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ON PSEUDO-GAMES!

By ALFREDO BaARNOs?

San Fernando Valley State College

1. Introduction and summary. In the definition of a two-person zero-sum game
given by Von Neumann and Morgenstern it is assumed that both players know
the rules of the game (e.g., the game tree, the information sets as well as the
distributions of the ensuing payoffs for given strategy choices, etc.). We use the
term pseudo-game to denote the case where at least one player does not have
complete information.’

In this paper we restrict our attention to those pseudo-games in which player
I, say, is only aware of his set of pure strategy choices (assumed to contain m
elements: 2 < m < «) and not of player II’s strategy choices (assumed to have
uniformly bounded second moments). Player II is assumed to have complete
information. More precisely, we shall study pseudo-games G that have the format
given below:

Let A = {a1, -, an} denote the pure strategy choices of player I. Denote
by A™ the set of probability distributions p over A4 (player I’s mixed strategy
choices). We sometimes write p in the form (p(1), ---, p(m)), D71 p(j) = 1,
and p(7) = 0, with the interpretation that when player I uses p he will play a;
with probability p(j). Any element of 4™ that assigns mass 1 to some a £ 4 will
be simply denoted by a.

Let B denote the set (not necessarily finite) of pure strategies for player II.
Let ® be a fixed o-field of subsets of B and denote by B* the set of all probability
distributions g over ® (player II’s mixed strategies). We assume that ® contains
all single point sets of B, so that B* contains all finite probability distributions
over B. We postulate that we are given for each pair (a, b) in the product space
A x B a distribution P 3 on the real line which represents the distribution of
the loss incurred by player I (or gain by player I1) if a ¢ A is the strategy choice
of I and b ¢ B is the strategy choice of II.

Contrary to the usual practice, the payoff for given pure strategy choices is
thus allowed to be random. We do this in order that our main results may be
proved in greater generality. An example of a pseudo-game with random payoffs
is given in Section 2.
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The distributions P,z are assumed to have uniformly bounded second
moments. Foreach a ¢ 4, and fixed Borel set C, P,,.,(C) is assumed to be ®-meas-
urable. For each pair (a, b) e A x B, let Xz be a random variable having
P, 3y asits distribution. Suppose that players I and IT are using strategies p and g,
respectively. They can determine the payoff of the pseudo-game by first selecting
ana ¢ A and a b ¢ B according to the distributions p and g, respectively, and then
treating an observed value of X, as the payoff.

For every pair of strategies (p, ¢) that players I and IT may use we define the
expected value of the payoff R (p, ¢) by means of the equation®:

(1.1) R(p, q) = 27 p() [ [f dPw;m(x)] dg(b).

We are assuming that player I is only aware of the set 4, while player II has
complete information. However, by assuming instead that player I is also aware
of the set B as well as the distributions P4 , (a,b) e 4 x B, we can associate
with every such pseudo-game G a game with complete information @’. Such con-
cepts as “‘value” and “minimax strategy” do not carry over to pseudo-games.
However by the minimax theorem, since A is assumed finite, every such game G’
will have a value vs and player I will have a minimax strategy p’:

(1L.2) wve = SqueB'R(p/; q) = infpean SUPgess B(p, @) = Supgeps infyeas B(p, q).

Suppose now that players I and II are playing a sequence of identical pseudo-
games of the type we have been describing; i.e., they play one game, observe
their losses and play the same game again (with possibly different strategy
choices), continuing in this manner ad-infinitum. We shall refer to the individual
games that make up the sequence as the subgames of the sequence. When playing
such a sequence of pseudo-games a strategy for player I would be a rule P that
would tell him for every j, as a function of his past plays (mixed strategy choices)
and losses what mixed strategy to play during the jth subgame; a strategy for
player II would be a rule @ that would tell him for every j, as a function of his
own, and his opponent’s past plays and losses, what mixed strategy ¢ to play
during the jth subgame of the sequence. We are thus allowing player II to know
what plays player I has made, but we are not granting I the same favor.

