pp. 1097-8, Section 1) and we shall follow the notation and definitions
of that section. In Section 7 of the same paper (p. 1108) a 16 point second
order design class was obtained by combining a set consisting of the 12 points
of the form (==x, 4y, =+2) and cyclic permutations for which 21,2u23. = —2zy2,
with the four points of a half replicate of the 2° factorial (+a, +a, -ta), where
T1Ze®su = a°. In Section 2, this method will be extended to obtain further
rotatable designs.

Choosing the number of center points. The variance function for a second order
rotatable design takes the form V(r) = P + Tr’ + Rr*, where r* = 2 + 2" +
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. + xkz’
P = 2(k + 2)\'/a, T = 20k +2)(\ — N7)/aNs
R=1{(k+1)\—(k—1N}/a, a=2NNk+ 2)M — kN

If, following Box and Hunter (1957), we choose the number of center points
so that V(0) = V(1) when N\ = 1, we obtain, for the total number of points
in the design,

(1.1) N = {k + 3 + (9% + 1k — 7)Y /{4a(k + 2)},

where a is such that N is the value of \s/)\; for the design (with A\, = 1). This
formula can be used to determine the number of center points to be added.
Once this number is determined, the condition N = 1 can be relaxed, and the
design can be used with any desired scaling.

2. Rotatable designs.

Fractional ‘cubes’ plus ‘star’ type. Useful designs which are really variations
of the basie cube plus star design can be constructed by extending the technique
mentioned above. Let us denote the full 2 factorial design or ‘cube’ (+a, +a,
.-+, +a) by S(a, a, ---, @) and the 2k-point ‘star’ (%p, 0, -+, 0), -,
(0,0, ---, =p) by S(p, 0, ---,0). We shall also use the notation of Box and
Hunter (1961) so that, for example, “3S(a, a, a) with I = 123" will denote
the half fraction of a 2° design such that Y Zr&eus = 40°. (All summations
areoveru = 1,2, --- ,n.) Rotatable designs can be formed as follows.

k = 3: Consider the point sets:

(2.1) 18(a, a,a), with I = —123 (4 points),
(2.2) 28(¢, ¢, c), with I = 123 (4 points),
(2.3) S(p, 0,0), (6 points).

If we attempt to combine these three sets to form a second order rotatable de-
sign we see that, to make > Truaus = 0, we must have ¢ = a and thus we
obtain the standard ‘cube’ plus ‘star’ design. However, if we combine fwo set
(2.1)’s with one each of sets (2.2) and (2.3), then we obtain a rotatable design
of second order with 18 points where

¢ = 2d°, p' = 8(1+ 23)(14.

A design of this type can be valuable when a sequential design is required, i.e.,
one which can be performed in two parts. After the first part is performed, a
first order surface is fitted and, if this is not satisfactory, additional runs are
made and a second order surface is fitted. The design can be performed as fol-
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lows:
Point sets used in
Reference
Part 1 Part 2
A (2.1), (2.1)-8 points (2.2), (2.3)-10 points
B (2.1)-4 points (2.1),(2.2),(2.3)-14 points
C (2.1), (2.2)-8 points (2.1),(2.3)-10 points

In A, the replicated points in part 1 allow an internal estimate of error to be
made and this can be used to check both first and second order surfaces. In
this case it must be assumed that no block effects occur between parts 1 and 2.
In both B and C the replicated points occur in each part thus enabling a direct
check on block effects to be made. The observations in one part can then be
adjusted for any block effects which exist and the second order fitting carried
out. These rotatable designs thus provide an alternative, with four more points,
to the orthogonally blocked design (Cochran and Cox, (1957)) which is not
rotatable. Now for our design, \s/A" = N(0.034616), which equals 0.623088
when N = 18. Since k/(k + 2) = 0.6, the addition of a few center points would
be sensible; equation (1.1) suggests six center points.
k = 4: Consider the point sets

(24) £8(a, a,a, @), with I = —1234 (8 points),
(2.5) $8(¢c, ¢, ¢,¢), with I = 1234 (8 points),
(2.6) S(p, 0,0, 0), (8 points).

