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SEQUENTIAL COMPOUND ESTIMATION!

By DEnnis C. GILLILAND

Michigan State University and Unwversity of California, Berkeley

1. Introduction. We consider a sequence of statistical decision problems having
the same generic structure with this structure being possessed by what is called
the component problem. In the component problem there is a family of prob-
ability measures { Py | 6 ¢ @} over a o-field ® of subsets of &, an action space @,
and a loss function L = 0 defined on @ X @. With @€ a o-field of subsets of @,
a (randomized) decision function ¢ has domain X X € and is such that ¢(z,-)
is a probability measure on @ for each fixed z ¢ % and ¢(-, C) is ® measurable
for each fixed C' ¢ @. The decision procedure ¢ results in an expected loss (risk)

(1.1) R(0,¢) = [ [ L(9, A)p(, dA)Py (dz).
In treating the sequence of component problems it is convenient to introduce
the notation 8 = (61, 6;, ---) and 6; = (61, ---, 8:); also, we assume that

X; ~ Py, X --- X Py, = P;for all 2 = 1. The action taken at the ith stage
(i.e., in the 7th repetition of the component problem) is allowed to depend on
X; . Formally, a sequential compound procedure ¢ = (o1, ¢z, - - -) is such that
for each 7, ¢; is the means by which the 7th action is taken, ¢; is defined on
x’ X € with ¢i(-, C)®° measurable for each C, and ¢:(x;, -) is a probability
measure on € for each x;. The average risk up to stage n is

(1.2) R.(0,0) = n > i [ [ L(6:, A)oi(xi, dA)P; (dx:).

In keeping with terminology that is becoming standard, we say a sequential
compound procedure ¢ is simple if ¢;(-, C) is ; measurable for each C. If in
addition all the ¢, are identical, say ¢; = ¢, we say ¢ is simple symmetric with
kernel ¢. Simple symmetric procedures are traditional in case Q is not a singleton
set. For every simple symmetric procedure ¢ and all 0,

(1.3) Ra(8, @) = n7 2 i R(6:, ¢) Z R(Gy)

where G, is the empirical distribution of 6., ---, 6, and R(-) is the Bayes en-
velope for the component problem. We also note that for any simple procedure ¢,

(14)  supy {Ru(8, @) — R(G)} Z sups {n” 2oim R(0, 1) — infy L(6, A)}
inf, sups {R(8, ¢) — inf, L(6, A)}.

(Samuel (1965b) gives a necessary condition for the left hand side of (1.4) to
be zero.) The right hand side of (1.4) is zero only when the component problem
is trivial; otherwise, it is some positive number, say e. Therefore, with a modified
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regret defined by
(1.5) Dn(6, @) = Ru(8, 0) — R(Gy)

it follows that in a sequence of statistical decision problems involving a non-
trivial component problem and with ¢ simple symmetric, D,(8, ©) = 0 for all
6 and D.(6, @) = 3¢ > 0 for some 8, where ¢ does not depend upon 7. However,
in some problems non-simple sequential compound procedures © have been
given for which D.(8, @) = B.(8) = o(1) as n — o ; and, often, convergence
uniform in 8 is proved (e.g., Hannan (1956), Hannan (1957), Samuel (1963),
Samuel (1965a), Swain (1965), Van Ryzin (1966b), and Johns ( 1967)). In
some cases lower bounds for D, are developed and rates of convergence for
bounds of supg D (8, ©) proved. Swain (1965) and Johns (1967) discuss an ex-
tended version of the sequential compound decision problem where standards
asymptotically more stringent than R((,) are used to form a modified regret.

The question of where to begin the search for sequential compound procedures
with asymptotically small modified regret is now at hand. Robbins (1951) gives
an original and general formulation of the compound decision problem. Robbins’
formulation involves abeyance of the first n actions until X, is observed so that
at stage 7, 1 = ¢ =< n, the action can depend upon X, rather than X, . In this
sense it is a set rather than sequence problem. In the set problem it is natural to
seek procedures ¢ such that ¢( -, ) approximates ¥,(X:, -), a Bayes response
versus G, in the 7th component problem. It follows from (8.8) and (8.11) of
Hannan (1957) that for all @,

