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ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE
ANALYSIS OF JOINTLY STATIONARY TIME SERIES!

By Grace WanmBA
University of Wisconsin

1. Introduction and summary. Let {X(), ¢t = --- —1, 0,1, ---} be a P
dimensional zero mean stationary Gaussian time series,

Xa(2)
x(p) - [ X0
X»(t)

we let R(7) = EX(¢)X'(t + r), where R(7) = {Rij(7),%,j = 1,2, --- P}, and
F(o) = (2r) 7 2w e “"R(r). It is assumed that D rjc1 D eeo |7 [Ris(7))
< =, and hence F(w) exists and the elements possess bounded derivatives. It is
further assumed that F(w) is strictly positive definite, all w. Knowledge of F(w)
serves to specify the process.
z1
F(w), and S, the covariance matrix of z = 90:2 , & Normal (0, S) random
Zp
vector are known to enjoy many analogous properties. (See [7].) To cite two
examples, the hypothesis that X:(s) is independent of X,(t) for ¢ = j = 1,
2, --- P, any s, ¢, is equivalent to the hypothesis that F(w) is diagonal, all w,
while the hypothesis that z; is independent of z;, for 7 = 7 = 1, 2, --- P is
equivalent to the hypothesis that S is diagonal. The conditional expectation of
1, given Z, -+ xp 1S

L2 S :S
11 12
E(ny I To, * xp) = SuSz_zl 1,8 = -—’}'——' .
Tp Sa1 } Sas

The corresponding regression problem for stationary Gaussian time series goes as
follows. If
E{X:(t) | Xs(s), -+ Xp(s),s = -+ —1,0,1, ---}
= 2f 2w bi(t — 8)X(s)
then B(w), defined by
B(w) = (Bx(w), -+ Bp(w)),  Bj(w) = 2oy bi(s)e™
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satisfies

1 fu(w) iFu(w)
B(w) = Fp(w)Fy(w), F(w)=|-——-  E— .
Fa(w) : Fa(w)

It is interesting to ask how well these and similar analogies carry over to
sampling theory and hypothesis testing. Goodman [3] gave a heuristic argument
to support the conclusion that Fx(w;), a suitably formed estimate of the spectral
density matrix F(w;) has the complex Wishart distribution. The question is met
here by the following results. Firstly if Fx(w;),l = 1,2, - -+ M are estimates of
the spectral density matrix, each consisting of averages of (2n 4 1) periodograms
based on a record of length T', with the w; equally spaced and (2n + 1)M = 1T,
then it is possible to construct, on the same sample space as X (¢), M independ-
ent complex Wishart matrices Fg(w;), I = 1, 2, --+ M such that {Fx(wy),
l= 1, 2,--- M} converge simultaneously in mean squareto {Fz(w;), I =
1,2, --- M}, asn, M get large. Secondly, it is legitimate to use the natural anal-
ogies from multivariate analysis to test hypotheses about time series. One ex-
ample is presented, as follows. The likelihood ratio test statistic for testing S di-
agonal is |S|/] ]~ 8: where § = {4} is the sample covariance matrix. The
analogous statistic y for testing X;(s), X;(¢) independent, 7,5 1 =,2, - -- P from
a record of length 7' is

¥ = I (1P x (o)) |/ T 5= fisCw)]

where Fx(w;) = {fij(w:)} are the sample spectral density matrices as above.
Letting

‘7; = H'zu=1 [IF’i(wz)I/HL i’/ii(wz)]

where Fg(w;) = {hij(w;)} are the independent complex Wishart matrices re-
ferred to above, we show

EC,u|logy — logd| — 0

for large n, M, where C, 1 are chosen to make the result non-trival. The method
of proof applies to any statistic which is a product over ! of sufficiently smooth
functions of the entries of Fx(w;). Applications to estimation and testing in the
regression problem will appear elsewhere [8]. The distribution theory of functions
of complex Wishart matrices has been well investigated by a number of authors
[3] [5] [6], and hence can be easily applied here to statisties like ¢.