Among the rules P available to player I we define a special class of rules to be
called rules constant on intervals. If z is any real number let [z] denote the largest
integer that is less than or equal to z. For every a > 1, let Il(a) =
(Ii(@), Iy(a), -+, In(a), ---) denote the partition on the set I of positive
integers defined by the equations: ‘

(13) In(a) = (220 6D + 1, (R 5D + 2, -+, 2oms (67}

n=123, --.
For example, I:(2) = {1}, [,(2) = {2, 3,4, 5}, [(2) = {6,7, --- , 14} ; etc. We
4 Note that the functions f 2% dP;, ) (z), k = 1,2and j = 1, --- , m, can be expressed

as the limits of finite sums of B-measurable functions and are therefore also ®-measurable.
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shall refer to I,(«) as the nth interval of the partition II(«). Note that the cardi-
nality of I.(a) is [n%]. Let us suppose that player I is using some rule P that
assigns, with probability 1, the same mixed strategy to the ¢th subgame as it
does to the jth subgame whenever ¢ and j belong to the same interval I,(«),
n = 1,2,3, --- . In this case we say that P is constant on intervals. Thus if we say
that player I is to play a certain strategy p during the nth interval of a partition
II(«), we mean that he is to play p during every subgame whose index belongs to
I.(a). The particular strategy that player I uses in the nth interval (a random
variable depending on plays and losses oceurring prior to the nth interval) will be
denoted by p, .

Forj=1,2,3,--- N, --- let X, represent the loss incurred by player I during
the jth subgame. Note that the sequence {X.,} is a discrete stochastic process
whose index set is the set I of positive integers and whose law of evolution is
determined by the distributions P 5 and by the rules P and @ that the players
use. The first objective of this paper is to prove:

TaeEoREM. Suppose players 1 and 11 are playing a sequence of identical pseudo-
games G satisfying (i) and (ii):

(1) Player I has m = 2 pure strategy choices.

(i1) The distributions Py have uniformly bounded second moments and for
each a € A and every Borel set C, P ,,.,(C) 7s ®-measurable. Then there exists a class
of rules { P}, for player 1 such that for all rules Q that player 11 may use we have:

P& {P},, = Pr(limsupyoe N ' 214 X; S 0| P, Q) = 1.

We will show, that is, that the player with incomplete information can do as well
asymptotically as he could if he had complete information.

The members of {P},, will all be constant on intervals. Our second objective
will be to seek a strong convergence rate for N ' 2 7 X;. In the course of
achieving this goal we will show that a good partition is obtained by setting «
equal to (m + 2)/m.

2. Examples. A good poker player gains information about an opponent’s
strategies by observing his eccentricities: his hesitations, his apparent nervous-
ness or calm, the way he holds his cards, etc. Because a player may not be aware
of his eccentricities poker is, from this viewpoint, an example of a pseudo-game.

The following is a more concrete example: Consider first a game of matching
pennies: players I and II’s possible plays being H or T (head or tail). Suppose
player I pays player II one unit if the sides of the coins match, and incurs no
loss otherwise. A strategy for player I would be a number = (0 = 7= < 1), with the
interpretation that when he uses 7 he will play H with probability 7. A minimax
strategy for player I would be # = 3 and the value of the game is 3. Suppose
now that player II is a very perceptive opponent and is gaining information from
player I’s eccentricities. More precisely, let us suppose that player I initiates
the game by playing either H or 7. After I’s play, Nature (a third player who
operates as player II’s spy) will play either 6; or 6; . We assume that P(6,| H)
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= P(#,|H) = tand that P(6,|T) = 1 =1 — P(6,| T'); but this information as
well as Nature’s actual play in any particular instance will be known only by
player II. Player IT observes Nature’s play and proceeds to play either H or 7.
As before, we let = denote a mixed strategy choice for player I. A strategy for
player IT would now be a pair of numbers (p,¢)(0 = p £ 1and0 = ¢ = 1), with
the interpretation that when he uses (p, ¢) he will play H with probability p(q)
if he observes 6;(6:). (p, q) is known as a test in statistical parlance. Some of the
payoffs for given pure strategy choices are random. Thus if player II uses (0, 1)
and player I plays H, the payoff will be 1 with probability 1 and 0 with prob-
ability %. For this example the risk function R(m, (p, ¢q)) for player I (his ex-
pected loss) can be computed as follows:

R(x, (p,q)) = Pr ((H, H)|(, (p, ¢))) + Pr (T, T)|(x, (p, 9)))
(2.1) = #[P(6:| H)p + P(6:| H)q
+ (1 = m)[PO: | T)(1 — p) + P(6: | T)(1 — q)]
=3r(p+ ¢ + (1 —=)(1 —p).