(1.6) w2 P R(6:,¢i) < R(Gh) £ 0T 2Ry R(6:, i)

where Yo is an arbitrary decision function. Therefore, the structure of natural set
compound procedures and the left inequality of (1.6) motivate sequential
compound procedures ¢ such that ¢; approximates ¥s(X:, -). In case Q is finite,
unbiased estimates A exist for G; ; for example, see Robbins (1964) and Van
Ryzin (1966a). Van Ryzin (1966b) proves that in case both Q and @ are finite,
the sequential compound procedure ¢; = ¢;* (X:, -) where ¢;* is a Bayes re-
sponse versus h; results in a modified regret O(n™*) uniform i 1n 0; and, under
non-degeneracy conditions the same result holds for ¢; = yi, (X , +). The
latter sections of this paper deal with a problem where both € and @ are infinite
subsets of the real line and the loss function is squared error. In the case of non-
finite @, G may not be estimable directly. However, with certain discrete ex-
ponential families and squared error loss, y: takes a sufficiently simple form to
allow approximation in a Cesaro mean sense; and, we will show that under
certain conditions the approximating procedures have modified regret O(n™*)
uniform in 8. Empirical Bayes versions of problems involving special discrete
exponential families are stated by Robbins (1956) and investigated by Johns
(1956). Samuel (1965a) and Swain (1965) investigate the sequential compound
estimation (non-Bayesian) problem for a larger class of discrete exponentials.
Theorems yet to be stated provide strengthenings of some of their work.
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Before turning to the special cases to be studied in detail, it is worthwhile to
note how, quite generally, certain empirical Bayes results are immediate conse-
quences of sequential compound results. Suppose 6, 6, - - - are independent
and identically distributed ¢ and let £ denote expectation with respect to the
infinite product distribution G”. For any sequential compound procedure o
consider ER,(0, o) — R(G) = ED.(8, ¢) + ER(G,) — R(G) which is non-
negative since the F expectation of each term of the sum in R,(0, ¢) is no less
than R((). Taking E expectation of (1.3) with ¢ a Bayes response versus G,
it follows that R(G) = ER(G.). Therefore,

(1.7) 0 = ER.(6, ) — E(G) = EDx(6, 0);

and, we see that rates of convergence for D,(0, ¢) uniform in 0 lead to the
corresponding rates for Cesaro sums in the empirical Bayes problem uniform in
a priori distributions G'. Rates of convergence of ER(G,) to R(G) follow as a
corollary. If bounds like o(1) (not necessarily uniform in 8) exist for D,(0, ©),
then the dominated convergence theorem can be used in conjunction with (1.7)
to prove ER.(0, @) — R(G) = o(1); for example, when D, (0, ¢) is a bounded
function of 0. The extension of sequential compound convergence to the cor-
responding Cesaro convergence in the empirical Bayes problem has been noted
previously in special cases; by Van Ryzin (1966b), Theorem 6.1, for the finite
2 X @ problem and by Swain (1965), Theorem 4, for the extended compound
problem in case of squared error loss. After this manuseript was drafted, a paper
by Samuel (1965¢) in which is reported an extension of sequential compound
convergence to convergence in the empirical Bayes problem as conceived by
Robbins (1956) came to the author’s attention. This extension is incorrect,
but the reported proof does include an alternative proof of the Cesaro conver-
gence result.

In the next section we specialize to squared error loss and derive a bound for
|D. (8, ©)| in terms of a Cesaro mean difference of ¢; and ¢:(X, -).

2. Squared error loss. Suppose that @ and @ are subsets of the line and
L(6, A) = (§ — A)> Only non-randomized procedures need be considered ;a
non-randomized sequential procedure ¢ has modified regret

(2.1) D.(8,0) = n ' 21 Pile: — 6:)° — R(Gy)

where we have used P; to denote the expectation operator for the similarly
labelled product probability measure and ¢; is an x; measurable function into @.
In this paper we will use the same symbol for a measure and its expectation
operator whenever it is convenient to do so. Inequalities (1.6) imply

0T Pi((i — Yisa) (@i 4+ Yia — 20)) < D, (0, @)
ST Pi((ei — ¢i) (@i + ¢ — 26,))

where, as defined earlier, ¢; is a decision rule in the component problem which is
Bayes versus G;, 7 = 1, and ¢, is an arbitrary decision rule.
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If Q@ = @ = [—a, a] it follows that
(22)  —dan” 2IL Pi(j0) — 4anT 27 Pillei — i) S Du(6, o)
S4an™' D Pi(lei — i)
where ¥; = ¢; — ¢5.1 and P; = Py, .

TurEOREM 2.1. Let there exist a o-finite measure u dominating each Py, § ¢ Q =
[—a, al, and let py denote a version of the Radon-Nikodym derivative. If M (x) =
supgps(x) is u integrable, then n~ ) 1 Py(|Ws]) = O(n " logn) uniform in 8 for
the version of y; given by (2.3).

Proor. As the Bayes response we take the version of conditional expectation

(2.3) Vi = D5 0,pi( 2 impi) 12 imips > 0]

where [D_i p; > 0] is the indicator function of {z| Zi pi(z) > 0}. It is easy to
show that

W < 2api(2impi) [ 20isips > 0] + a[XiTip; = 0] [pi > 0]
from which
(24) 24 Pi(lW) = 20p(M X0 (pM ) (X5 (0,M7)7h)
+ ap(2impd 2icip; = Ollps > 0)).

