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ON A GENERAL CLASS OF DESIGNS FOR
MULTIRESPONSE EXPERIMENTS'

By J. N. Srivastava®

Unaversity of North Carolina and University of Nebraska

1. Introduction and summary. The purpose of this paper is to present a class
of designs suitable for experiments where several responses or characteristics
are under study, but all characteristics are not measured on each unit.

Usually, while choosing the design, not much consideration has been given to
the multiresponse aspect of the experiment, the choice being often made as
if only a single response had been under study. Furthermore, while planning
multiresponse experiments, we merely take over such designs and then assume
that each experimental unit is studied on all variates or characteristics, and
carry out the analysis accordingly. However, in a large number of cases, it is
either physically impossible, uneconomic, or inadvisable on account of unequal
importance or measuring costs of the various characteristics of interest, to study
each of them on each experimental unit. Such situations arise in diverse areas of
research in the humanities and the natural sciences. An interesting example will
be found in [15] and many others in [14]. These communications bring out
the important fact that in many situations we need to have experiments where
observations on some of the responses are missing not by accident (as, for
example, in [7] or [8]), but by design.

For the sake of illustration, we include an example here too. Often the process
of taking measurements is quite time-consuming. Suppose a biologist has a
number of growing organisms of a similar kind, on each of which he could
observe (say) p responses provided that the process of taking measurements on
any given unit were fast enough to enable him to finish in the limited amount of
time, during which the experimental conditions remain unchanged. However,
if the process is necessarily slow he may have to content himself with fewer
(than p) responses on each unit.

The above indicates that every design has two aspects: one relative to the
responses and experimental units, and the other relative to treatments and blocks.
The first decides for each unit the responses to be studied therein, while the
latter tells us for each block the treatments (and units) allocated to it. However,
the first aspect may also influence the second in the sense that relative to each
response, we may have a different system of blocks. Designs which possess this
last property are called multiresponse designs with p block systems. These have
been studied in [11] and will not be considered here.

In [11], we have also studied another class called hierarchical designs, which
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are suitable for those situations in which the various responses could be graded
in a descending order of importance, say (Vi, Vs, ---), such that the response
Vi is supposed to be more important than V;, if ¢ < j. The designs are defined
essentially by requiring that if V;is more important than V;, then V; should also
be observed on each experimental unit on which V; is observed. However, in
many cases such a grading may not exist, or it may be otherwise inadvisable to
impose such a hierarchical structure on the experiment. More general classes of
designs are then called for.

In this paper we introduce a class of designs (which may be called ‘regular
incomplete multiresponse designs’) that are response-wise incomplete, i.e., in
which there are (at least some) experimental units on which all responses are
not measured. However, in addition, they may or may not be treatment-wise
incomplete (in the sense of an ordinary incomplete block design). As will be
evident from the definition in the next section, these designs will be useful in a
large variety of multiresponse experiments.

The approach to the analysis of response-wise incomplete designs, by Trawinski
(unpublished dissertation, [14]) and Trawinski and Bargmann [15], is through
the use of maximum likelihood estimates and the likelihood ratio tests. However,
as mentioned by the author in [13], apart from large sample approximations,
etc., (inherent in the likelihood ratio tests), the formulae for the estimates of
the parameters and for the test statistic that one obtains this way are somewhat
cumbersome even for an electronic computer.

In this paper therefore, a different approach which works for regular designs,
is adopted. The attempt is to transform the data back into the framework of
linear estimation and multivariate analysis of variance. Once this is done, the
usual techniques of analysis become available.

It may be stressed that the purpose of the regular designs is not merely to
permit the estimation of treatment effects by linear analysis methods (which in
itself is important), but also to make available valid (free of nuisance parameters)
and exact test regions for testing linear hypotheses on the treatments. As usual,
we require normality assumptions for the latter but not the former. It will
also be noted that the approach in this paper possesses in a sense a symmetry
with respect to the responses, unlike, for example, the one used in the analysis of
hierarchical designs in [11] where the responses are arranged in an order of im-
portance, say Vi, Vs, -+, V,,and then the analysisfor Vi3 (¢ =0, -+ ,p — 1)
is performed conditional to the data observed for Vy, Ve, ---, V.. Finally, we
remark that though the derivations of the condition for regular designs may seem
a little complex, their actual use is simple relative particularly to the other
existing techniques.