Suppose, only for the moment, that player I is also aware of Nature’s sample
space and of the probabilities P(8;| H) and P(6;|T) for ¢ = 1, 2. Under this
added condition, our example becomes a game in the Von Neumann-Morgenstern
sense. The value of the game isv = % and 7 = % is a minimax strategy for player I.

Player I, by observing his losses over such a sequence of pseudo-games might
begin to suspect that he is divulging information to his opponent in one way or
another. He knows that = = % is a minimax strategy in the ordinary game of
matching pennies, and this fact might lead him to believe that = = % would
still be a reasonable strategy in the more general case that we have been examin-
ing. However, if in this example, player I uses = = %, then player II can use the
pure strategy (0, 1) and we will have:

(2.2) R(3,(0,1)) = 4314+ 31=1>4%

Player 1 will begin to suspect that he is playing a pseudo-game when it appears
to him that although he is playing what he thinks is his minimax strategy, = = %,
he is losing more than half the time. The question is what can he do about it? It
is clear (to player II) that player I’s average loss can be kept to at least 2. The
results of this paper show that player I has a strategy that keeps the limiting
average loss to at most %.

3. The class of rules {P},.. We begin by giving some preliminary definitions.
Let Sy(k = 1, 2, 3, - --) be the set of distributions on 4 that satisfy for every
7(3 =1, -+ ,m) the condition that p(j) = i/(2"m) forsomez € {0, 1, - - -, 2*m}.
The number of such distributions is:

Pm +m — 1
{(3.1) b, = .

m — 1
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Now let « and 8 be two fixed constants. Define the sequence ng, 1y , 73, -« -,
7y , - -+ by means of the equations:

(3.2) ne=0, m=my+ [®" for k=123, .

The members of { P}, are determined by two parameters: @ and 8. An arbitrary
member of {P}, will be denoted as P(a, 8). We impose two conditions on the
parameters:

(3.3) i) a>1, (ii) 0<B< 1

Restriction (ii) insures that n; — n_y is never smaller than &, . Condition (i) is
necessary for the proof that is presented of Lemmas 5.2 and 5.3.

A rule P(a, 8) will be constant on the intervals of the partition II(«). For
each interval, player I records the mixed strategy he uses for that interval as
well as the average loss incurred by him in that interval. For every interval n, p,
(the strategy used in the nth interval) is determined by P(«, 8) in the following
manner:

Begin by ordering the elements of S, (k = 1,2, 3, - --) in any manner and call
the j7th member of the sequence p,;*. The members of S; are called the avaslable
probabilities for the kth stage (the intervals numbered n;_; + 1 through ny).
Begin play as follows: During interval j (j = 1, 2, -+ -, &) play p,". During
those intervals numbered ®; + 1 through n, play any of the available probabilities
for the first stage whose greatest recorded average loss incurred in any interval
is a minimum. In general, during interval ¢ (¢ = ny_1 + 1, - -+ , me_y + &) play
p¥n,_, . During those intervals numbered n;_; + ®; + 1 through 7, , play any of
the available probabilities for the kth stage whose greatest recorded average loss
incurred in any interval after tnterval n;_; is a minimum.

An example may clarify the ideas. Suppose m = 2, & = 2, and 8 = 1. Then
®, = 5andm = 125. S = {(1} 0)7 (0, 1)} (i‘y %)y (%7 %)7 (%y %)} Let Pi(l) (1 = 1}
-++, 5) be the ith member of the ordered sequence given above. During the
interval ¢ (¢ = 1, ---, 5) player I is to play p:. Suppose that the average
losses incurred by him in each of those intervals were 7%, 4.8, 2, 3, and 5/2,
respectively.

