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ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES
IN LINEAR MODELS!

By Pranas Kumar SEN
Unaversity of North Carolina, Chapel Hill

1. Introduction and summary. For the random variables X;; @ = 1, ---, N
j =1, ---,7r) consider the linear model

(1'1) X‘L} = M + B'z + Tj —l" Yij (Z B,{ = O’ Z T; = O)’

where the 7’s are treatment effects, the 8’s are nuisance parameters (block
effects), and the Y;;’s are error components. Nonparametric procedures for esti-
mating and testing contrasts in the 7’s, based on the Wilcoxon signed rank
statistics, are due to Lehmann (1964), Hollander (1967) and Doksum (1967),
among others. These rest on the assumption that the Y;/s are independent with
a common continuous distribution. Since these procedures are actually based on
the paired differences X ¥, defined by (2.1), they are unaffected by the addition
of a random variable V; to 8; (or to ¥;;) fori =1, --- | N.

The object of the present investigation is to show that these procedures are
valid even if Y, ---, Y. are interchangeable random variables, for each
i(=1,---, N). It may be noted that if in (1.1) the superimposed random
variable Vis absorbed in Y; , then of course Y1, - - - , ¥, are interchangeable,
but the interchangeability of Y, -+, Y, does not necessarily imply that
Y = Wi+ Vi, where W,/’s areindependent and identically distributed random
variables (iidrv). In fact, in ‘mixed model’ experiments, interchangeability of
Ya, -+, Y (of quite arbitrary nature) may arise when there is no block versus
treatment interaction [cf. Koch and Sen (1968) for details]. It is also shown that
the procedures mentioned above are robust against possible heterogeneity of the
distributions of the error vectors Y; = (Y4, -+, ¥Ys),2 =1, --- , N. This situ-
ation may arise when the block effects are not additive or the errors are heter-
oscedastic. Thus, in this paper the independence of the errors is replaced by
within block symmetric dependence, while the additivity of the block effects and
homoscedasticity of the errors are relaxed.

2. Some fundamental lemmas. Defiine Ajy, = 7, — 7%,/ # k=1, .-+, r, and let
(2.1) X;’kjk = Xij— X, Ui =Yy — Yy for
j#k=1---,r and ¢=1,---, N.

Assume that Y; has a continuous r-variate cumulative distribution function
(edf) F;(x) which is symmetric in its r arguments, for all 2 = 1, - -+, N. This
interchangeability of ¥V, - -+, Y implies that (i) the edf G;(z) of U is inde-
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pendentof j 5 k = 1, --- , r, continuous and symmetric about zero, and also
(ii) the bivariate (joint) edf Gi*(z, y) of U, U sw isindependent of 7 < k =
(=1,---,r),foralli =1, --- | N. Let h(x) be a real valued skew-symmetric
function, i.e.,

(2.2) h(z) + h(—2z) = 0 forall z.

Define

(23) S0 = EM(Uin)h(Uyn)}, J=j #k=F,
(24) ¢ui = E(MUip)(Uin)} and  §op = E(R*(Ui)}, =k =K.

Then, we have the following.

Lemma 2.1, If (i) Ya, - -+, Y. are interchangeable random variables and (47)
h(z) satisfies (2.2), then (i) E{h(U;z)} = 0 and (ii) {0 = 0.

Proor. (i) follows trivially from the fact that G; is symmetric about 0 and
h(z) satisfies (2.2). To prove (ii), denote byt = {t: £t < t; < t} the order
statistics corresponding to Y;, Yi», Yu and Y . Since the Y’s are inter-
changeable variables, the conditional distribution of Y, Y., Y, Y , given
t, will be uniform on the 24 equally likely permutations of ¢, &, & and .
Further, h(z) satisfies (2.2). Hence, it is easy to show that for 7 = & = j = I,

(2.5) E{h(Uip)h(Uspwr)| t} = E{h(Ys; — Yag)h( Y — Yao)|t} = 0.
Thus, writing ¢;,0 equivalently as

E{ER(Ui)h(Usir) | 81},
the proof follows from (2.5). Q.E.D.