The results above are shown for P = 2, it is clear that the proofs extend to any
(fixed) finite P. The proofs proceed as follows, via a theorem which has some-
what more general application. For each 7, let X be the 2 X T random matrix

x - (B) - (B0 XD
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and let the 27" X 2T covariance matrix = be given by
2ll Zl2>
s =

(221 oo
where 2;; = EXJ/'X;. {Fx(w)}, the sample spectral density matrices described
above based on a record of length T, are each of the form Fx(w;) = T XQX’
where Q is a T X T circulant matrix with largest eigenvalue = T(2n + 1) <
3M < <T. We define circulant matrices Z;; which approximate Z;;, and a
random matrix X on the sample space of X,

£=(8)- (B0 xR

with EX/X; = Z;;. The 2T eigenvalues of the block circulant matrix

S — (Ell f:12>
f:21 f:22

will be the 2T eigenvalues of the T' matrices {F(2xj/T),7 = 1, 2, --- T}. The
distribution of random matrices of the form 7'XQX’ where Q is any circulant
matrix are relatively simple to investigate due to the fact that all circulant
matrices commute, and their eigenvalues may be exhibited as simple functions of
the elements. Circulant quadratic forms in random vectors with circulant co-
variance matrices are well known in the literature, (See [1] and references cited
there). Let Fx o = T7XQX' and Fzo = T'XQX’ where Q is now any T X T
(real or complex) quadratic form with largest absolute eigenvalue =g. The main
Theorem allows the replacement of X by X in the analysis, and is, that under the
assumptions on F(w) and R(r), for any T,

(1.1) Etr (Px,q — Fz.0)(Px,q — F2,0)" < cg/T*

where c is a constant depending only on F(w) and R(7). A lemma, essentially
allowing the replacement of F(w) by a suitably chosen step-function, together
with the application of (1.1) gives the results concerning the {Fx(w;)} an A.
Since R(7), the sample (circularized) autocorrelation function is also of the
form T'XQX’ with Q circulant we obtain an easy corollary on the distribution
of {R(7)}.

2. Circulant matrices. In this section we give some lemmas about circulant

matrices.
LemMa 1. Let Q (circulant, real or complex) be of the form

G ¢ - -  dqra

— |91,
9 : /1
g1 - gr—1 Qo

Let K(w) = (20)7" D10 que ™, let W be the T X T unitary matriz with r, sth



1852 GRACE WAHBA

element T2 "™'" gnd let D be the T X T diagonal matriz with r, rth element
K(2xr/T). Then

Q = 2acWDgW*,
Proor.
2eWDgW™,., = 20T Doty & DK (2109 T)
— T—l Z:;l z’=—01 e21r'£((r—s) /T)ve—21riyr/1'qr
— T—-l 3:01 ¢ 3'=1 e27ri((r—s—'r)/ T)v.
Since

Ty Tq ™™ =1, 7= (@ —8)+IT, 1=0,+1, 2, -,
= 0, otherwise,
we have
[20W DeW*l,s = ¢r-a, 7 — 520,
= grie-nl, r—8<0.

ReEMArks. Q Hermitian =K(2xv/T) is real for all integers », Q real =
K(2rv/T) = K*(2a(T—»)/T).

In the sequel we shall call Q the circulant matrix generated by K(w).

Lemma 2. Let R(7), 7 = -+ —1, 0, 1, be a doubly infinite sequence of real

numbers with
o || |R(7)] = 8 < o,

let flw) = (20) Do w R(7)e ™"

and for fixed T, let Dy be the T X T diagonal matrixz with r, rth entry f(2xr/T).
Let W be as in Lemma 1, and let

S ={6w,mv=12---,T) = 2«WDW*

Z={ow,mrv=112 -, T} on=R(p—r).
For any matrices of the same dimensions, define

o(A — B) = yvlaw — bul, 4 ={aw}, B = (b}
Then
o(2 = 2) = 2 e low — u| < 26,
Proor. By a calculation similar to that of Lemma 1,

Fw = Do R(u — v+ IT)
i (0w — Gl = 2 (T = 7)) | X R(7 4+ 1T) |
Ty (T = |7]) 2Femot | R(7 + IT) |

IIA
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S T2 ettt Dor—ireyy | R(r + IT) |

+ 2SR+ T) | + Xteer—ny IR(r — T) |}
+ 22 (T = )| R(+ + T) |

+ 2I5N(T = |f)R(r = T)

2T D iisr | R(7) | + 27amn |7]|R(7) |

2 > 2% |7l| R(7) | = 26.