According to our rule during the 6th interval he would play ps'"” = (%, 2).
Suppose that he does this and that the average loss incurred in that interval is
—8. For the 7th interval the indicated choice is again (%, 2). Suppose he plays
ps'? in the 7th interval and that the average loss incurred in that interval is
5/2. For the 8th interval he can choose either ps'” or ps™, but suppose that he
plays ps® again and that the average loss incurred in that interval is 10'®.
For the 9th interval the indicated choice is now ps™ or (4, ). And so on, until
the 125th interval. Then the whole process begins again; this time using &,
and n, . He repeats this procedure again and again, ad-infinitum.

4. The method of proof. Define the distance d of any two distributions p,
and p, in 4% to be:

(4.1) d(p1, p2) = [2 71 (p1(§) — p(5)).
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Note that under this relation 4™ is a metric space. For p ¢ A, define F(p) by
means of the equation:

(4.2) F(p) = supessR(p, q).

The proof of the theorem presented in the introduction depends on the following
results:

LemMA 4.1. For all py and ps in A™ we have |F(p1) — F(p2)| £ cd(p1, p2)
where ¢ = m! Maxy <j<m SUPes |R(a;, ¢)|.

Proor. Since the distributions P are assumed to have uniformly bounded
second moments 7' max;<j<m Supgss |R(a;, ¢)| is finite and we are able to
prove that the function F is Lipschitzian. Assume without loss of generality that
F(p1) = F(ps). According to (4.2) for every ¢ > 0 there exists a g(e) ¢ B*
such that F(p1) < R(p1, q(¢)) + e Therefore:

IF(p) — F(ps)| = F(p) — F(ps) < [R(pr, 4(€)) — B(pz, g(e))] + ¢
| Ras, ¢() (m(i) — pe())] + ¢

MaX; <j<m SUPqes+ R (a7, ¢)| 2ot [p1(3) — po(3)] + €
maxy <j<m SUPgen* lR(aj, Q)lm% d(pi, p2) + e

(4.3)

Al

I\

Since this relation is valid for all e > 0 the theorem is proved.

LeMMA 4.2 For every p € A™ and every k = 1 there exists a distribution g,* ¢ S;
such that d(p, g,%) <27%.

Proor. The proof is straightforward but tedious and will therefore be omitted.
As no uniqueness is implied by the lemma, for fixed p e A™ we will let g,%
simply denote an arbitrary element of Sy satisfying d(p, ¢,*) < 27*.

Although the proof of the main results that is to follow depends on many con-
cepts and is necessarily laborious, the basic idea, which we now outline, is quite
simple and intuitive. Consider play within the kth stage only. From (1.2) and
(4.2) there exists a p’ ¢ A™ satisfying ve = F(p') = infpess F(p). Combining
Lemmas 4.1 and 4.2 player I knows that for some available probability ¢,
the average loss incurred in any interval in which g3 is used will not exceed vg
by more than ¢27* 4 & (where ¢ is the kth member of a sequence of random
variables satisfying P (lim sups.« e > 0) = 0, as will be shown by Lemma 5.2).
Now player II can trick him into using an inferior strategy by allowing him some
early wins and then reap the profits temporarily. But the key point is that
player I may use a strategy p” other than ¢% only so long as the average loss
incurred in any interval in which p” is used is less than or equal to v 4 ¢27* + ¢, .
Since the number of available probabilities for the kth stage is &, it is clear
that player I will not incur an average loss exceeding v by more than ¢27° + ¢
on more than &, — 1 intervals. To convince oneself of the plausibility
of the theorem presented in the introduction, one has only to note that
&, = o(ny — mx_1), the number of intervals comprising the kth stage.