Lemma 2.2. If Ya, -+, Yi are interchangeable variables and h(x) satisfies
(2.2), then ¢y < 3Cin, where the equality sign holds only when h(x) = bz with
probability 1. If, in addition, h(zx) is monotonic, 0 < {11 < s .

Proor. Define Z; = h(Uﬂz) =+ h(Ulza) + h(qu) Then, by (23), (24:) and
Lemma 2.1, we obtain that

(2:6) V(Z:) = 3%:2(1 — 2¢:1/Ci2) 2 0,

where the equality sign holds only when Z; = 0 a.e. Now (2.6) implies that
$ia = (3)¢a2 . Also, by definition Uis + Ums + U = 0. Hence, Z; = 0 a.e.,
along with (2.2) implies that with probability one

(2.7) h(Uaz) 4+ h(U.us) = h(Uas + Ugs),

forall Uas, Uss . (2.7) in turn implies that A(z) = bz, with probability 1. This
completes the first part of the proof. Let now t = {# < # < #} be the order
statistics corresponding to Y;;, Y4 and Y . Using then (2.2) and proceeding
as in the proof of Lemma 2.1, one obtains that

E{h(Uge)h(U )| t}
(2.8) = E{h(Ys — Ya)h(Yi — Ya)lt}
= 3[h(ts — t)h(b — &) + h(ts — t)h(ts — ) — h(ts — t)h(ts — t)].

%
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Assume that A(z) is T in z (otherwise, work with —A(z)). Then,
(29) 0=<h(t,—t) =h(ts—t) and O=h(l—t) =< h(ts—t).

By (2.9), the left hand side of (2.8) is essentially non-negative, and integrating,
over the distribution of t, it follows that {;; = 0. Q.E.D.
Let now

(2.10) )\(Fi) = fw fw Gi(x)Gi(y) dGi*(.’L‘, y) for 72 = 1, el N.

Lemma 23. If Ya,- -+, Yy are interchangeable random variables, 1 <

1
NF;) £ 3%, where the upper bound 5% is attained only when G; s a uniform cdf over
(—a,a),a>0.

Proor. Welet h(z) = Gi(x) — . As G;is symmetric about 0, (2.2) is satisfied.
Some straightforward computations yield that ¢;» = % and {1 = MF:) — &
Also Gi(z) is T in z. Hence, the lemma directly followsfrom Lemma 2.2. Q.E.D.

REMARK. Lemma 2.3 generalizes Theorem 2 of Lehmann (1964) to exchange-
able random variables and also supplies condition under which the upper bound
54 for M(F;) may be attained.?

3. Robustness for interchangeable errors. It may be noted that if V(¥V;) = 02
and Cov (Y, Ya) = po’, j # k, the classical ANOVA-test based on the
variance-ratio criterion is a valid test for the null hypothesis Hy: 74 = --- =
7+ = 0, when F; = .-+ = Fy = F is a multinormal cdf. It is also asymptotically
valid for any F having finite second order moments. Again, for the sequence of
alternative hupotheses {Hy} :

(31) HN:Ajk=N_%a]~k;ajk=aj—ak, 1§j<ké7‘, Z;=1(1j= 0,

(where a;, -+, a, are all real and finite), (r — 1) times the variance-ratio
criterion has asymptotically (under F, = --- = Fy = F) a non-central chi-
square distribution with r — 1 degrees of freedom and non-centrality parameter

(3.2) 2 i at/[o*(1 — p)l.

It is also known that the method of ranking after alignment [cf. Hodges and
Lehmann (1962)] allows for the interchangeability of the error components,
and it has been shown by Sen (1968b) that the efficiency of the non-parametric
procedures based on aligned observations is not affected by the interchangeability
of the errors. It will be shown here that the same is true for the procedures con-
sidered by Lehmann (1964) and Doksum ,(1967). For this, define ¢(u) as 1
or 0 according as u is > 0 or not, and let

(83) Wwa = () 2icicrene(Xin + Xia), 1 =sj7<k

A

r.