The lemma to follow implies that the first term on the right hand side of (2.4)
is bounded by 2au(M) D1 7. Since M = D 1 pil >+ 'p; = 0] [p: > 0], the
second term is bounded by au (M) and the theorem is proved.

Lemma 2.1, Su(a, -+, @) = 2ira’(Dia)™ = rit =
Sa(l, -, 1) forall0 £a; =1, 1 £i=n,n21

Proor. Let A; = D.ia; so that S, = Zl alAT, (08./0a,) =
(20,4, + a,")A,~" = 0. Therefore, S, (a1, -+, a0) = Su(aa, +++, Gn1, 1)
foral0 £ a: = 1,1 =4 =n.Also,forl1 £k <n

(aSﬂ/aak)(aly e, Oy, 1, Tty 1)

= (2adi + a)AT — Dk (A + i — k)7 ,

(82Sn/aak2)(a1 y T, Oy, 1) Ty 1)

=24i A7 4 2 m (A + 1 — k)= 0
Since the second partial is non-negative and
Su(ar, oy aen, 1,00 1) = 20 alAT 4+ 2R (e + 4 — k 4+ 1)
2207 D (A Fi— k) = Su(ar, -+ ,001,0,1, ---,1),

we have S.(ar, -+, ax, 1,---,1) £ Sp(a:, -+, a1, 1,--+, 1) for all
0=a: =1,1 =4 = k. The proof is completed by backward induction on k.
It is interesting to note that the hypothesis of Theorem 2.1 need not imply
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Pi(|¥i) = o(1) uniformly in 6 no matter what determination of the conditional
expectation is used; but, that for a family of normal densities, P;(|[¥]) = O(: ™)
uniformly in 6 (Gilliland, (1966)). We now apply the theorem to (2.2).

If @ = @ = [—a, a] and the hypothesis of Theorem 2.1 is satisfied, then
(2.2) yields

(2.5) IDa(8, @)| = dan™ 21 Pi(le: — ¢il) + O(n™" logn)
where O(n™" logn) is uniform in 6.

3. Squared error loss and some discrete exponential families.

3.1. Introduction. We now consider sequential compound estimation in the
case of squared error loss and a family of discrete exponential distributions on
the non-negative integers. Let Py have density

(31> po(.’lﬁ) = oxh(o)g(x% r = 07 17 ]
with respect to counting measure u where g(z) > 0

and

(A1) a=Q=10,8], 0<B < .

(The condition g(x) > 0 is assumed by Samuel (1965a) and is implied by
assumptions of Swain (1965).) With this family of distributions the Bayes
response (2.3) takes the special form

(3.2) Vi = (925 5) (G2 5m p) 12 im pi > 0]

where f is defined by f(x) = f(z + 1). The hypothesis of Theorem 2.1 is satisfied
under (A1) since pe(z) = (h(0)/h(B))ps(x) for all  and 6 £ 2. With an adjust-
ment in constant appropriate to the situation, (2.5) reads

(3.3) IDa(8, @)] < 2807 220 Pilloi — ¥il) + O(n ™" logn)

where O(n " log n) is uniform in 6. In view of (3.2) a natural procedure is pro-
vided by ¢.**(X;) with

(3.4) o = {(g205=18) (52252187} A B

where §;(z) = 6(X;, z), the Kronecker delta function. (The display of the
dependence of ¢;**(X;) upon X._, is suppressed above. This new notation will
be used for all sequential compound procedures in what follows.) The un-
truncated version of this procedure is suggested by Robbins (1956) and studied
by Johns (1956) in the context of the empirical Bayes problem. A generalized
version is applied by Swain (1965) to the extended sequential compound de-
cision problem. Essentially, Samuel (1965a) deduces that under assumption

(A17) @=100,8, ©Q=Ix8], 0<a=pf< o,
the variant

(35) o' =((G—1D7T218) v @ /Gl(G—1)721"8) v om) A B
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where m(z) = ming ps(z) results in D,(0, @’) < B,(8) = o(1). (Samuel proves
the stronger result involving almost sure convergence.) For this procedure to be
realizable m must be known which would be the case if both « and 8 are known.
Theorem 3.1 to follow demonstrates that D,(8, @) = o(1) uniform in 6 for
the procedure