3. The joint distribution of circulant forms in jointly circulant normal random
vectors. For each T = 2 define the T X T circulant matrices Z;; as

(3.1) Si = 2rWDi,W*, ,j=1,2
where W is the unitary matrix defined in Lemma 1 and D;;is the T X T diagonal

matrix with r, rth entry f;;(2xr/T). Since fii(2xr/T) = fu:(2x(T — r)/T) and
fi;(2rr/T) = fi;(2n(T — r/T) = fr:(2rr/T), the 2T X 2T matrix S given by

< 2_:le f:12
) S=(" 2
(32) (Em 222)
is real symmetric. It is readily verified that upper and lower bounds for the
eigenvalues of £ are given by A = max A(w) and A\ = min, A(w) where A\(w) and
A(w) are the sma]lgst and largest eigenvalues of F(w).
Lemma 3. Let (Xi, X;) be a 2T dimensional zero mean Gaussian random vector

with covariance matrix E defined by (3.2). Let K(w) be a real function of w defined
on [0, 2r] and let Q be the T X T Hermatian circulant matrix generated by K(w).

Let X be the 2 X T matriz X = (fz.‘) . Then the random matrix
2

Pz = T7'XQX’
18 distributed as the random matrix
(3.3) (2r/T) Dt 2,2, K207/ T)

where, for each r, z» is a 2 dimensional complex normal [3] random (column) vector
with complex covariance

I\

IIA

B2z = F(2rr/T), r=12---,T,
with 2, = 21—, and 2, and z, independent for s = r or T — r.
Proor.
XQX' = 2rXWDW*X'.
Let Z be the 2 X T dimensional matrix XW with rth column z,,r = 1,2, -
T and jth row denoted by Z;, 7 = 1, 2. It is readily verified that z, = Zrer .
Furthermore,

EZXZ; = EW*X/X,W = Dy, L,7i=12

from which the assertion follows.
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Let T7'Qz n(wo) be the quadratic form corresponding to the average of 2n + 1
periodograms centered at wy = 2o/ T, and spaced by 2x/T'; that is,
T-IX.'QTI"(O)G)X]" — [27r(2n + l)T]—l Z?=—n Zz;l Xi(r)e(%rirll') Go+i)
. Z:;l Xj(s)e(—%rislf') (jo+j)

where X () is the vth entry of Xy . Qrn(wo) is the Hermitian circulant quadratic
form generated by Kr(w — wi) where

Krn(w) = (20)7[T/(2n + 1)), ol = 2m0/T,
= 0, otherwise.
For each T, let
(3.4) Pgrm(w) = T7XQra(w)X'
= (2n 4+ 1) 2 22

LemMa 4. Let F(w) be a random variable distributed as We(F(w), 2, 2n +1),
where W.(F (w), 2, 2n + 1) s the complex Wishart distribution [3], 6], with 2n + 1
degrees of freedom, with F(w) defined as

F(wo) = Fra(wn) = (2n + 1)7 2050 F(2mr/T), wo = 2mjo/T.
Let \, A defined above satisfy 0 < N = A < =, and suppose
2jmt Do |7 | Rij(7) | = 6 < oo.

Then 1t is possible to construct an F(wq) on the same sample space as Fz,7.n(w0) so
that

(3.5) B tr(FPz.rn(wo) — P(wn))(Pr,za(wn) — Flw))™
< 6(A/N6(2n + 1)T.
Proor. From Lemma 3 and (3.4)
Prra(w) = (2n 4+ )7 20z
~ (@n + 1) i B (2mr/ T)ek," F (2mr/T)

where the {¢ = F*(2rr/T )z,} are independent complex normal random vectors
with complex covarlance E &&" = I,y . (Here, as in the sequel, for 4 Hermitian
or symmetric, A is the Hermitian or symmetric square root). Hence

Pz rn(w) ~ Fw) + (20 + n- i":}:—n G,
where
(36) Plo) = @n+ D)7 F (w0) (i 68 ) F*(wo) ~ We(E(w0), 2,20 + 1)
and
G, = F(2mr/ TVt F (2ar/T) — FH(wo)btr™ FP (wo) .
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Using the facts that
E tr Q.G = tr (F(2xr/T) — F(w0))(F(2rr/T) — F(wo)), r # s,

and
(2n + 1) tr oI5, ik

“(F(2rr/T) — F(wo))(F(2ns/T) — F(w0))* =0,

(2n + 1) tr 250 (F(2rr/T) — Fw))(F(20r/T) — F(@0))* 2 0
gives the inequality
(37) Etr ((2n 4 17 2050 G ((2n + 1) 20050, G
< (2n + 1) 2 B tr (GLGF).