Combining two set (2.4)’s with (2.5) (¢* = 2a*) and (2.6) (p* = 32a*), we
obtain a second order rotatable design, with similar properties to the k¥ = 3
case design above, containing 32 points. Since \/\y = N(0.021447) which
equals 0.686304 when N = 32, and since k/(k + 2) = %, the addition of a
few center points would be sensible; equation (1.1) suggests nine center points.

k = 5: Although the method used above for k = 2, 3 still applies when k& = 5,
there is no point using it since halffractions (5 < k =< 7) and quarter fractions
(k = 8) are usable alone with S(p, 0, ---, 0) (Box and Hunter, (1957)).
In fact for k£ = 5, no simple design of the above type (with reasonably few
points) appears possible.

k = 6: When k = 6, however, the additional factor gives us the possibility
of an extension of the method above, employing greater fractionation. Consider
the point sets

(2.7) iS(a,a, ---,a) with I = —123 = —456(=123456) (16 points)
(2.8) %8(¢c, ¢, +-+,c¢) with T 123 = 456(=123456) (16 points),
(29) S(p,0,---,0) (12 points).

We can now combine two set (2.7)’s with one set (2.8) (¢* = 24°) and one set
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(2.9) (p* = 32(1 + 2%)a*) to obtain a second order rotatable design containing
60 points. The design can be blocked as before. For this design, A\/A’ =
N(0.0130624) which equals 0.783744 when N = 60. Since k/(k + 2) = 0.75,
the addition of a few center points would be sensible; equation (1.1) suggests
nine center points.

k = 7: A design similar to the & = 6 case can be obtained, using I = —123 =
—4567, ete.

k = 8: At this point, the quarter fraction is, together with S(p, 0, ---, 0),
adequate for a design, and so further fractionation must be sought. Designs
can be formed in this manner but they contain a fairly large number of points.
For k = 8, no simple design of the above type (with reasonably few points)
appears possible.

= 9: Again the extra factor helps further fractionation.
Consider

(2.10) 38S(a, @, -++,a) with I = —123 = —456 = —789 (64 points),
(2.11) %8S(c, ¢, -+, ¢) with I = 123 = 456 = 789 (64 points),
(2.12) 8(p,0,---,0) (18 points).

Two (2.10)’s, a (2.11) with ¢’ = 24°, and a (2.12) with p* = 128(1 + 2%)a*
give a 210 point rotatable design. Here A\;/\’ = N(0.00416275) which equals
0.874178 when N = 210. Since k/(k + 2) = 0.818182, the additior of a few
center points might be sensible; equation (1.1) suggests fifteen center points.

Designs of similar type can also be constructed for larger k.

Fractionation applied to cyclical group point sets. The following example is
for k& = 5. One of the cyclical point sets used by Thaker (1962), p. 113, consists
of the 40 points (0, &b, #c, 0, 4=¢) plus cyclic permutations. Suppose we select
only half of these in such a way that the product of the non-zero elements is
+bce and then add points of the form (0, ==f, &f, 0, &f) plus cyclic permuta-
tions, such that the product of the non-zero elements is —f*. The question is
whether b, ¢, ¢, and f can be chosen to give a 40 point second order rotatable
design. Write b° = uf®, ¢ = of°, ¢ = wf". There are two types of sums of prod-
ucts .25 . They are equal if uv = vw + uw + 1. If all third order sums
of products are to be zero, then we must have bce = f°, or (uvw)% = yow = 1.
Furthermore the condition X zty = 3 D i (1 # 7) leads to the equation
w4+ o* + w' = 3uw. It follows that w, v, and w are the solutions of the cubic
equation 2 — 42® + Bx — 1 = 0, where 4 = (7/w — 2)}, B = (2/w — 1).
But since z = w is a solution, we must have w® — 5w® + w* — 2w 4+ 1 = 0
which has two real positive solutions. Only one of these leads to v = 0, v = 0,
and so the single solution is u = 2.479977, v = 0.978087, w = 0.412264. Center
points would be strictly required only if the two point sets have the same radii,
i.e. if w = 7/11 which is not the case. In fact A\y/\" = N(0.018144). When
n = 40, this equals 0.725760. Since k/(k + 2) = 0.714, the addition of some
center points would probably be sensible; equation (1.1) suggests nine center
points.
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(We note in passing that “Design 1”” given by Thaker (1962), p. 113, contains
a misprint. The correct value of s appears to be s = 3.369220.)

