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OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS!

By AiBerro Ruiz-Moncayo
University of California, Berkeley

1. The Introduction. The purpose of this paper is to prove the existence of
finite optimal stopping rules for certain problems (Theorem 1 and Theorem 2),
that are generalizations of a problem introduced by Y. S. Chow and H. Robbins
[1] and subsequently generalized by A. Dvoretzky [3].

The problem of Y. S. Chow and H. Robbins is stated as follows: let S, be the
excess of the number of heads over the number of tails in the first n tosses of a
fair coin. Does there exist a finite stopping rule for which the expected average
gain is maximal? They proved the existence of such a stopping rule; subsequently
A. Dvoretzky considered a sequence X;, X, , -+, of independent identically
distributed random variables with finite variance, and proved the existence of a
finite stopping rule which maximizes E(S./t) where S,= X; +X. + --- + X, .
Our method of proof consists of looking at the rate at which the expected tail-
income supy.r, E(S:/(a + t)) goes to zero as a — « (where T, is the class of
all stopping rules). Then we use this information to show that there is an im-
provement for any stopping rule which continues indefinitely with positive
probability.

2. Definitions and preliminaries. Let {X,, F., n = 1,2, ---} be a stochastic
sequence defined on a probability space (2, F, P), (i.e., (F,) is an increasing
sequence of sub-sigma-algebras of F, and for each n = 1, X,, is a random vari-
able measurable F,, ), with E|X,| < « forn = 1,2, - .- , and E(sup. X, < .
Let T, = class of all stopping rules with respect to (F.), i.e., class of all {:Q —
{1,2, .-+ 0} suchthat [t = k]l e Frfork = 1,2, .-+ . T = {t e Too:t < ® a.s.
Given a 7¢ T let,

T\ = class of all random variables £:Q — {0, 1, - -+, ©}

such that [t = k] € Frys -

If te Ty, following D. O. Siegmund we adopt the convention that X, =
lim suppsw X, if ¢t = .

For this class of stochastic sequences D. O. Siegmund has shown (Theorem 4
of [5]), that if:

s = first n = 1 such that X,, = f,
= o if no such n exists,
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where f,, is “the best we can expect to do as a function of the first n observations
if we do not stop before time 7, and we may continue indefinitely with positive
probability.” Then s is optimal stopping rule, i.e., E(X,) = E(X,) for any
other stopping rule {. We shall refer to this stopping rule as the “functional
equation rule.” The sequence of rewards that we are considering here satisfy
X,—0asn— ©,and E(sup.|X.|) < «.So we will be interested in proving the
finiteness of the “functional equation rule.”

We shall use the following lemma that appears in [4].

LemMMA 1. Let Yy, Y2, -+, Fo, F1, Fa, --- be a stochastic sequence with:

E(Ypua|F.) =0 and E(Yay|F,) =U,< »
for n=20,1,2, ...
and

(Yn+"'+I/n+k)/(Un+"'+Un+k)'_>a..g.’0 as k— o
forn =12 ---.

For a fixed n let w be an F,,_i-measurable random variable with u > 0 a.s. Then
B{(Yn+ - +YVor)/ (w4 Un+ -+ Ungs)| | Fad} <™

uniformly in t e To'™.

3. A lemma.

Lemma 2. Let X;, X,, ---, be a sequence of random variables defined on a
probability space (2, F, P) and let G be a class of random variables also defined on
(Q, F, P) and with values in the set {1, 2, ---, «}. Suppose that there exists a
constant o > 0 with the following property:

E(S/(a+1) <oa? forall a>0 andall teG.

If for some positive numbers K, a, b and for a t ¢ G we have b = K ot and P(t > a)
> 20/K then, E((b + 8:)/(a +1t)) < b/a.
Proor.

E((b + 8:.)/(a + 1)) < bE((a +¢)™) + oa™
< b((20) 4 Pt £ a)/(2a)) + oa”?
=blat — P(t'> a)/(2a)) + oca”* < b/a.

4, Markov chain case. Let X1, X2, - -+ , be a stationary Markov chain with
countable state space J forming a positive recurrent class and stationary initial
distribution {7 ()} jer . Let 71(j) < 72(3) < -+, be the times at which X, =
JG € J). f and ¢ real valued functions defined on J and satisfying:
2ier 7(@OfGE) < w0, D m()f(3) = 0, B(2Z2ENG (X)) < o,
0 < ¢ < g, 2im(i)g(i) < » (where ¢ is a constant).

TueoreM 1. For the conditions just stated and for any initial distribution, the
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“functional equation rule” for the stochastic sequence

where F, = o(X1, X,, -+, X,) 1s findte.

Proor. Without loss of generality we may suppose ¢ = 1. Fix a state j ¢ J and
in what follows 7, refers to 7,(7).