2. Definition and preliminary discussion of incomplete multiresponse designs.
Consider the total set of (say) N experimental units. Suppose this is divided
into w(>1) disjoint sets Si, Sz, -+, S., the set S; having N; units. Let the
p responses or variates be denoted by Vi, Vi, ---, V,. On each of the N;
units (¢ = 1, 2, ---, u) in the set S;, the p; variates Vi, Vi, «--, Vip, are
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measured, these being selected from the total set of p responses Vi, Vy, -+, V,
according to a rule D, which may henceforth be called the “response design”.
Furthermore, we envisage that for each <, there is an ordinary block-treatment
design D,; defined over the N; units in the set S;. The set of blocks under the
design D.; may of course be different for different 7. The multiresponse design
D is then defined to be the total design over all the N units, and is fixed by the
(uw + 1)-tuplet

(2~1) D = (D17D21) ] D2u)

Furthermore, a multiresponse design will be called incomplete if and only if
there exists an #(1 < ¢ = u) such that p; < p.

We now formulate the model. Let the design D,; consist of a set of blocks
Ba, Bi2, *++, Bw;, which will then correspond to b; block-parameter vectors,
each consisting of p; elements corresponding to the set of p; responses measured
on each unit in the set S;. Clearly the block-parameter vectors may differ from
one S; to another. Furthermore, for each S;, we envisage (as usual) a general
effect us (¢ = 1,2, - - -, u). As for block effects, the effect u; also may vary with 7.
Also let there be ¢ treatments 71, 72, - -+, 7. These ¢ treatments are supposed to
be the same for all sets S;, but the blocks are different for each set.

The ¢ treatments will give rise to ¢ treatment effect vectors, each consisting of
p elements corresponding to the total of p responses; these vectors are the same
for all 7, although for some ¢ only a part (corresponding to the p; responses meas-
ured in S;) will come into picture. Thus the treatment effect vectors are the
same everywhere, except that for some sets S; they may be incomplete. Let the p
“‘true” responses to the different treatments be denoted by the £ X p matrix

&n bie &p
(22) £ = . . s : = [21752’ ’EPL say,
1 e Etp
where £;; denotes the ‘““true’ value of the /th response to the jth treatment. Sup-
pose lath, lpth, - -+ | l;,th variates are measured on each of the units in the set
S;. Then the set of treatment effects related to measurementsin S; are denoted by
(2.3) E(i) = [&1s &1y -0 Eli“L t=1,2-,u

Let Y:(N: X p:) be the matrix of the p; observations on the N, units in S;. Let
2? be a (b: + 1) X p: matrix corresponding to the general effect u; and the
b; block effects under the design D,;. Further we suppose as usual that there
exists a known design matrix A, of order N; X (1 4 b; 4 ¢) for the set S; such
that we can write

() ()
7 n

(24) Exp (Vi) = A;| ---- | =[Au ! Al| ---- |, say,
Eti) E(i)

where Exp denotes expected value, and A4 and Az are respectively of orders
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N;: X (bz-]- 1) and N; X t. Also write

’
Yi1
lryf ]

(2.5) Yi = 2 , i=1’2’...,u’

Yyin;
where y, denotes the vector of p; observations on the variate nos. i, la, - -, lip;
taken on the sth unit (s = 1,2, - - - , N;) inside the set S;. Then we assume that
(2.6) Var (yi) = =%,

Cov (Vis, Yirsr) = Opipsr, if 4 =14 ,s5%¢s, orif 47,
where = is a p; X p; matrix obtained by taking the lath, lath, -- -, lip;th
rows and columns of a (covariance) matrix = of order p X p, which we shall
henceforth call the population dispersion matrix. Of course, the matrix = is
assumed to be unknown. Also 0,5 will always denote a matrix of size (a X 8)
with zero everywhere.

For convenience, we introduce the matrices M; (¢ = 1,2, ---, u), such that
M ;is ap X p; matrix which contains 1in the cells (;;,7),7=1,2,---,p:,and 0
elsewhere. Then it can be checked that
(2.7) £ =y, 29 = M/EM;.

The reader will note that the use of the symbol 3/ ; here is similar to the post-
matrices M ; used by S. N. Roy [10]. Consider now an individual set of units S;.
It is well known that we cannot estimate each treatment effect, so we shall make
the usual assumption:

(2.8) Jik = 0, =12 ---,p,
where J, shall always denote a (¢ X ¢) matrix with unity in each cell, ¢ and ¢
being any positive integers.