2 The author is grateful to Professor Wassily Hoeffding for pointing out that the existenee
of F; for which the corresponding G; is uniform on (—a, a), a > 0, is dubious. Our conjecture
is that there exists no such cdf F; for which the corresponding G; is uniform on (—a, a),
a > 0. In fact, for independent errors, the conjecture is proved to be true by Puri and
Sen (1968).
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Assume that F, = -+ = Fy = F(=G = -+ = Gy = Gand \(F,) = --- =
AMFy) = NMF),) and that G(z) has a continuous density function g(z) satisfy-
ing the conditions of Theorem 1 of Lehmann (1964). Then, it is easy to show
that

(3.4) limyow (N'E[Wy 4 — 3| Hyl} = 205 [Zug’(2) de, foralll Sj <k <r.

Using then Theorem 7.1 of Hoeffding (1948), our Lemmas 2.1 and 2.3 and
following some routine steps, we arrive at the following.

TareoreEM 3.1. If (i) F1 = .-+ = Fy = F, (ii) F(x) is symmetric in s r
arguments, and (iii) {Hy} tn (3.1) holds, then {N*(Wy i — ) — 2a; [Zw ¢*() dz,
1 =37 <k = r} has asymptotically a 1r(r — 1)-variate normal distribution with
null mean vector and dispersion matrix T = ((vjr,u)) given by

; i=ik=K,j=k,

ANF) =1, j=7k=k,j=ks=Fk,

=1—4\F), =7 =K j=5 =k,
=0 IEFERERS

Theorem 3.1 and Lemma 2.3 show that the results derived by Doksum (1967)
in his Lemmas 2.1 through 2.4 remain true even when the errors are not all
independent, but are within block symmetric dependent. Further, the use of
Theorem 3.1 as in (2.6) of [4] generalizes Theorem 1 of Lehmann (1964) to
exchangeable error components. Since the main results of Lehmann (1964) are
based on his Theorems 1 and 2, and that of Doksum (1967) on his Lemmas 2.3
and 2.4, it follows from our Lemma 2.3 and Theorem 3.1 that the Lehmann-
Doksum procedures remain valid for within block exchangeable error components.

Now, we note that the variance of the cdf G is 2¢6°(1 — p) = (@), say.
As such, using (3.2) and generalizing Theorem 3.1 in the same manner as in
Lemma 2.3 of Doksum (1967), the asymptotic relative efficiency (ARE) of the
Doksum-test with respect to the classical ANOVA test, can again be shown to
be equal to ¢, defined by (2.11) and (2.12) of Doksum (1967). It is thus clear
that the ARE is unaffected by the within block symmetric dependence of the
error components. The same conclusion also applies to Lehmann’s procedure,
as the variance of N > ¥ X ¥ is also equal to o*(G). This shows that Theorem
4 of Lehmann (1964) is also true for exchangeable errors.

In order to apply these procedures in practice, one needs consistent estimates
of (i) M(F) and, in the case of Lehmann’s procedure, (ii) f ® g () dz. Since
X5 , 1 =1, .-, N, are iidrv’s with a edf G(x — Ajx) symmetric about Ay,
the estimate of [Z, ¢*(z) dz, based on Xj’s, considered by Lehmann (1964)
remains valid even for exchangeable errors. For A(F'), we consider the following
simple estimator due to Puri and Sen (1967). Let Lj;x, be the Spearman rank
covariance between (X1, Xi7,),¢ = 1, -+, N. That is

(36) Liwe = 20 (Rig — (N + 1)/2)(Rijq — (N + 1)/2)/IN(N + 1),

ol

Yik, ikt =

(3.5)
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where R stands for the rank of Xj, among all X Yk, oo, Xwa. Also, let
(3.7) L= [2/r(r — 1)(r — 2)] 2251 Dicaten Liig
be the average over all possible distinet j % k £ ¢ = 1, -- -, r. Then, from the

results of Puri and Sen (1967) it follows that L in (3.7) consistently estimates
MF) — 1, no matter whether = is 0 or not and the errors are independent or
exchangeable within each block. From computational aspects, this estimator
also appears to be simpler than the original estimator proposed by Lehmann

(1964).
4. Robustness for heteroscedastic errors. Let us define
(41)  Gu(x) = N7 25 G(),
Gy (z,y) = N 251G (z,9) and gn(z) = (d/de){Gx(2)}.
Assume that (a) there exists a continuous (bivariate) cdf ®*(z, y) such that
(4.2) limy.. Gy (z,y) = ®*(z, y), at all points of continuity of the latter,

and (b) Gy(z), defined by (4.1), also converges (as N — «) to an absolutely
continuous cdf ®(x) (having a continuous density function ¢(z)), in such a
way that

4.3) |Gy(z) — ®(z)| < w(x)/N®?, for somep > %,

where fww w(z) dG:(z) < o, uniformly inz = 1, --

For the justification of (4. 3), we consider the followmg models, though it
may hold for other models too.