Observe now that

o(F(2nr/T) — F(wo))

= MAX2r (jg—n)/T <0 <2 (Go+n)/T Z%.J‘=I fss(2rr/T) — fij(w)]
S6(2n+ 1T,

since, for|w — (2x7/T)| < 2x(2n + 1)T™,

fii(2ar/T) — fi(wo)| S (2m)7 25 [Rij(r)| [1 — €7/
< (20 + DT 20w |r] [Rig(7)].

Lemma A4 of the appendix then yields the inequality
(3.8) tr(@,G,*) < [max eigenvalue &£ F(A/A) ((2n + 1)/7)%"

= (161’ @/A) ((2n + 1)/T)%.
Observing that E|||* = 6, and putting together (3.7) and (3.8) gives the result.

4. Asymptotic behavior of quadratic forms in stationary gaussian processes.
We first prove a lemma which puts a bound on the mean square difference
between a general quadratic form in a normal vector ¥ and the same quadratic
form in ¥, a normal random vector approximating Y.

LemMa 5. Let Y ~ 91(0, 8), let A be any (real or complex) quadratic form with
q’ the largest eigenvalue of AA™. Let S be a symmetric positive definite matrix of the
same dimensions as S, let o(S — 8) £ 0, and let A and \ be common upper and
lower bounds for the eigenvalues of S and S,0 < A\ < A < . Let Y = YS*S.
Then

(4.1) E|lYAY — YAY'P £ (1 + 2(a/N)g’¢

Proor.
|[YAY — VAY'|' = |Y(4 — 87 §A8sH Y
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Letting H = 4 — 88488, we have, using the relations between 4th order
mixed moments of Gaussian random variables

(4.2) E|YHY'|" = (tr HS)* + 2 tr HSH'S,
(4.3) (trHS)® = (trA(S — §))* < [largest absolute entry of A X (8 — S)]*
< q202,

(44) trHSH'S = tr (4 — S#84887H 84 — 87514 8857H's
= tr (848" — §4.8) (S48 — §AS)'.

Using Lemma A.4 of the appendix on the right-hand side of (4.4) yields the
inequality

(4.5) tr HSH'S £ (A/M\)¢6".

Combining (4.2), (4.3) and (4.5) gives the result.

TueoreM 1. Let X(¢),t = --- —1,0, 1, - - - be a two dimensional stationary
zero mean Gaussian stochastic process possessing a speciral density matriz F(w).
Suppose:

(1) 0 <\ = eigenvalues of F(w) £ A < o

(2) Lim 2ot 7] |Ris(T)] = 0 < . _ _

For each T, let X be defined as in Section 1. Let X, and X, be T-dimensional zero
mean Gaussian (row) vectors with EX/X; = 2,,4,j = 1,2, defined in (3.1),

let X = ()-{1) and let Q be any T X T quadratic form with largest absolute eigen-
2

X
value < q.
Let
Fzo = TTXQX'
and
pf.q = TIXQX’.

Then for each T, it is possibleto constructan X independent of Q on the sample
space of X such that

(4.6) Etr (Pxq — Fzo)(Fx.o — Fz0)* < 4(1 + 2(4/N))(¢'/T7)(26)".

Proor. Let
_(2n 21
2= (221 222>’

where the Z;; are as in Section 1. It follows, by application of an argument di-
rectly analogous to [4], p. 64, that the eigenvalues of 2 are bounded above and

below by A and A. o
Let the 2T dimensional vector (X, X,) be given by

(X, Xo) = (X1, Xo)Z75H,
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then EX/X; = Z,,. Applying Lemma 2 to each of the blocks Z; — I, of
2 — Z gives

o(2 — 2) 22 200 2w r] |Rij(r)| = 26.
Now
E tr (px,a - ﬁi,o)(px,e - ﬁf,o)*,
= T7E 2%:a (X1, X2)Qiy(X1, Xo)' — (X, X)Qus(X, %)

where Q:; is the 27 X 2T matrix with @ in the 7, jth block (of dimension 7' X T)
and zeroes elsewhere; with the largest eigenvalue of Q:;Q; < ¢°. Applying Lemma
5withY = (X1, X;), S = Z and S = Z gives the result.