(3-6) ‘Pi* = {(QZJ—I é )(921 51’)—1[2;3 6; > 0]} A B
so that o need not be known. To motivate the introduction of other assumptions
1n addltlon to (A1) or (A17) we give an example to show that the null sequence
D.(6, ¢ ’) may be converging arbitrarily slowly. That is, given a null sequence
H, > 0, there exists an exponential family and a parameter sequence 0 ¢ [a, 8]°
such that D, (0, <.9°) = H, for all large n. Of course, the same example works for
ExampLE 3.1. Let 0 < o < 8 = 1 where g(0) = land g(z) < 2%, 2 =
yet to be spemﬁed It is not difficult to show that m(z) = p.(z) for x
Ate=1=(1,1,---),
D.(1,¢") = _IZI'P'((wO - 1%
2 0 2 iP((0f — D28 = 0])
2 a7 2 2 pi(2)
Alg@) m(z + 1) /g(z + 1) m@)) A B — 1'Pis[2175,(z) = 0]
n7 221 2api(@)e — B'Pau[20178,(x) = 0]
= (e — 1)'25p(2)(1 — pu(z + 1))
Z 12.0p(20 + 1)(1 — pu(22 + 2))"

where for thelast inequality we have taken o = %. Letg(z) = 2,z = 1,3,5, - - -,
and 27° 2 g(z) = a(z), z = 2, 4, 6, --- with a(z) strictly decreasing. Then

Da(1, ¢") 2 1XTh(1)(22 + 1)7(1 — h(1)a(2e + 2)™
2 1250122 4+ 171 = h(1)/(n — D))"

where 4, = min{z|a(2z + 2) £ (n — 1)™}. Since D 5 (2 + 1)7°
> (20 + 1) and B(1) = (Dog(x)) " implies B = (1 4+ 2rz )™ <
h(1) = 1, we can write

D.(1,¢") 2 %B(1 — (n~1)")" (24, + 1)

By choice of a(z), A, can be made to increase arbitrarily slowly. Since
(1 —(n —1))"" = ¢ the example is complete.

IIV

3.2 Bounds for the modified regret. We first introduce procedures ¢’ and ¢”
which are not realizable in the sequential problem as originally stated. Define
0/ (X:) and ¢ (X:) by

(3.7) o = {g[2178; + &1/ 178 + 81 A B
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and
(3.8) o = {gl2178 + & + 2acl/gl i + 8 A B

where ratios 0/0 are to be interpreted as 0, 8;' (z) = 8(X/, z), X ~ P, isin-
dependent of X;, and {; is any sequence of centered, independent random
variables satisfying |¢; < 1 with ¢ independent of (Xi, X.). With E; the
expectation with respect to the measure induced by (Xi_1, X., &), we develop
bounds for the Cesaro means, n~" )1 P; , operating on each of the sequences

As = Ei(led — i),
B: = Ei(le" — i),
Ci = Ei(le* — &/]),
and Fi = E(lei — &/]).

Triangle inequalities together with (3.3) will then yield bounds for the modified
regret resulting from the natural sequential compound procedure ¢*.

We write
(3.9) A= [V Blp! — i £ —tldt + [§Eded — i = t]dt

and use exponential bounds of Hoeffding (1963) to approximate each integrand
displaced on the right hand side of (3.9). For convenience we drop the prime
from 8, and the subscript from E; and have for 0 < ¢t < 8

Elo/ — i 2 t] S Blg2_16;/§2.18; — (Y: + t) = 0]
=E[2iY, =2 0] = E[2i(Y; — EY,) = —)iEY}]

with Y; = §; — Ri(t)8;, Ri(t) = (§/g) (¥ + t).Since — 2_1 EY; = t(§/g) 2_1 pi
= 0and —R,(t) — EY; £ Y; — EY; =1 — EY;, Hoeffding’s Theorem 2
(1963) yields

(3.10)  Elp/ — ¢ 2 1] < exp {—2§( 21 ps)" ((¢°(1 + Ra(1))") 7't
Similarly, we treat the other tail writing for 0 = ¢ < ¢,
Elo/ —yi £ —t] = Elg2.16;/§2.18; — (Y« — t) < 0]
= E[2i (2, - EZ;) £ — 21 EZ))

with Z; = §; — 8i(£)8;, Si(t) = (§/9) (i — t). The inequalities — 3% BZ; =
—t(§/g) ip; < 0and —8:(t) — EZ; < Z;, — EZ; < 1 — EZ, imply

(3.11) Elpi — ¢ = —t] £ exp{—27(21p) (1g"(1 + Si(t)*)7't}.

Noting upper bounds for R; and S; we combine (3.10) and (3.11) obtaining for
all0 =t =8

(312) Elle/ — ¢il2 1] £ 2exp{—2°(21p)°G g (1 + 28(g/9))") ™).
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Since fg exp {—ct} dt £ i(x/c)}, (3.9) and (3.12) imply

(3.13) A: S AQ + (¢/§)(Xip)

for a constant A not depending upon 8, 7 and z. Inequality (3.13) provides a
high rate of convergence at z = 0 because > _; p;(0) = k(8)g(0) 7; and, there-
fore,

(3.14) A0) = Ci?

for a constant C not depending upon 6 and 7. The approach of Swain (1965) is
to partition by [D_1 p; > ] from which rates O(n™* log n) would follow. How-
ever, it turns out that better rates are deducible using another approach. Instead
of Hoeffding’s theorem one can use normal approximation to bound the inte-
grands displayed on the right hand side of (3.9). This approach leads to a bound
for A;(x), x = 1, from which the rate 0(n™*) more readily follows.