(I) Replication model. For some (fixed) positive integer b(=1), consider a
sequence of positive integers n;, - - -, n such that Do n; = N, n; = nj(N),
where as N increases

(44) N7'nj(N) =k;j+o(NY, 0<k;j<1, forall j=1,---,b.

Consider then the model in which the set {Fi(x),7 = 1, --. , N} is composed of
b distinct subsets, where the jth subset contains n; edf’s which are all identical
to the cdf F;(x),forj = 1, ---, b. Then, of course, as N — oo,

(45) Gx*(z, y) = N7 20anG*(z, y) = 2iakiG(z, y) = d*(a, v),
and writing ®(z) = Yo k,G5(x),
(4.6) |Gu(z) = ®(2)| = |23 [(ny/N) — kjlGi(z)| = o(N7Y),

uniformly in z(—® < & < ), by (4.4). Thus, both (4.2) and (4.3) hold.
The physical interpretation for this model is that we have an initial set of b
blocks with cdf’s Fy, ---, Fy respectively, and conceptually, we replicate the
blocks a large number of times keeping the proportion of replications for these
as ky, -+« -, ks respectively.

(II) Owutlier model. Suppose out of the N edf’s {F;, - -+ ,Fy}, wehave a subset
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{Fij,j=1,---,n} (whered,, - - -, i, areany n distinct integersout of 1, - - - , N')
which corresponds to outliers, for which the cdf’s are different from the rest of
the edf’s which are all identical to a common cdf F(x). It then follows that if
n/N tends to 0 as N — «, then (4.2) holds (with ®* = G*), while if n/N =
o(N ~#) then (4.3) holds (with ® = @), where G and G* are the univariate and
bivariate marginals of F(x).

(III) Gross error model. Consider a finite number (say, d) of edf’s Fy*, -+ -, F4*
each of which is symmetric in its r arguments, but they are, otherwise, quite
arbitrary. As in model (I), partition the set of N edf’s {F;} into b subsets of
ny, -+, ny identical cdf’s, where n;’s satisfy (4.4). Consider then the following
error contamination model where the edf F; for the jth set is given by

(47) Fi(x) = (1 — )15 (x) + epFs*(x) + -+ + eaFa™(x), j=1,---,b,

wheree; = ¢+ -+ + €a,0 < €, €2, -+, €a < 1, and are usually quite small.
The univariate and bivariate marginals of the cdf F,* are denoted by Gy and
Gy, respectively, for k = 1, -+, d. Let then

(4.8) B(z) = DI kil(l — )Gi(z) + €Ga(z) + -+ + €alGa(z)],
(4.9) @*(z,y) = 2=kl — )Gi*(z, y) + €xGo"(z, y)
+ o+ €aGa” (2, y)).

Then, proceeding as in (4.5) and (4.6), it follows that (4.2) and (4.3) also hold
for this model.

(IV) Convergence model. Suppose that for the sequence of cdf’s {Fi(x)},
lime,o Fi(x) = F(x) exists (= limi,»Gi(x) = G(x) and limi,e G* (2, y)
= G*(z, y) also exist), and that

(4.10) |Gi(z) — G(2)] < TPw(z),

for some 8 > %, and all¢ = 1,2, -- -, where [Z,w(z) dGi(z) < o, uniformly
in 7. Then,