An application of this theorem will allow us to show that M sample spectral
density matrices, calculated at M appropriately spaced frequencies converge
jointly in mean square to M independent complex Wishart matrices, even
though M be large. Let Fx,ra(wi), = T XQra(w)X', 1 = 1,2, --- M be the
sample spectral density matrices formed from the average of 2n + 1 periodo-
grams centered at w; = (2xj;T"), where the j; are chosen so that the M sets
of integers {j; + 7,7 = 0, £1, £2, --- +n},l = 1, 2, --- M, are disjoint, and
0 < 2n(ji — n)/T < 2r(ji + n)/T £ w. We have necessarily (2n + 1)M <
T. It will be convenient to define X, a 2 X T random matrixby Z = XW, where
the rth column Z, of Z is given by

5, = P (o) P (2rr/T)2,, ji—nSr<ji4+n o= QT

Z =
= = X

4.7) z =z, s=T—r
Z = 2, otherwise

with F(w) = (2n 4+ 1) D 5 F(2ar/T), and 2, defined from X as in the
proof of Lemma 3. Then Pz rq(w;) = T XQra(w))X foreachl =1,2, --- M
are constructed exactly as the F(wg) of (3.6) and, by Lemmas 3 and 4 are a set
of independent W.(F(w:), 2, 2n 4 1) random matrices.

We have the following

COROLLARY 1. Under the conditions of the theorem, { Fx r.n(w1),1 = 1,2, - -+ M},
where w; are chosen as above, jointly converge in mean square to M independent
Wo(E(w1), 2, 2n 4 1) matrices, as n, M, T — oo, provided only that loge M < n.
More precisely, let {Fz,r.(w1)} be the M independent complex Wishart matrices
defined above. Then

(48) E X iLitr (Fxaon(w) — Fzra(w))(Proa(wr) — Fzra(e))”
< (120/0N)60)(2n + 1)MT? + 32(1 + 2(A/N)6*(logs M/(2n + 1)) — 0.

Proor. Using Lemma A.1, the left hand side of (4.8) is less than
(49) (2 2N E tr (Fxrm(o) — Frrn(w))(Pron(w) — FPrra(e)™)
+ 2 2N E tr (Prra(w) — F2ra(w))(Frra(wr) — Fzra(w)™).
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By Lemma 4, the second term in (4.9) is bounded by 12(A/\)6°(2n + 1)MT™2
To bound the first term, let @ = Qrn(si, S, - sy) = Z?ﬁl $1Qr n(wi).
Then

(4.10) D si(Pxrm(w) — Froa(w)) = THXQX — XQX').

Since, by the choice of w;, {(2n + )T 'Qralw:), ! = 1,2, --- M} are a fam-
ily of orthogonal projections, the largest eigenvalue of QQ* is equal to
max; |si)*(T/(2n + 1)) Applying Theorem 1 to (4.10) then gives

(4.11) M lecu=l sisuE tr (FX,T,n(wl) - pf,T,n(wl))(ﬁx,T.n(wk) - pf‘,T,n(wlc))
< 4(1 + (24/0)(20)*(2n + 1)7° max, |s;|>.

Now let A be the (non-nggative deﬁnit(i YM X M rpatrix with lkttl element ay
given by an = E tr (Fxzn(w)) — Frra(w))(Frra(o) — Fzra(o))”.
Using Lemma A.5, we see that (4.11) implies that

trd = ZLE tr (FX.T,n(wl) - pf,T,n(wl))(px.T,n(wl) - pf,r,n(wl))*’
< 4(1 + (24/0))(26)” logs M(2n + 1)".

Let {Rx(7) = T7XU,X', 7 =0,1,2, --- L < T} be the sample circularized
autocorrelation matrices, where U, is the symmetric circulant matrix with %
down the 7th and T' — th diagonal and zeroes elsewhere on and above diagonal
(with Uy = I). As is well known (and obvious from Lemma 3), {Rz(r) =
TXU.X', r=0,1,2, --- L} are jointly distributed as the L random matrices

T D°F cos (2rrr/ Tz, r=1,2 L

where 2, = z7_,, 2- and 2, are independent, for s 5 r or T — r, complex normal
vectors with Ezz* = F(2xr/T). We have
COROLLARY 2.

