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0. Abstract. Mehler’s identity is used to obtain a bound for the integral of
the absolute difference between the bivariate gaussian density function and its
corresponding marginal densities. In a sense, this integral measures the contribu-
tion of the dependency between the gaussian random variables to an expectation.
It is shown that the integral is dominated by |p|/(1 — |o|), where p is the correla-
tion coefficient between the random variables. Using the Hotelling canonical
decomposition of a variance-covariance matrix, the result is extended to the
case of dependent gaussian vectors with the bound now given in terms of the
canonical correlations, i.e., the roots of a characteristic equation related to the
variance-covariance matrix of the vectors. As an application of the results, a
bound is obtained for the variance of the function F(X;, ---, X.) =
n D maf(X:). The {X.} denote a sequence of dependent, non-stationary,
gaussian random variables (or vectors), and f(z) is any bounded measurable
function. For the stationary case, the rate of convergence of the variance is
easily expressed in terms of the summability properties of the correlation co-
efficients. The paper concludes with some comments on extending the results to
the class of ¢’-bounded bivariate density functions.

1. Preliminaries. The following formulas concerning the Hermite polynomials
can be found in Cramér [3], page 133. The polynomials are defined by

(1) Hj(z) = (=1)%¢"""(d/da)’e™"

and satisfy the orthogonality relation

(2) )7 [fa e H (2)H,(z) de = n!, m = n,
=0, m # n.

A useful generating function is
3) (1= exp — {0 + 2 — 20ay)/2(1 — o)}
= 200G ) Hy() Hy(y),

which holds under the condition that | p| < 1. Equation (3), in a slightly dif-
ferent form, is sometimes called Mehler’s formula (see [5], page 194).
Let g(x; ¢) designate the gaussian density function with standard deviation
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o, and let ga(2, y; 01, 02, p) be the bivariate gaussian density. The gaussian
random variables X (with E{X} = 0, E{X’} = &%) and ¥ (with E{Y} = 0,
E{Y" = ¢,°) are correlated with a correlation coefficient equal to p. (There
is no difficulty in extending the results to non-zero mean variables.) An
expansion for the bivariate density is obtained by multiplying (3) by
(2701 02) " exp {—(a® + 9%)/2} and then substituting = /o1 and y = y/o.
The result is,

(4) gz, y; o1, 02, p) = g(&; 0)g(y; o2) 2oimep’ (1) H(2/or) Hi(y/o2).
Note that Ho(z) = 1 and that the first term of the series is just the product of
the univariate gaussian densities.

2. Dominating the integral. It is relatively simple to dominate the integral
(all integrals are taken from — « to 4 )

(5) I = [[loa(z, y; 01, 02, p) — g(x; 01)g(y; 02)| dz dy

which provides a measure of the contribution of the dependency between the
random variables = and y to an expectation. Substituting the expansion for the
bivariate density and cancelling the first term of the series gives

(6) I= fflg(x;al)g(y;az) Z;;lpj(j !)—lHj(x/O’l)Hj(y/O'z)l dz dy.

The magnitude sign is brought inside the summation and the integration and
summation operations are interchanged (by the Lebesgue monotone convergence
theorem) to obtain

(1) I = 2Z5lelG D7 [ Jg(z; a)g(y; o) [Hi(x/o)|Hi(y /o2)| de dy.

Using the Schwarz inequality and the orthogonality relation (equation (2))
in the form

[ 9(; o)\ H (/o) de < {[ g(z; o) do [ g(z; o) Hi(a/or) da}* < (51,
the double integral is majorized by
(8) I 25lel = lel/(1 = leD).
Again, the bound is valid for |p| < 1.

3. The multivariate case. Let x and y be k-dimensional zero-mean gaussian
vectors with covariance matrices E{xx'} = A, E{yy’} = 4. and a cross-co-
variance matrix E{xy’} = B. (Vector quantities are denoted by x and the trans-
pose by a prime.) Define the covariance matrices

o wes[un]-[t 2

T4 0
N’[o Az]'
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We now consider the multivariate version of (5)
(10) In = [+« [*lgu(x, ¥; M) — gu(x,y; N)| dxdy.

Equation (10) is transformed into k double integrals of the form (5) through the
use of the Hotelling canonical decomposition of the variance-covariance matrix
([6], Section 3: [1], Section 12.2). In analogy to the previously imposed condition
(lpl < 1), the covariance matrix M is assumed to be strictly positive definite.