(4.11) |Gy(z) — G(2)| £ w(@) N 225

Now we note that for 8 > 1, Z_li < o, and for 8 = 1 N Yt~
N7l'logN = o(N*), for 8 > . Finally, for § <8< 1,N~ Zl_l (s/N)™? ~
1/(1 — B) is finite. Hence, from (4.11) we obtain that (4.3) holds with
®(z) = G(z). (4.2) holds more tr1v1a11y Now, (4.10) holds in particular for
the heteroscedastic model where

(4.12) Giz) = G(z/8;), ¢ =1, 2, -+, where &8s are all positive,

and it is assumed that there exists a positive 8, such that 8,/6 = 1 + 0(i "),
8 > 1, and that @ has a continuous and bounded density g.
A consequence of (4.3) is that for any real and finite a,

(4.13) NGy(z + N7'a) — Gu(2)] — N'[®(z + Nta) — @(2)] = w(z)-0(1),
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and hence, it follows that
(4.14) limyao [ZeNYGy(z + N7%a) — Gu(2)]dGy(z) = a[Zwé(z) da.

It then follows from the results of Sen (1968a) that under (3.1) and (4.3)
(= (4.14)),

(4.15)  limyow (N'E[(Wyp — 3) | Hal) = 203 [Zuo’(@)da, 1 <5<k <7,

where Wy, ;’s are defined by (3.3). Further, by a direct generalization of Theorem
2.1 of Sen (1968a), it follows that under (4.2), (4.3) and {Hy} in (3.1), the
stochastic vector {[N>(Wy,u — 3) — 2a4 [Zwe’(z)da], 1 < j < k < r} has
asymptotically ar(r — 1)/2-variate normal distribution with null mean vector
and dispersion matrix T'* = (v}, ), where j<kandj <¥,and

Vieiw = % i=7, k=¥
(4.16) =4N®) —1, j=3, k=k or j=£j, k=F,
=1—4\®), =k, 7%k or =k, k=47,
=0, JEE =G =,
and
(4.17) ME) = [Z, [Z.8(2)B(y) d2* (=, y),

with ® and ®* defined by (4.3) and (4.2), respectively.
Now, by virtue of (4.2) and (4.3), we may also write

(4.18) N®) = limy.o N(Fy), where
MFy) = [Z0 [Z0 Gu(2)Gr(y) dGy™(z, y).

Since Gy(z) — 3 satisfies (2.2), proceeding as in Lemmas 2.2 and 2.3, we obtain
that

(4.19) 1 < \Fy) £ &4, uniformly in Fy, ---, Fy and N.
(4.18) and (4.19) in turn imply that
(4.20) i=M9?) = 5%

Let us now denote by o’ = V(Y;) and pis® = Cov (Y, Yar),j = k, 4 = 1,
-+, N, and let
(4.21) (a5*)" = N7 2 Vol (1 — p).

Then, we note that (i) N~ i > ¥ X% has the variance 2(6x™)%, and (ii)
(4.22) limy.e [2(6x)%] = 6*(®), the variance of the cdf ().

We shall now consider consistent estimates of 6*(®), [Zw¢’(x) dz and \(®),
which are required to apply these procedures in practice. First, define

(4.23) s = [N — )(r — D' 2L D25 (X — Xo — X + XD
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where
Xi. = 7'_1 Z;=1 Xij , X.j = ZV_1 Z?’=1 Xij and X.. = (NT)‘I Z?;l E§=l Xij .

Looking at (1.1), we observe that in (4.23) we may replace X;’s by Y/s.
Then by straightforward expansion and use of Markov’s law of large numbers for
the independent vectors [(Yi;, Ya), 5, k=1, ---,7,2 =1, ---, N, it follows
that if E|Y;/*"* < o, for some 8 > 0, then

(4.24) Isy' — (ax"))| =0 as N — o.

Thus, from (4.21) through (4.24), it follows that 2 sy  consistently estimates
2
 (P).