As before consider Y; = §; — Ri(¢)d;andlet W; = (Y, — EY;)/(1 4+ Ri(t)).
Since |[W;| £ 1, E(|W,*) £ E(W /) and it follows with r°(t) = Var (2.1 V)
that

Li(t) = v () 21 B(|Y; — BY,[)

S (IEWH)T = w700+ Ri().
Explicitly, r(t) = 2i{p; + R ()p; — (p; — Ri(t)p,)*}. Note that ¢ =
inf{1 — po(z) |2 2 1,060 >0, R’(t) = (28(§/9))", s = B(§/g)ps so with
T" = B(§/9) + 468°(3/9)" = = 1,

(3.15) (2175 + qRI(D) Zips S vi(1) £ T" XA p;.

Hence,

(3.16) Li(t) = (¢2215)7 + (¢2ip) ™

The Berry-Esseen theorem (Loéve (1963), p. 288) implies that for a constant ¢
(3.17) Bl — i Z ] £ (=21 pi(g ri(8)7't) + ¢ La(t)

where ® denotes the distribution function of N (0, 1). We can write for
a>0, [fe(—at)dt < a' [Le®(r) dr = 277" [ P[|X| = 7] dr = 27'a'P(|X])
where X ~ N (0, 1). Therefore, fﬁ &(—at) dt = ( 2r) *a™". Using this result and
the upper bound in (3.15) yields

(3.18) fo(—g Lipilgr®)Tdt = g TI(2m)'§ 21 p)'

We combine (3.16)—(3.18) to prove ‘

(319) [TEle/ — ¥: 2 tldt < D{((¢/)T + 1)(Xipn)” + Zip)7
for z = 1 and a constant D. The same method results in

(3:20) [¥Ele! —¢: £ —dldt £ D{((¢/P)U + 1)(Xip) ™ + (Zip) ™
for z = 1 where U* = 8(g/g) + 6°(§/g)". Since U = T < 6'(§/9)" + 28(3/9),
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(3.19) and (3.20) combine to yield
(3.21) A £ DI+ (¢/i)h) (Xip) ™ 4+ (2i )7

for + = 1 and a constant D not depending upon 6, 7 and z. Under
(A1%), lim sup; 6; > O so that )i p;(z) T « for each z and the normal approxi-
mation is good. However, under (A1), var ( 2_i ¥,) may be bounded in which
case the normal approximation does not lead to a particularly interesting bound
in (3.21). With the procedure ¢” the artificial randomization makes the variance
diverge and permits use of Survila’s strengthening of the Berry-Hsseen theorem
(Survila, (1962)) to develop the bound. With ¢ = var (Q_i¢;) T « and
z =1,

(3.22) B: £ B{(¢/f)o:(2ip)™" + (1 + (9/5) + (9/§)o0) (2 1)
+ (1 + (@/HH (i p) 7
for some constant B independent of 6, ¢ and z. (Gilliland, (1966), pp. 21-23).
We now use the bounds (3.13), (3.14), (3.21) and (3.22) to prove propositions
concerning the rates of convergence of n 'Y 1 Pi(A;) and n' D 1 P:i(B:).
ProposiTION 3.1. Under (A17), Pi(4:) = o(1) uniformly in 6.

Proor. It follows from (3.13) and the fact ¢; and y; take values in [0, 8] that.
for each fixed =z,

Ai(z) = fi(w) A B
where

filz) = A(1 4 g(2)/g(z + 1))m™ ()i
and m(z) = infs ps(x) > 0 under (A1"). As measures Py < (h(0)/h(8)P;s so

we have P;(4;) < (h(0)/h(B))Ps(f: A B) which converges to zero by the domi-
nated convergence theorem.

ProposiTION 3.2. Under (A1%),

(A2) 2. ps(a) < o,
and
(A3) 2:(9(z)/9(z + 1))ips(x) < oo,

n Y Pi(As) = O(n™?) uniformly in 6.
Proor. Under (A1") the bound (3.21) takes the form

(3.23) A; = DA+ (¢/f)H (ip)™

-where we have used the relation ; = a(§/¢)p; and D is some constant inde-
pendent of 8, s and x = 1. Writing D 1 Pi(4:) = 2. D1 pi(z)Ai(z), (3.14)
and (3.23) yield

(3.24) DT Pi(4:) SC Ot 4+ DT+ (g(x)/g(z + 1)) Mi(z)
2010 (pa(@)/M () (201 piz) /M ()
where M (z) = supepe(z) = (h(0)/h(B))ps(zx).
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LemMa 3.1, D7 ai( Dt Qj)_% <2(Xha) foralla; 20,1 <5< n,n= 1.
Proor. Let 4; = > ia;. The inequality 0 < A; — 244}, + 4.,
implies a; < 2(4; — A/AL,) from which ;4,7 £ 2(4} — AL). Summing

from 1 to n proves the lemma. The lemma applied to (3.24) proves
20 Pi(A:) £ 0 + D' 3T (1 + (9(=)/g(e + 1)))ps'(2)

for appropriate constants C and D.