E tr (Rx(r) — Rz(r))(Rx(r) — Rx(r))" = 4(1 4 2(A/N))(20)'T",
r=0,1,2,--- L.

5. Applications to hypothesis testing for stationary time series. Suppose we
observed a 2 X T random matrix distributed as X. Recall that X is an approxi-
mation to the random matrix X, which is a record of length T of the process
X (t) where the approximation proceeded in two steps, first by circularizing
X to get X, and then by replacing F(w) by F(w) = F(w;) for 2r(j; — n)T™" <
w = 2r(fi + n)T™". (Here we let the union of the intervals {[(2xj; — n)T7,
(2rj, + n)T')} cover the points {2757, j = 1, 2, - -+ [3T]}.) The hypothesis
that the 2 rows of X are independent is equivalent to the hypothesis that F(w)
is diagonal, all w, which represents an approximation to the hypothesis that the
two time series X:(¢) and X(s) are independent, i.e. |fiz(w)[? = 0, all w. Con-
sidering X ; the likelihood ratio statistic for the hypothesis F(w) = diagonal,
all w, may be readily gotten by examining the well known results [2] in the anal-
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ogous situation of testing for the diagonality of the covariance matrix of a (real)
normal random vector. It is

¥ =05 = O™
where
Uw) = k() [/ (hu(ohea(wr),  {hij(w)}sjme = F2oa(w).

This suggests using ¢ to test the hypothesis of independence of Xi() and X,(s),
where

v =[5 (1 — W)™,
W(wn) = [fe(o)l’/Fu(e)fale)),  {fi(o)}iime = Fron(wr).

Under the null hypothesis, U (w), k = 1, 2, +++ M are distributed as M inde-
pendent B2, random variables, hence Var —2nM* log ¢ = 1, and under the
alternative, for large M, n, var — (nM )% log ¥ — constant. (See [3] for the
density of U (w:).)
We have the following

CoOROLLARY 3. Asn, M, T — o, in such a way that (log, M)/n — 0

E|(nM)} (log § — log )| — 0.
If |fi(w)] = O, then
ElnM* (log § — log )| — 0.

Proor. Using the fact that [log (1 — u) — log (1 — »)| £ |u — »|[(1 — @)™
+ (1 - v):ll for0 = u,v < 1, and rewriting U(wzz — W(w;) in terms of the
entries of Fx ru(w1), Pz2,ra(w:) and (Fx rn(w) — Fz,2n(w1)), we may obtain

E(nM)* [log ¥ — log ¢
= (n/M)} 2L E Jlog (1 — O(wr)) — log (1 — W (w)]
(5.1) = (n/M)* 2305 Blg(wn) (254 5o this(wr) — fis(wr)))]
const (n/M)* D 1L, [Bg*(w) ]!
“ [B tr (Fx,rn(w1) — F2on(wn))(Px,zn(on) — Prpa(w))*]

lIA

where Eg*(w;) is bounded by a constant depending only on F(w). Observe that
an inequality of the type (5.1) applies to a fairly general class of ¥’s formed from
products of the functions of Fx,r.(w;). This results in
E(nM) log ¥ — log ¢| < const n! [ 15 E tr (Px r.0(w:)

~ Prrn(0) (Px,m(w1) — Fg1,0(w)*]

which, by Corollary 1 is less than const n* (log,J//(2n + 1)* + M (2n + 1)/T%}
— 0as M, n — « insuch a way that log, M /n — 0.
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When the null hypothesis is true, |hz(w:)| + |fi2(w:)| may be factored out of
g(w;) to get an expression of the form

Enr* |log ¢ — log ¢
< constant n M D15 (Eh*(w:) Y (E|ha(wn)|* + E|f12(w1)l4)}
[E tr (FX,T,n(wl) - F’i,r,n(wl))(px,r,n(wl) - F'E,T,n(wl))*,]%

where Eh*(w;) is bounded by a constant depending only on F(w). Using the facts
that fz(w:) and fie(w;) are quadratic forms in normal random variables, and for
such quadratic forms ¢, Et* < ¢(Ef')?, where ¢ is a universal constant, and under
the null hypothesis, E|fi(w)|* and E |hiz(w1)|” are bounded by a constant X
(2n 4 1)7', the result is

EnM™" |log ¢ — log ¢|
< constant-n(2n + 1) (log, M/(2n + 1)> 4+ M(2n + 1)/T*)* - 0.
APPENDIX

In Lemmas A.1-A.3, A and B are strictly positive definite matrices, U, Ui
and V are any square matrices, and Az, Az are the smallest and largest eigen-
values of the matrix Z. The fact that A4 tr B < tr AB < A4 tr B is repeatedly
used.