5. The proof. Throughout this section we assume that players I and II are
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playing a sequence of identical pseudo-games (f having the format described in
the introduction and that the value of the correspondmg game G with complete
information is vg. We assume that player I is using a rule P(e, 8) € {P}n,
for some fixed m = 2, as described in Section 3. Except for the discussion of

Theorem 5.2, « and 8 are assumed fixed.
Defire the constant 11 as follows:

5.1 I = sup g gearxer 2o5m1p(§) [ [f @° dP ;0 ()] dg(b).
For pe.d” define G(p) as follows:

9.2) G(p) = infepsR(p, q).
Forn=1,2,3,---,andj =1, ---, [n%], let ¥,,; denote the loss incurred by

player I durlng the jth subgame of the nth interval, so that )% ¥, ;denotes the
total loss incurred by player I in the nth interval. For arbitrary n, the random
variables Y, ; are not in general independent, since even if player I is using a
rule that is constant on intervals, there is no guarantee that player II is behaving
in a similar manner. However, because of the way M, F(p), and G(p) were
defined, the following important inequalities are immediately forthcoming for
allnandj =1, -+-, [n%]:

{5.3) E((Yu)| Yaja, oy Yan) S M a.s.,
(5.4) G(pn) £ E(Ynj| Yoa, =005 Yau,pa) S Fpn) a.s.

Ity =1, u 3) and (5.4) are simply to be read as E((Y,,1)*) < M and G(p,) <
(Y1l pn) = F(pa), respectlvely

Levma 5.1. Forn = 1,2, 3, 1 =4 Z [n%], and all v > 0, there is a posttive
constant M~ satisfying:
\1) P(Z;Zzl Yn,j > ([na] — 1 + I)F(pn) + 'Y] Yn,i—l y Ty Yn,l ) pn)
< M*(n*l — i+ 1)/4" as.
i) PO Yy < (0] — @+ DG(pa) — v | Yaia, -+, Yax, Pa)

< M*([n%] — i+ 1)/ as,

Proor. By symmetry it is sufficient to prove (i). Note that if M and M, are
constants satisfying (i) and (il) respectively, then M* = max [My, M, will
satisfy both assertions. Assume without loss of generality that #(p,) = 0, so
that (5.4) and (i) are to be read as G(p.) < E(Y, ;| Y. Sy AP Yoi1,p2) =0
as and P Yo, > v Yia, o Yo, pa) < M (0] — i+ 1)/+" as.,
respectively. If in addition ¢ = 1, then (i) is simply to be read as

PO Y, > v pa) < MY/

M, as defined in (5.1), will play the role of M™ in assertion (1)
Tf X is a random variable, we define the random variable X7 as follows:

(5.5) Xt=X, if X=0  X"=0, otherwise.
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Note that if X and Y are random variables, then we have:
(5.6) X+ =2 XxT+ 7]

We h;we only to prove:
(5.7) P Yu )t > | YVaiay ooy Yar,pa) < M([n] — i+ 1)/4° as.
From a trivial extension of Chebyshev’s inequality, it is sufficient to prove:
(58) B(((Z3= Yu) ) [ Yar, -+, Yo, pa) S M(In) — i+ 1) s,
Now:
(5.9) E((Y%,)| Yaia, -y Yos,pa) =M as. by (5.3)

Thus (5.8) is automatic if ¢ = [n°]. If ¢ < [n°], then forallk ( £ k < [n°]) we
have:

E( X Ya)) | Yasia, o+, Yaa, pa)
S B(((2 5= Yu )t + Yuir1)? | Yaria, ooy Vo, pn)  as. by (5.6)
EE(((XCi= Y )M + 225 Vo i) (Vo)
+ (Yare) ) Yogs ooy Yayia, oo+, Yo, pa)  as.

S E(((Q i Ya )N YVaria, oo+, Yauu, pu) + M as.
by (5.3) and (5.4).

(5.10)

Hence, by recursion, we have:
(5.11) E(((XZE Ya )" | Yaia, o+, Yaa, pa) = (b — ¢ + 2)M  as.
(5.8) follows by setting &k = [n°] — 1.
LemMmaA 5.2. If 0 < € < (a — 1)/2, then
Pr (212 Ya; > YF (pa) + n°° i0.) =

Proor.Set 7 = 1, and v = n* “in Lemma 5.1. Since & > 1, according to (3.3),
> w1 [n%/v* < «. The lemma follows directly from the Borel Cantelli lemma

(3.

LemMa 5.3. There extists a constant C satisfying:
Pr (maxp<me D i1 Yu,; > Cn® 1.0.) = 0.