For a second example consider the & = 4 case and the point sets (i) (=*a,
+b, 0, &=d) plus cyclic permutations and such that all non-zero triple products
= abd; (ii) (=£f, £f, 0, =f) plus cyclic permutations and such that all non-
zero triple products = —jf°. If we let a®> = #°, b* = uf®, & = vf®, the conditions
for obtaining a second order rotatable arrangement imply that tu + v = 2uw,
tuv = 1, and £ + «* + w® = 6uv + 3. It follows that ¢, u, v, are the roots of
@ — A2’ + Bz — 1 = 0, where 4 = (3 + 12/t)* and B = 3/t. Since ¢ is a
solution, ¢* — 3t* — 8 + 4 = 0 which yields two real positive solutions, only
one of which provides w = 0, v = 0. The single solution is ¢ = 0.741366, u =
3.219947, v = 0.418908. Here \;/N\s" = N(0.0215620); when N = 32, this equals
0.689984. Since k/(k + 2) = 2, the addition of some center points might be
sensible; equation (1.1) suggests eight center points.

Further designs of this type can be constructed. For example, infinite classes
of 4 factor, 40 point second order rotatable designs have been constructed by
Draper and McGregor (1967) using the following point sets

1. (%2, 4y, +2, +w) plus cyclic permutations, such that

Z L1uloulgulay = 32xyzw,
2. 38(b, b, b, b) such that
Z L1ul2ul3ulan = "“8b4

The equations which arose were solved by using a nonlinear estimation program

Further extensions. It is possible to extend this method further by using deeper
fractionation and/or interlocked compensations as was done by Draper and
Stoneman (1968) for a slightly different purpose. The difficulty in further ex-
tensions is the usual one, that of keeping the number of points reasonable, say
about twice the number of coefficients to be estimated or fewer. While we have
been able to construct second order rotatable designs in this manner we have,
so far, found none we would consider to have a reasonable number of points.

Other second order rotatable designs in the literature. Many other methods of
constructing second order rotatable designs have been given since the paper of
Box and Hunter (1957) which contained the basic ‘cube’ plus ‘star’ method of
construction, already mentioned. Box and Behnken (19602, ) built up second order
rotatable designs from first order rotatable designs with £ -+ 1 points. The num-
ber of points in such designs is less than or equal to ¥t _ 9 4 ny, where n, de-
notes the number of center points. Thaker (1962), as discussed earlier, made use
of a cyclic group of points. His designs require 28 & + n, points, where p denotes
the largest fraction so that all the second order moment conditions hold except
for D @iy = 3 D Tiuliu, ¢ # j, the summations being over u. Several authors
(for example Box and Behnken, (1960b ); Das, (1961) and Das and Narasimham,
(1962)) have constructed rotatable designs through balanced and doubly balanced
incomplete block designs.

Table 1 shows, for comparison purposes, the minimum number of points so
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TABLE 1
A comparison with second order rotatable designs containing a minimum number of points
No. of No. of No. of Minimum no. References for previous column
factors coefficients  points of design
to be in our points
estimated designs
3 10 18 14 CS
4 15 32 24 + mng CS or S(a, a, 0, 0)
5 21 40 26 CS
6 28 60 44 CS
7 36 108 56 4+ ng Box and Behnken (1960b)
8 45 — 80 CS
9 55 210 120 + ny Box and Behnken (1960b)

ng denotes that points must be added at the center.
CS is the smallest ‘cube’ + ‘star’ type design.

far found to be needed for second order rotatable designs for up to 9 factors. The
designs given here require more points than the minimum, but possess the prop-
erties mentioned earlier. Many designs in the literature require considerably more
points, however.
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