ProrosiTion 3.3 Under (A1), P;(A;) = o(1).

Proor. We can write Pi(4:) £ 4:(0) + Pz > 0] < €7 + B8Pz > 0].
‘Therefore, if 8 is such that 6; — 0 then P;(4,;) — 0. Otherwise, lim sup; 6; > 0
and for each z, )i p;(z) T o so that (3.14) and (3.21) prove that 4:(z) — 0
for each z. Noting P; = (h(0)/h(B))Ps the proof is completed by application of
the dominated convergence theorem.

Prorosition 3.4. Under (Al),

(A2%) 8 ¢ interior Q*

where Q* denotes the natural parameter space,

and

(A37) 22 (g(2)/g(z + Dps(z) < o,

w1 Pi(Bi) = O(n™ logn) uniformly in 0 if ¢ = var (Zi ) = 0"
and oi* diverges.

Proor. The trivial bound |o;” — ¥:| < 8 and partitioning by [D_i p; > /"]
prove via (3.22) that

(3.25) B: = B[ ip; = &1+ B + (¢/9)" + g/5)i "

for z = 1 and appropriate constant B. The first term is taken care of by a lemma,
a weaker version of which is proved by Swain ((1965), pp. 32-34).

Lemma 3.2. Let 1 < b; £ ¢ be an increasing sequence. If (A1) and (A2%) ob-
tain, then

2ot P ipi(zx) £ bi] = O(bylogn)

uniformly in 0.

Proor. For fixed z, )1 pi(2)[ D i pi(z) < bi] < by so 2o PiD ipi(z) <
bi] £ ab, + 21 Pilz = al. Since the family has monotone increasing likelihood
ratio and [z = a] is increasing in z, Pi{z'= a] £ Ps[z = al. But under (A2")

Pslx = a] < o where ¢ = h(8)/h(d),r = B/d for some 8 < d, d & Q*. There-
fore, for any a = 0

(3.26) SEPIYipi(z) < b S aba + o

Letting a be such that n* = 1 implies ¢ = (logn)/logr™"; and, hence, the
lemma, follows from (3.26). Since a bound like (3.14) holds for B;(0), applica-
tion of the lemma to (3.25) completes the proof of the proposition.
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ProposiTioN 3.5. Under (Al), (A2%) and
(A3) 2 (g(2)/g(z + 1))pst(z) < oo,

n YT Pu(B;) = O(n~ Y wniformly in @ if 0'@ = 0(# ) and o diverges.
Proor. Partitioning (3. 22) by [2_% p;i>1 ] leads to

(327) B: < B[2ipi < &1+ B + (9/§)* + (¢/d)o™)(Xip)~

for x = 1 and a constant B. Normalizing the p, by dividing by M as in (3.24),
the proposition is proved by appealing to Lemmas 3.1 and 3.2. Use is also made
of the fact-that (A2") implies (A2) which together with (A3") implies (A3).

Another series of propositions will complete the triangulation and yield five
theorems concerning the modified regret. It is easy to verify that

(3.28) |oi* — @/ < BlSiz1 = 0] + B S:21[Sizs > 0]
+ ¢ (§8i0) 78 = 1][Si-1 > 0}
7—1

where S;_1 = 217" 8;, and, as before, 8’ (z) = §(X/’, ) and square brackets
denote indicator functions. We need the following lemma.

Lemma 3.3. For i = 2, E(Si [8ii > 0]) < 4(2; p;i)

PROOF. For each z, [Sl_l > O]Sz_l < 4(8i + 8’ 4+ 1)7" Since (S +

& + 17T 1s convex in Si_, + &/, Hoeffding’s Theorem 3 (1956) implies
E((Sia+ 8/ + 1)) = 25 (G + 17 ()p’'(1 — p) whereip = Xip,.

This last 1nequahty implies E((Sis + & + 1)) < /(G + )2 ip,) <
(2°i p;)™" and completes the proof.

ProposiTioN 3.6. Under (A1%), Pi(C:) = o(1) uniformly in 6.

Proor. For fixed z the £ expectation of the right hand side of (3.28) is bounded
by B exp {— 217" pi} + 48( 21 py) ™ + 48p:( i ps)” = g: where Lemma 3.3
and (g/§)P: < Bp: have been used. Weakening the bound to 8 exp { — (7 — 1)m}
+ 88:7'm ™ = fi, we have Pi(Ci) = h(0)(h(B))™Ps(f: A B). The right hand
side is independent of 6 and converges to zero by the dominated convergence
theorem.