Second, as in (3.3), we define W (Xijx — a,2 =1, --- , N) based on X 15z — a,
t=1,---, N, and let

(425) Wi = 3% — 7p-(3N)™ and Wy® = } + rup-(3N)7F,

where @ (0 < a < 1) is prefixed and 7. is the upper 100« % point of the standard
normal distribution. Let then

(4.26) Apgiyy = inf{a:W(Xfe — a, 5 = 1, ---, N) wyx®},
(427) Apgywy = sup{a:W(Xix — a, ¢ =1, ---, N) = Wy®}.

lIA

[For the expressions of Agw,x and Apgey,y in terms of the order statistics of
(X¥e + XF4)/2,1 £ 4= 17 £ N, see Lehmann (1963).] Using then Theorem
2.1 of Sen (1968a) and proceeding precisely on the same line as in Theorems
1 and 2 of Sen (1966), it follows that under (4.3) [= (4.14)]

(4.28) By = [Wx® — Wyl Buogoyw — Augiy .l

is a translation invariant consistent estimator of ffm o (x)de, foralll £ 5 <
k =< r. [This generalizes the results of [6] to non-identically distributed random
variables.] Hence, we propose the following consistent estimator of ffw o (z) d:

(4.29) B = ()" Disicksr B .

Finally, we propose to show that L, defined by (3.6) and (3.7), consistently
estimates A(®) — %, under (4.2) and (4.3). For this, following Hoeffding (1948),
p- 318, we write

(4-30) LJ';kq = (N + 1)_1[(N - 2)Kj;kq + 3ti;’tq];

where ;.1 is the Kendall’s rank correlation between (X7, Xiiq),% = 1, - -+ ,N
(thus |tk =< 1), and

(4.31) Kjug = RET 2" 8(Xhe — X3 a)s(Xise — Xivia),

where the summation )" extends over all distinet ¢, ¢’ and 3", and s(u) is 1,
0or —1 according asu is >, = or < 0. Since, K ;1 1s a U-statistic with a bounded
kernel, on using (5.14) through (5.18) of Hoeffding (1948), it follows that its
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variance is bounded above by 1/N. Hence, by Chebyshev’s lemma, |Kjw, —
E(Kj )| —» 0, as N — . It has also been shown elsewhere [Sen (1968c)]that

if Uyis a U -statistic based on independent X1, -+, Xywithedf’'sFy, -+, Fu,
and if Fy = N7' 2 Y, F; and 6(Fy) be the expectation of Uy computed under
the assumption that F; = --- = Fy = Fy, then

(4.32) |E(Ux|Fy, -+, Fx) — 0(Fx)| = O(N),

forall ¥y, - - - , Fy for which Uy has a finite second moment. Hence, using (4.32)
and following some routine steps, we obtain that

(4.33) |E(Kjre) — INFy) — 3l >0, as N — o.

Thus, from (4.30), (4.33), (4.18), (3.6) and (3.7), it follows that under (4.2)
and (4.3),

(4.34) IL — [NM®) — 3]| >0 as N—>’ ©,

We shall now study the ARE of the procedures under consideration. Proceed-
ing on the same line as in Lemmas 2.3 and 2.4 of Doksum (1967) and Theorems
2, 3 and 4 of Lehmann (1964), it follows on using (4.20), (4.21) and (4.22)
that the ARE of the Lehmann-Doksum procedures with respect to the classical
parametric procedures is

(4.35) ¢ = e(®){r/[2 + 6(r — 2)(4N(2) — D]},
where
(4.36) e(®) = 126°(®)[[Zu e’ (2) daf

is the ARE of the Wilcoxon signed rank test with respect to the Student’s
{-test. By (4.20), the second factor on the right hand side of (4.35) is bounded
below by 1 (though as pointed out by Hollander (1967), it is quite close to 1),
while the first factor has been studied extensively by various workers and has
well known bounds.

A special case considered below is of some interest. Suppose now that

(4.37) Fi(x) = F(8;'x), & >0, forall ¢=1,2 ---,

and that (4.2) and (4.3) hold for the sequence of scale factors {8, - - - , dx}. Then,
for model (II) or (IV), e(®) equals to e(G), where @ is the univariate marginal
of F(x). For model (I), proceeding as in Theorem 2.2 of Sen (1968a), it is seen
that under the conditions stated there

(4.38) e(®) 2 e(@),

where the equality sign holds only when é/s are all equal. This illustrates the
robust efficiency of the procedures for heteroscedastic errors.

Acknowledgment. The author is indebted to the associate editor and the referee
for their constructive criticisms and useful comments on the paper.
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