Proor. Let M = sup gpearyss [R(p, ¢)|. Let n and v > () be fixed. Let n™ de-
note the first < (1 < 7 < [n%]) for which D7 ¥,; > 2(n*M’ + v), if such exists.
Then:

P23 Yoy > (nIM + 7))
(5.12) 2 DM P(* = )P Ve = —(IM + v)|n* = 4)
z (1= (M) /¥")P(maxegme 2 5=1 Ya; > 2(n°M’ + 7))
for some positive constant M* by Lemma 5.1.
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Let0 < e < (a — 1)/2, and set v = n* °. Then:

P(maxi<pme 2imt Yoz > 2(0°M' + n°79))
OP(I2 Yoy > 1M + 2°79)) by (5.12)
= 0(n*™®) by Lemma 5.1.

(5.13)

By the Borel-Cantelli lemma, since o« > 1, we have for all e satisfying
0<e< (a—1)/2:

(5.14)  P(maXi<pe Dim1 Yo, > 2(n°M 4+ 2°7) io.) =

Lemma 5.3 is an immediate corollary of (5.14).
Define N, and L; as follows:

(515) Nk = Zzink 1+1 [nch
(5.16) Li = maXn,_;41<i<n, MAX1<i<[i ( "k 141 Z;na] Yai+ E§=1 Yl,f)-

Note that N, denotes the total number of subgames comprising the kth stage, and
that L denotes the maximum loss incurred by player I during the kth stage.
Recall that o, 8, and m are assumed fixed. For all ¥ > 0 define ¢(v) as follows:

(5.17) ¥(v) = max [l — B/((a + 1)(m — 1)),
(e + 3+ 2v)/(2a + 2), (e + 8)/(a + 1)]

LEMMA 5.4. Assume vg = 0. Then there exists a constant H such that for all
v > 0 we have:

P(L, > HN™ io0.) = 0.
Proor. One can show that Lemma 5.2 implies for all v > 0:
(5.18) P(X5M Yo /0] > F(pa) + a7 o) =

Since v¢ = 0 by assumption, (1.2) and (4.2) imply the existence of a p s 4*
satisfying F(p’) = 0. By Lemma 4.2 there exists for every k a strategy g,,: e S
(the available probabilities for the kth stage) satisfying d(p’, g5?) < 27%. By
Lemma 4.1, we have for all k: F(g5) < ¢2” * where

¢ = mt maxi <j<m SUPgeB* |R(a1' ) Q)l

(5.18) implies the existence of a random variable &, such that if & > k¥, then
for all v > 0 we have:

(5.19) ma+1=n=mn and
Do = J;’C) Z[:"J Ya,/[nY £ 27 4 gty

ie. if k > k*, then for all v > 0, player I will not incur an average loss greater
than 2 +n =) 24 on any interval within the kth stage in which g ) is used.
For all ¥ > 0, define the set T (k, v) as follows:
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(5.20) T(k,v) = {n|ma+1=Zn=<mna 22 ¥V, /[0 > 2" 4 7o,

(5.15), (5.16), (5.20), and Lemma 5.3 imply the existence of constants ¢ and C
such that for all v > 0, we have:

(5.21) P(Lix > Ni(e27F 4+ m 0 £ 3 vt 2oimt) Yo+ On® i0.) = 0.

Let k be fixed, and assume & > k¥ so that (5.19) is satisfied. Each of the
members of Sy, is played in one and only one of the intervals numbered n;_; + 1
through n;—1 + ®;. (5.19) implies for all ¥ > 0, that in the intervals numbered
e + & + 1 through n; a strategy p” & Sy other than ¢ may be used only if
the greatest average loss incurred in any interval in which p” is used is not
greater than 27" + n“"®, Since S} contains ®; elements, for all v > 0,
T'(k, v) will not contain more than &, — 1 elements. (5.21), Lemma 5.3, and the
contents of this paragraph imply that for some constants ¢ and C, and all ¥ > 0,
we have:

(5.22) P(Ly > Ni(c27% 4+ 0™ 4 ,0m* i.0.) = 0.

In order that (5.22) may imply Lemma 5.4, a careful study of several interest-
ing inequalities is required. (3.1) and (3.2) yield:

(528)  m = A (@] < 2ia (m(2 + 1))V = o2V

and

(5.24) =z &~ (2m)"/ (m — 1)!