Lemma Al

tr (X0 Us)(XNaUn)™ £ N tr (5= U;UT).
Proor.
br (XN U (X0 U = tr 2 20 UUY
< tr 25 2 HU,UY + U
= N tr (3= U,UY).
Lemma A2
tr (4 — B)* £ (Aa 4 \s) 7 tr (42 — B,
Proor.
(Aa+2s) tr (A — B < tr (A — B)(4 + B)
=tr (A — B)(4 + B)(4 — B),
(As + ) tr (4 — B)(A + B)(4 — B)
<tr(4—B)(4A+ B)(4 —B) (4 + B)
giving
(Aa+ As)?tr (4 — B)) < tr (A — B)(4 + B)(4 — B)(4 + B).
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tr (A — B)(A + B)(A — B)(A + B)
= tr (A> — BA + AB — B*)(A> — BA + AB — B)
= tr [A* — A’BA + A’B — A’B* — BA® + BABA — BAAB + BAB'
+ ABA® — ABBA + ABAB — AB® — B'A’ + B’A — B’AB + B'|
= tr [A* — 4B°A®> + 2BABA + B
Now,
tr BABA < tr A*B’,
hence
tr[A* — 4B’A® + 2BABA + B < tr [A* — 2tr A’B* + BY| = tr [4" — B".

Combining these last inequalities gives the lemma. It is easy to see that
equality is obtained for 4 = al, B = bl.
LemMa A3

tr (U — V)(U = V)Y 2 [o(U = VI
Proor.
tr (U — VYU = V)¥
= D (e — )" S [ [t — )’ = (U = VI

LemMa A4, Let A be any (real or complex) quadratic form with q the largest
eigenvalue of AA™. Let S, S be strictly positive (real or complex) matrices of the
same dimension as A and let 0 < X £ A < « be common lower and upper bounds
for the eigenvalues of S and S, and suppose (S — S), defined in Lemma 2 satisfies
o(8 — 8) < 0. Then

tr (SPASF — S48 (S48 — §ASHY = (A/N) "
Proor.
tr (S48 — S48 (S48 — FAFHY = tr (8 — §HAas + §4(S - &)
Q8= §Hast + SAst - 8HTY,
which by Lemma A.1 is less than
2tr (SF — SH(St — §H*(A484% + 484"
< 4% tr (8P — S (S — SHY.
Lemmas A.2 and A.3 give
tr (S — 8 (8 = §H"
< @) (8= 8) (S — Y = ()78 — B = (N7

which gives the result.
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Lemma A5  Let A be a non-negative definite M X M matriz, and suppose it is
known that, for any s = (s1, 8z, -+ - su), sAs' £ max; |s;|°c’. Then, if M =
for some k, tr A £ ¢’ In general, tr A < (logs M)c’.

Proor. We use the fact, that if 3, »% - -- ™ are any orthonormal set of M
dimensional (row) vectors, then tr 4 = DLy Ayt It M = 2F, for some
integer k, then there exists a set of M orthonormal vectors, each of the form

M"*(yl L Ys, - " Yu Y where 4,1 = 1,2, --- M is +1. In this case, the
hypothe&s gives y Ay =M andtrd £ A In general, if 2 < M < 2*7,
write M = > % 06,2 where 6, = 1and 6, = Oorl,»=0,1,2 -,k — 1.
Let I be the number of non-zero 6,’s. An M X M orthogonal matrix can be con-
structed with [ non-zero blocks down the diagonal, the mth block of dimension
2m X 2™ m =1, 2, --- [, where », corresponds to the mth non-zero 6,. In the
mth block place an orthogonal matrlx Wlth rows of the form (2™)*(u1, s,

- Uprm) Where u, = +1. Now let 4", 3°, - - - 4™ be the rows of this matrix. If
part of y* is contained in the mth block, y"Ayk' < ¢’27", and there are 2" such
y"’s. Hence

trd £ D ha2md2m =18 £k £ (logs M)C.
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