Cram 1. There exists a positive constant o such that,

E((f(Xen) + -+ + [(Xere))/(9(X2) + -+ + 9(Xs,) + ) | Fr,)
<o(g(Xy) + - Fg(X, )

forallm = 1,2, --- and all t € To'™ with ¢t = 1 a.s.

Proor or Cramm 1. We divide the proof of Claim 1 in two cases.

Case 1. Suppose that [f < 0] is a finite subset of J. For a t & T,,"™, let ¢ =
Tn + t and let Z(t,) = Z:,,l=1 I[X”,,:.J]

J J X J

i | | |

| | | |

T e TiE) 1 Ti(t") 41
let

-1
Y, = ;Igflk f(Xn), k= 1) 27 Tty
and
’ , — . ’
8 = DT (X)) if 2= men and £ < oo

= 0 otherwise.

By Theorem 1.14.3 of [2] the random variables Y7, Y3, - - - are independent and
identically distributed with E(¥;) = 0 and E(Y,®) = u < « we have:

E([(Ya + -+ YVogan—)(1 4+ ¢(X1) + -+ +9(X,,) + )7 | F,)
SE((Ya+ - + Yagier—n)
(1) (1 +g(X) + -+ +9(X,,) +U) —n)7|F,)
= wEB(|(Ya+ -+ + Yasiara)
(w (g(X1) 4+ -+ + g(X0) + tn + -+ + Unsawr—n) | | Fr,)

where u; = u; = --- = u = EY;’ and the stochastic sequence Y1, Y5, --- ,
Fy, F/', F/, ... with F,/ = o(Xy, ---, X..,.) satisfies the conditions of
Lemma 1, that is: E(Yy, | Fy') = Oand E(Yiy | F') = ufork = 1,2, - .
Moreover I(t') — nisin T, ™. Hence:

(1) <u(g(X2) + -+ 4+ g(X,))7
Now let

t; = first n = ¢ such that X, e [f < 0]

= o if no such n exists
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and
i = min (ty Tiery41)
then,

E(S"(1+g(X1) + -+ + g(X,.) + )| F..)
= E(I[tl<rz(w)+1](f(Xil) + - +f(XTluf)+1 —1))
(14+g(X1) + - +g(X,,) + )| F,)

2 —ME(Lu<ryny o (Tieysn — )
(I +g(X) + -+ 4+ g(X,,) + )7 F,,)
where —M = min;.;y<q f(2)
2 —ME((rienn — 0)(g(X1) + -+ + g(X.,) + )| F,)
2 —M@g(Xy) + -+ g(X.,))" A
2ies<n [xg i By — 4, | Xiy = 4, Fr,) dP(- | F-,)
2 —M(g(X1) + - + 9(X.,)) " Zieyy< miiP(Xsy, = i | F,)
2 —Mm(g(X:) + - + g(X,,))"

where m;; is the expected length of the block from X 1 = 7 to the first » such that
Xn = jand m = max < mi; . Hence

BlU(Xe) 4 o + (X D)+ 9(X0) + -+ 4 ¢(X,,) + )| F,,)
— Mmg(X) e+ g(X))T < (X)) + o+ (X))

and the proof of Case 1 of Claim 1 follows easily.
Case 2. [f < 0] is countable. In this case choose k € J such that f(k) < 0 and
let B = [f < 0] — {k} then,

= w(k)f(k)/22 ietrzo w(0)f(3) = K
where K = 1 4+ 6,6 > 0,
and,
=2 ien m(f(8) = w()f(k) + X orrzor 7(0)f(5) = —on(k)f(k).
Now we define the functions f* and 1" by:

f@) =0 if 7¢B

= f(k) if @=k

= K7'f(i) if ie[f= 0] and
(i) =0 if ie[f=0]

k)  if =k
—f(i) if ieB
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and clearly follows that Y ;o 7(2)f (2) = 0 = D_ier w(¢)f” () and we have
the identity, f(-) = Kf'(-) — f"(-). Case 1 takes care of Kf’. To finish with
Case 2 and in order not to use much notation we shall only prove that for a func-

tion f satisfying the same properties as the function f at the beginning of para-
graph 4 and with f(k) > Oand f(J — {k}) =0

E((f(X1) + - +f(X))a+ )7 [ X1 =j) < oa” forall a>0
and all ¢t ¢ T, , where oy is a positive constant. Let \(t) = Z vt Tixpmty

k k k X; k
|
|
t

| l | n
n(llc) ra(k) - ‘rw)‘(k)

For this purpose it is clearly enough to consider stopping rules ¢ such that ¢ =
ni(k)and f(X1) + --- + f(X:) = 0. Let

Z, = ;y:}y((kk))——lf(Xn)y ) v=12-.--.

—T

|
no+1(k)

For these stopping rules we have;
E((f(X0) + -+ +f(X))a+ )7 | X1 =)
S E((f(k) 4+ Zi+ -+ + Zo-d)(a + )7 X1 = ).
Bl(Zi+ -+ + Hoa)e+ 07 [ X =g} £ L 0aWa/(a +n)
where W, = [1en(Z1 + + - + Zagy—)* dP(- | X1 = j). Let
By = A(E) if ANE)EN
N if M) > N.