Hence:

S = mn®

(5.25) = Q[(2HmDIBY (ektnIB) by (5.23)
= 0([&"*|[ni]) by (5.24)
= O(N}) by (3.2) and (5.15).

(5.15) also implies:

(5.26) Ny = O(m"*™).

(5.23) and (5.26) yield:

(5.27) 27F = O(n V) = Q(NF D ey

(5.24) and (5.25) yield:

(5.28) me = O(N™)

and

(5.29) & < (nf) = O/,

Lemma 5.4 follows directly from (5.17), (5.22), (5.27), (5.28) and (5.29).
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TrarorEM 5.1. Suppose players 1 and II are playing o sequence of tdentical
pseudo-games G satisfying (i) and (ii):

(1) Player I has m = 2 purely strategy choices.

(ii) The distributions P (. ») have uniformly bounded second moments and for each
a ¢ A and every Borel set C, P(,,(C) is B-measurable. Then there exists a class of
rules { P}, for player 1 such that for all rules Q that player II may use we have:

Pe{P}, = Pr (limsupyou N ' 2 Ju X; S v | P, Q) = 1.

Proor. Since a and 8 satisfy (3.3) and m is = 2, (5.17) implies that for suffi-
ciently small v > 0 we will have ¢/(v) < 1. Thus it is sufficient to prove that there
exists a constant K such that for all v > 0 we have:

(5.30) P> X; > Nvg + KN*™ i0.) = 0.

We lose no generality by assuming that v¢ = 0 and provmg instead that for
some constant K and all v > 0 we have:

(5.31) PO Y, X, > KN'™ io0.) = 0.

Lemma 5.4 implies the existence of a constant H and a random variable k*
such that for all v > 0 we have:

(5.32) k> k*= L, < HNS.

By (5.32), for all k > k* and v > 0 we have:

(5.33) DAL S 2h L+ 2 icken HNJ/®.
But:

(5.34) PO L < ») =

For all v > 0, (5.33) and (5.34) yield:

(5.35) POOELL; > 2H Y 5 N i0.) = 0.
Now:

(5.36) AN, < N £ 25aN;= 20X £ 20a L

Let inf, ¢(y) = ro > 0. By (5.35) and (5.36), in order to prove (5.31) we need
only prove that there exists a constant C such that for all N and r (ro = r < 2ro)
we will have:

(5.37) "IN, <N D : N, =25 N/ <CN.

To prove (5.37) it is in turn sufficient to prove the existence of a constant C such
that for all k and r (7o £ r < 2ry) we will have:

(5.38) DkEIN/ < CNis.

But 7, determines constants Cy , C» , and C; that satisfy for all k and o < r < 27 :
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2Ny < Oy Dk, 2@ by (5.93) and (5.26)
(539) < 02(2(k—1)(m—1)(a+1)/ﬁ>7‘
< C3Nia by (5.24) and (5.25).

(5.39) completes the proof.

It is interesting to find the optimal choice of & and 8 within the approximation
given by (5.30). We therefore choose o and 8 to minimize max [1 — 8/((a + 1)-
(m — 1)), (e + 3)/(2a + 2), (¢ + 8)/(a + 1)] and prove:

TurorEM 5.2. For all rules Q that player I1 may use and all € > 0 we have:

Pr (227 X; > Nvg + N /EmD%<i o [ P((m + 2) /m, (m — 1)/m), Q) = 0.

Proor. Throughout this proof we restrict our attention to values of m = 2

= 4

a > 1,and 0 < B < 1, so that (3.3) is satisfied. To prove Theorem 5.2 it is
sufficient to prove:

(5.40) infes (max[l — B/((a¢ 4+ 1)(m — 1)),
(¢ +3)/(2a+ 2), (a +8)/(a+ 1)]) = (2m + 1)/(2m + 2)

and that the minimum value is obtained for a« = (m + 2)/m > 1 and
B = (m—1)/m < 1. We have:

infe s [max [I — 8/((a + 1)(m — 1)), (a + 3)/(2a + 2),
(5.41) (¢ + B)/(a + 1)]] = infe [max ((a + 3)/(2a + 2),
infg [max (1 — /((a + 1)(m — 1)), (e + B8)/(a + 1))])].