In order to deduce rates of convergence it will be necessary to examine the
bound (3.28) in the case the family of distributions satisfies conditions in addi-
tion to (A1) or (A1). One such condition is

(A2,) Zz xpﬁ(x) <

which is implied by (A2").

LemMA 3.4. Under (A1) and (A2'), n D 7 Pi([Simy = 0) = 0(n™?) wni-
formly in 6.

Proor. We write 2 ¢ PJS:isi = 0] < D DT pi(2)P;4[Sii = 0] +
D7 Piz = a]. The monotone llkehhood ratio property and the fact that the
pi(2)Pia[Sicy = 0] = Py[Xy # z, ---, Xi1 # z, X; = x| are probabilities of
disjoint events together imply Zl Pi{Sii = 0] = a + an[x = a] for any
a = 0. Under (A2'), Pglz = a] < Ps(X)a™" and the choice @ = n' proves the
lemma.
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LemMA 3.5. Under (A1) and (A2), n ' 2 7 Pi(Sia[Si > 0]) = O(n_%) uni-
formly in 0.

Proor. From [S,; > 0]8i2 = ([Siei > 0]8:21)%, Jensen’s inequality and
Lemma 3.3 it follows that P;_;([Sies > 0]Sih) £ 2(>_% pj)_%. The proof is
completed by application of Lemma 3.1.

LemmA 3.6. Under (A1), n™" D ¢ P:E(g§ "Siu[sd = 1][Sies > 0]) = O(n™
-log n) uniformly in .

Proor. The left hand side can be written

n 201 200 pi(@)pi(z 4+ g()g (@ + DPia([Si > 018h)
< 4pn7 0201 pd(x) (2ipi(x) ™

where use has been made of Lemma 3.3. The rate O(n ™" logn) follows from
Lemma 2.1.

PropoSITION 3.7. Under (A1), (A2) and (A2), n' 2.7 Pi(C;) = O(n™?) uni-
Sformly in 0. ’

Proor. The proof follows from (3.28) in view of Lemmas 3.4-3.6.

ProposiTioN 3.8. Under (Al), P;(C:) = o(1).

Proor. Consider the bound g; of the proof of Proposition 3.6. If 8 is such that
lim sup; 6; > O then ) i p; — © and g; — 0 so the dominated convergence
theorem implies the result. Write P;(C;) < Ci(0) + BPi[x > 0]. The sequence
Ci(0) — 0 at any 6 since m(0) > 0, and therefore, g;(0) — 0. For 6; — 0,
Pz > 0] — 0 and the result is proved.

ProposrTioN 3.9. (a) Under (Al), (A2%) and (A37), n Dt Pu(F:) =
O(n*logn) uniformly in 8 if ¢ = O(log’ 7).

(b) Under (A1), (A2¥) and (A3), n ' 2.1 Pi(F:) = O(n™) uniformly in 0
if o = O(3*).

Proor. A straight forward computation shows

(3.29) loi — ¢/"| < B8t + 8/ = 0]
+ g |Td| (§(Sizs + 8/))7[Sies + 8 > 0]

where T; = > i ¢, . By the independence of T and (X:, X.'), E |T:| < o:and
the proof of Lemma 3.3, we have via (3.29) that
(3.30) F: = B[2ip; < 4]+ BE[Sis = 0]
+ 28(g/§)oi( 21 py) [ 21 ps > 4]

for all e. Setting ¢ = % and application of Lemmas 3.2 and 3.4 proves part (a).
To prove (b) set ¢ = } and note that the last term of (3.30) is bounded by
28(g/5)i oo 4 pj)—%. The rate O(n™?) follows by normalizing the p; and
applying Lemma 3.1.

Inequality (3.3) together with the series of propositions yield the following
theorems.

TueoreM 3.1. Under (A1Y), D.(0, ©*) = o(1) uniformly in 0.

Proor. The proof is carried by Propositions 3.1 and 3.6.
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TurorEM 3.2. Under (A1), (A2), (A2') and (A3), D.(0, ©*) = O(n™*) uni-
formly in 0.

Proor. The proof is carried by Propositions 3.2 and 3.7.

TuroreM 3.3. Under (A1), D.(8, ©*) = o(1).

Proor. The proof is carried by Propositions 3.3 and 3.8.

TuEOREM 3.4. Under (A1), (A2V) and (A37), D.a(8, @*) = O(n~* log n) uni-
formly in 0.

Proor. The proof is carried by Propositions 3.4, 3.7 and 3.9 (a) and the fact
that (A2%) implies both (A2) and (A2').

TuroreM 3.5. Under (A1), (A2V) and (A3'), D.(8, ¢*) = O(n™*) uniformly
i 0.