The canonical decomposition of Hotelling (see [1], [6] for the details) can be
viewed as a simultaneous transformation of the variance and covariance matrices
(9) into congruent matrices of the form

_ r_ I R _ ' I 0
N T N

I is the identity matrix and R is a diagonal matrix (the matrix of canonical cor-
relation) with elements 7, --- 7. The r; are the positive values of (r’)}
2 =1, .-+, k, which are the solutions of the kth order characteristic equation

(12) [’A; — BA,"'B'| = 0.
In addition, it can be shown that |7 < 1,7 = 1, ---, k. In the context of our

problem we have
TaroreM. (Hotelling) With M strictly positive defintlte, the change of variables

=G

takes the integral (10) into
I = [ -+ [*|gu(u, v; M1) — gu(u, v; N1)| dudv
(14) = [ [P gelus, vi51,1,10)
— JTi= gCui; Dg(vi; 1)| dug - -+ dugdoy - -+ doy .
Since |ri| < 1,7 =1, - - - , k, the bivariate gaussian density functions appearing
in (14) can be expanded using (4). Then, if one proceeds in a manner completely

analogous to the previous development (Equation (6)—(8)), one can dominate
the integral by

(15) [+ [ lgm(x, 35 M) — gu(x, y; N)|dxdy < —1 + J[ia (1 — r)7"
This is the desired result.

4. An application. Let {X;},s = 1, 2, ---, represent a sequence of gaussian
random variables with B{X,} = 0, B{X/} = ¢/, E{X.X,} = piois;. As an ap-
plication of our results, we consider dominating the variance of the average of
any bounded function of the observations.

(16) F=FX, -, X)) =07 2 f(X),
where f(z) is any bounded measurable function [f(z)| < ¢. The second moment is

(17) E{FY} = 2 2 M B{ff (X)) +22 1 2 i B{f(X (X))}
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In order to use the results of the previous section, add
(L BY(X)}) — o7t Xk (BUf(Xa)})°
to (17) and subtract its equivalent
207" 30 D i B{F(X)}E{f(X ).
Form the variance and regroup terms to obtain:
(18) E{(F — B{F})"} = n {2 [Ef(X0)} — B{f(X)}7)
+ 207 200 2 man [BUf(X)F (X))} — B{f(X)}E{f(X)}1}
The second term of (18) is the part due to the dependency between the random
variables. Using (8) and the fact that f(x) is bounded, the second term of (18)
is dominated by:
E{f(X)f(X5)} — E{f(X)}E{f(X))}
(19) = [I2 [5f(@f (25) (gels, @5 5 04, 07, pis)
—g(xi 50:)g(25 5 05)) daiday < ¢ Jpul (1 — Jps]) ™
Consequently, the variance is bounded by
(20) E{(F — E(F})"} < n”* 214 E{(f(X:) — B{f(X)})}
+ 2¢7" D00 Do fen loasl (1 — o)™
To simplify the discussion, assume the sequence {X,} is stationary. Then,
pi; = pi—j and letting 7 = 7 — 7, (20) reduces to
(21) E((F — E{F})"} £ n7'B{(f(X) — B{(f(X)})*}
+ 267" 220 (n = 7)o (1 — o)™

Recall that by assumption, px = max, |0/ < 1. If the correlation coefficients
satisfy D1 |o;] = O(n’), the second term is bounded by 2¢*(1 — px) " '0(n’™).
Hence, if the correlation coefficients are absolutely summable, 6 = 0 and the
second term of (21) is of order O(1/n)—the same order as if the sequence of
random variables { X;} were independent. Similar results can be obtained for the
vector case. (See [10], Chapter 3.)

5. Concluding comments. In conclusion, we note that the technique used in
deriving the bound for the bivariate case (equation (8)) is applicable to a class
of bivariate densities, of which the gaussian is the most prominent member.
Specifically, the technique is applicable to any bivariate density function which
can be expanded in the form

(22) pe(%, y) = Pa(®)pe(y) 205 aibs® (2)6;7 ()
with
ai = [ [ pa(z, )65 ()6, (y) do dy
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and where p, and p; are the corresponding marginal density functions. (Equation
(22) has been called the Barrett-Lampard expansion [2], and has found other
uses in noise theory.) The functions 6, (z) and 6:¥ (y) are sets of (complete)
orthogonal functions with respect to the weights p.(x) and p»(y). Observe that,
in general, 6,” (z) = 6, (y) = @ = 1, and that the first term of (22) is the
product of the marginal densities. Then, the remainder of the series (assuming it
is summable), when integrated as in (7), is dominated by D_:,; |ai;| — oo .
Sufficient conditions for the expansion (22) to hold have been given by Lan-
caster ([7], [8]). He shows that if the bivariate density function is ¢’-bounded,

(23) J [ @%@, y)/pa(@)po(y)) dady — 1 = & < w,

the series converges in mean square to p:(x, y). Furthermore, the functions
(6, ()}, {Oi(b)(y)} can be chosen as ‘“‘canonical variables’’ so that they obey an
additional orthogonality condition ([7], Theorem 2)

(24) [ [689(2)6,” (y)pa(z, y) dxdy = 8.

It then follows ([7], Theorem 3) that the expansion (22) is diagonal, i.e., a;; = 0>
1 #% j. The remaining coefficients, a;; , can be shown to be maximal correlations,
and are called canonical correlations. For the gaussian case discussed above,
canonical correlations are the corresponding powers of |o|, and the canonical
variables are the Hermite polynomials. Other expansions for ¢’-bounded bivariate
densities can be found in the literature ([4], [9], [11]).
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