Now note the following: For fixed 8, both 1 — 8/(a + 1)(m — 1) and
(e +B)/(a + 1) are strictly increasing functions of a. For fixed o,
1 — B/((a@ + 1)(m — 1)) is a strictly decreasing function of 8, while
(a 4 B)/(a + 1) is a strictly increasing function of 8. Therefore

infg [max (1 — 8/((a 4+ 1)(m — 1)), (e + 8)/(« + 1))]

is a strictly increasing function of a. Also (a 4 3)/(2a + 2) is a strictly de-
creasing function of a. This implies that the minimum occurs when the functions
are equal, if such occurs.

The reader can verify that for o = (m + 2)/m and 8 = (m — 1)/m we have:

(5.42) 1 — Bo/((a0 4+ 1)(m — 1)) = (a0 + 3)/(2a0 + 2)
= (a0 + Bo)/(a0 + 1) = (2m + 1)/(2m + 2).

The contents of the previous paragraph imply that this solution is unique and
that (5.40) follows from (5.41) and (5.42).

6. Remarks.
1. Recall that ®, = 0(2*™ ™). The author expkerimented with rules in which
¥, satisfied: (a) & = O(K"™") or (b) & = 0(¢™),a > 1and b > 1. In both
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cases the main result was obtainable. However the method of proof presented in
this paper was not sufficient to produce results as good as those obtained in (5.30)
and Theorem 5.2.

2. The method of proof presented required « to be greater than 1. Suppose we
remove this restriction and suppose that the distributions P, are allowed to
have m + 2 + e uniformly bounded moments for some ¢ > 0. The author believes
that it is possible to prove the following stronger versions of (5.30) and Theorem
5.2:

(a) There exists a constant H such that for every ¥ > 0 we have:

Pr (ZIJV=1 X, > Nvs + N mexU—B/ (atD) (=), (at2+7) 2(atD) , (at) [ (atD) io) = 0.
(b) For all rules @ that player II may use and all e > 0 we have:
Pr (X X; > Nog + NOH/eidre 6. | P(2/m, (m — 1)/m), Q)

He will endeavor to prove these results in a later paper.

3. Suppose player II is using a fixed strategy ¢o ¢ B* throughout the sequence
of games and player I is using a strategy P ¢ {P}., as described in Section 3.
Then

I
i

Pr (lim sup N7 D ¥ X < infpess R(p, @0)) = 1.

Thus every P e {P},, is asymptotically Bayes with respect to go. If player I
uses P((m + 2)/m, (m — 1)/m), then the convergence rate given in Theorem
5.2 is attained.

4. The argument presented in (5.12) can be extended to prove the following
generalization of Skorohod’s inequality [5]:

THEOREM. Let Zy, Zy, Z3, - -+ be a sequence of random variables. Let Si = qes
>k 1Z;. Let n be a fixed positive integer, N > 0 a fized constant, and let n™ be the
first integer k such that |Sy| > 2. Suppose that for some ¢ £ 1 and all k < n we
have P(|S» — Sil > M| n* = k) < ¢. Then (1 — ¢)P(maxiz<a [Si] > 2)\) =
P(|S.] > ).

Proor.

P(Sa > N) = 2 paP(n* =k, |8 — S| £ \)
= S raP(n* = B)P(|S. — Sl £ M n* = k)
(1 — ¢)P(maxi<x |Sk| > 2N).

v

CoroLLARY (Skorohod’s Inequality). Let Zy, Zy, Zs, --- be a sequence of
independent random variables and let Sp = aet D% 1Z;. Let n be a fized positive
integer and suppose that for some pair (\, C) of positive constants and all k = n we
have P(|S, — S| > N\) = C < 1. Then P(maxx<a |Si| > 2N) = P(|S.] >
N/ (1= 0).

5. Convergence problems similar to the one presented here have been studied
by Feldman [1], Samuel [4], and Van Ryzin [6], [7]. However in all cases at least
a partial knowledge of the payoff function is assumed. Harsanyi [2] has studied
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the problem of reducing the analysis of a game with incomplete information @ to
that of a game with complete information G* equivalent to G.
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