Proor. The proof is carried by Propositions 3.5, 3.7 and 3.9 (b).

All of the above theorems obtain with ¢* replaced by ¢**. This is easily
verified by consideration of 7' D 1 Pi(lei* — «:**|) and use of a triangle in-
equality. ’

3.3. Examples and remarks. Samuel’s Theorem 4 (1965a) implies the result
that under (A1") with « and 8 known, a natural procedure ¢’ results in modified
regret D,(0, @°) = B.(0) = o(1). Theorem 3.1 strengthens this result since
 is no longer assumed known and D.(8, ©*) = o(1) uniform in 6 is proved.
Theorem 3.3 also generalizes the Samuel result since it states D,(8, @*) = o(1)
under the weaker assumption (Al). Theorem 3.4 generalizes a theorem of
Swain (1965), Theorem 3, specialized to the unextended sequential compound
decision problem. There is the improvement in rate of convergence proved under
weaker conditions. (Assumption (iv) of Swain (1965) is not necessary and
(iii) implies (A2") (Gilliland, (1966), p. 25).) Theorems 3.2 and 3.5 are of
most interest since they establish the same order O(n"”}) which has been proved
for the general finite decision problem (see Hannan (1956) and Van Ryzin
(1966b)) and the two-action problem (Johns, (1967)).

Example 3.1 proves that if all that is assumed is (A1Y), then o(1) is the best
available uniform bound on D, (8, @) when ¢ is either ¢*, ¢** or @’. The follow-
ing example shows that the bound in Theorem 3.2 is fairly tight.

ExampLe 3.2. Consider the exponential family with ¢(0) = g¢g(1) = 1;
g(x) = 1;_4,13 =2,4, 67 e ;g(x) = x-310g~a_lxax = 37 5: 7: et and @ = [aa 1];
0 < a < 1, where a > 0 is fixed but otherwise arbitrary. It is not difficult to
verify that (A2), (A2) and (A3) are satisfied. Then at 6 = 1 with » = 2 and
any procedure ¢ such that [p; < o] = [D_1 '8; = 0],

Du(1,0) =17 TIP((1 — @)

7 2 Pi((1 — o) 2176 = 0])

(1 — a)’P[D 17" 6; = 0]

(1 - &) 2Tm2e + (1 — p(2 + 2))""
(1 — )’ (1 = h(1)/(n — 1)"™ 20 4 pi(28 + 1)

where A, = min{z | (2z + 4)* = n — 1} =3n— I Comparing the series

v v v

(%
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D4 pi(22 4 1) with the integral [oari 2% log™ ™ 2 dz shows via integration by
parts that for 4 = 1,

Sam(2e 4+ 1) = (1) (a + 3)7N (24 + 1) log (24 + 1).
Therefore,
D.(1,¢) = Kntlog " n

for some constant K > 0 and all large n.

The lower bounds demonstrated in Examples 3.1 and 3.2 also obtain for the
natural set compound procedures and illustrate that no significant ratewise
improvement results if one observes X, and then takes the sth action, 1 < 7 < n,
according to a natural set compound procedure.

Examples of exponential families which satisfy conditions (A1), (A2%), (A3)
and (A3') are provided by the Poisson family for 8 < « and the negative bi-
nomial family ps(z) = (“*27)6°(1 — 6)%,60 < 8 < 1,a > 0 fixed.

For squared error loss the first inequality of (1.4) yields supg D.(0, @) =
n”" sups R(0, ¢1). For the Poisson family and unbounded parameter set Q,
the right hand side is infinite for any procedure ¢; (Lehmann, (1950)), p. 4-13).
This illustrates the necessity of assumption (A1") or (A1) in Theorems 3.1,
3.2, 3.4 and 3.5 for the Poisson family.

For the procedures ¢* and ¢** to be realizable 8 must be known. If an upper
bound for @ is not assumed known, then the natural estimates of ¥ could be
truncated back to a; where a; is an arbitrary sequence, a; T «. It can be shown
that for the resulting procedures the order of the bound is changed by a factor
of a,’.

We noted in the introduction that the sequential compound results imply
Cesaro convergence in the empirical Bayes framework. All of the orders in the
theorems obtain for ER,(8, ©*) — R(G) where the 6; are independent and
identically dlstrlbuted G with uniformity in 0 becoming uniformity in G.

For fixed Xi1, ¢:* is not monotone in X; and is 1nadmlss1ble However, it
follows from the results of Section 1 and Section 3.2 that ¢™* has asymptotically
lower average risk than any simple symmetric procedure. High rates of con-
vergence have been proved in some cases and the practicality of the compound
procedure can be checked by recovering the constant in the bounds. We have
not made an attempt to keep track of the constants which are surely quite
large in our bounds in view of all the weakened inequalities.
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