Then,
DN Wa S 2B{(Za+ -+ + Zgy)' | Xo = G} + 2B{Z3y | X1 = j} S 4E(Z)) - N.
Now we argue as A. Dvoretzky did in Lemma 2 of [3].

Since (@ + n)* > 0 and is strictly increasing with n,

(2) 2w Wa/(a +n)’
is increased if some W, is increased and a W, , with m > n, is decreased by the
same amount. Hence the maximum of (2) is obtained for, and only for, W; =
Wy= --- = ¢ = 4E(Z,®). From where it follows that,

B((Zi+ - + Zawa)a+ 07 [ Xi=j) £ o(X aala +0)7) = ca”.

This ends the proof of Claim 1.
Next let
U, = 2050 (X)) b= 1,2, -,

by Theorem 1.14.3 of [2] the random variables U;, U,, ---, are independent
identically distributed and with finite variance. Then

E(sup, [(f(X1) + -+ + f(Xa)(g(X2) + -+ + g(X) [ X1 = J)
< E(supn(Uy + +++ + Up)m™)
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and by Lemma 9 of [3], < «. Next we prove that the “functional equation rule’’
s is finite.
Cram 2.

P(s= o |X;=37)=0

(n what follows we shall write P; for P(- |X; = j)).
Proor. If Pj(s = ©) > 0thenP;(s = ») > 2¢K * for some positive number
K. Let 7' = first 7, such that

f(X) + - + (X)) 2 K(g(X) + -+ + g(X )

and = o if no such n exists. Then =’ ¢ T. In order to see this, we note that the
Law of the iterated logarithm holds for { Y}, 2, ... , and

@&X) + -+ + g(X)n —ases > 0,
hence for large n,
K(g(X1) + -+ + ¢(X,)" = K((11/10) en)* < $0(Y)(2n log log n)'.
Now let 7 = min(7, s) then 7 ¢ T and for some 7,
Pfir=1.< s and P (s= » |F,) > 2¢/K} >0

let us denote this event by A, .
In order to see this

20K ' <Pi(r<s and s= o) = > 9y Pi(r=1,<s and s= o)
= 2 %=1 [reru<s P(s = w [F,) dP,
hence, for some n,
Jrtu<s 20/K dP; < [rmppcs P(s = w |F.,) dP;.
Now let us define
s =s on A7
=7, On A, .
It is easy to check that s* & T , and then:
Ja., (X)) + - + F(X))(g(X1) + -+ + g(Xe)) 7 dP;

< Ja, B(A(X) + o+ o f(X) A+ f(X ) + o f (X))
(g(X1) + - +9(Xe) + s — 1) |FL) dP;
< fu, FX1) + - + (X)) 9(XL) + -0+ g(X,,)) 7 dP;

= [a, (FX) + -+ f( X)) g(Xa) + -+ + g(Xo)) " dP;
(by Lemma 2)
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which is in contradiction with the fact that s is optimal. Therefore P;(s = « ) =
0. This proves Claim 2.

So far we have shown that if the Markov chain starts with probability 1 at a
state j, then the “functional equation rule” s is finite, and from here the proof of
the theorem follows easily.

5. Independent case. Let (Xi, Y1), (X2, Y2), -+, be a sequence of inde-
pendent random vectors with E(X,) = 0, E(X)) = 62,0 < ¢ £ or S &> <
forn =1,2,---,and

(1) &((X1 + -+ + X)) (o + -+ + a2) ) = N(0, 1).
Als0,0 < d, £ Y, ,and limsup, (Yy + -+ + Y,)n ™" £ dy <  where ¢o, ¢1,

dy , ds are constants.

THEOREM 2. For the conditions just stated the ‘““functional equation rule’ for the
stochastic sequence { (X1 + -+ + X, )(Y1i+ --- + Y, )_1, F.}u=t,2,... where F,, =
O'(Xl ,Yl y T Xn ’ Yn) isﬁnite,

This proof is analogous to that given for the M.C. case, so we will omit it.

The following example shows that if the condition (1) fails to be satisfied, then

the assertion of Theorem 2 is not necessarily true.

Exampre. Let X;, X, --- be a sequence of independent random variables
with the following distributions
P(X,=a,) =P,, P(X, = —bn) = qu, n=12 ...,
where
a, = 1 f n=1 b, =1 if n=1
=27 if n =2, =2" if nx2,
P,=1 if n=1 ¢,.=3% if n=1
=14+ i =2 =+ i nz2
then, E(X,) = Oand E(X.) = 1forn = 1,2, --- . On the other side we see
that supsr,, E (8:/t) = %, and
s=1 if X3 =1
= oo if X;#1

if the optimal stopping rule.
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