Now consider a fixed set of units S;, and the corresponding design D,;. We
have b; blocks, ¢ treatments and p; variates. Suppose the response V; is one of
these p; responses. Define

(2.9) Ti; = total (corresponding to V;) yield for the jth treatment over all
units in S; to which jth treatment was allotted by D,
B, = total (for V) yield over all units in the gth block in the set S;,
N4, = number of units in the gth block in S;, to which jth treatment is
allotted under Dy; ,

ki, = number of units in the gth block in S;,
r; = number of units in S; under treatment j;
Qiii = Taj — 2ot [nizyBi/kil, and
Qin
(2.10) Qu =| Qn

Qilt
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Then it is well known [e.g. Kempthorne [5]] from the theory of block treatment
designs that

(2.11) Exp (Qa) = Ci&,
(2.12) Var (Qi) = C;
where C;is a ¢ X ¢ matrix with
Ci(4,5) = — 2205 nisgiro/ ki = —wisy, say, j# 7,

Ci(7,7) = rij — 2ot (niig/hig) = 1 — mai,
N

.7').7 =12, .-, i=1727"')u'

Now let I vary over the p; responses measured on S; and define the ¢ X p; matrix

(2.13) Qi = (Qi,Qa, -+, Qip,)-
Then
(2.14) Exp (Q:) = C£?, ¢=1,2, -, u.
We shall call a multiresponse design homogeneous provided that there exist
known real numbers ay (2 = 1,2, -+ ,u;r = 1,2, --- , m) such that

(215) Oi=aﬂF1+ai2F2+"‘+(¥imFm; '1:2172;"';“;

where F1, Fy, - -+, F,, are known real ¢ X ¢ matrices, and m < p(p + 1)/2.
The rest of this paper attempts to develop the theory of homogeneous incomplete
multiresponse designs. It is clear that ‘homogeneity’ here essentially implies that
the various designs Ds; have the same basic structure, as would happen when, for
example, the matrices F'y , - - - , F,, are the association matrices of an m associate
class (including the Oth associate class) PBIB design. Thus, in this case, /'y may
be diagonal and correspond to the Oth or self-associate class, and Fy , F3, -+ , Fy
to the other (m — 1) associate classes. (Note that many authors exclude the
Oth associate class, and would call this a PBIB with (m — 1) associate classes.)

To make ideas clear, we shall illustrate the discussion throughout by a simple
example.

Letp = 3, N = 96, u = 8, ¢ = 4. Thus there are 3 responses V;, V,, Vs, and
8sets S; (2 = 1, - -+, 8) each containing 12( = N;) units. For simplicity, we take
m = 2, and assume each D,;to be a BIBD with parameters (v = b =4,r = k = 3,
N = 2). Thus, on any S; there are 4 blocks with 3 treatments each; the blocks
(apart from randomization) being (1, 2, 3), (1, 2,4), (2, 3,4) and (1, 3,4). Also
let D; be as shown in the table below:

Set S1 S, S3 Ss Ss Se Sz Ss

Response measured 1,2 1,2 1,3 1,3 2,3 2,3 1,2,3 1,2,3

Thus each response is measured in 6 sets, and each pair of responses in 4 sets.
Various matrices occurring above can be easily exemplified. Thus £ is (4 X 3),
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£94s (4 X 2), Yais (12 X 2), 7P is (5 X 2), A:is (12 X 9) and A is (12 X 4)

forallz', etc;p1 = =P = 2,])7 = pPg = 3;111 = 1, l12 = 2, l31 = 1, l32 = 3 ete.
Also,
00 1 00 o 12
n a g
Ms;=]1 0 ) Ms =0 1 0, 2 =[21 zz:l,etc.
01 0 01 g

Again, ri; = 3, kiy = 3, uiy; = 3, wyy = %, and we can take Fy, = I, F, =
[J44 —_— I4], Wituh Ay = 2, Qg = —%.

To further illustrate the technique, we use the artificial data of Table 1.

It may be stressed that there are 96 units, the 12 units corresponding to one
set being completely different from the 12 units for another. Similarly the
four blocks change from set to set. To examplify various symbols, we check
y';l = (2, 7, 2), Tos = 18, ete.

3. Transforming the data to a form suitable for MANOVA. We shall con-
sider now the possibility of analysing a homogeneous incomplete multiresponse

TABLE 1
Unit No. 1 2 3 4 5 6 7 8 9 10 1 12
Block 1 1 1 2 2 2 3 3 3 4 4 4
Treatment 1 2 3 1 2 4 2 3 4 1 3 4

Set  Response

S1 1 6 6 8 3 6 8 8§ 12 11 1 15 19
S1 2 5 1 3 9 3 5 8 9 8§ 1 1 12
Sz 1 4 6 7 8 9 13 2 4 6 11 14 17
Sz 2 9 6 4 13 8 9 1 2 2 14 12 10
Ss 1 1 3 5 3 5 7 8 9 10 6 9 12
Ss 3 3 3 6 4 7 9 8 7 10 8§ 11 13
Sy 1 3 4 8 6 10 12 10 8 9 2 8 6
Sy 3 5 3 4 5 9 13 7 7 13 5 2 5
Ss 2 4 1 0 9 4 6 2 5 4 10 7 7
Ss 3 2 3 0 2 7 10 4 5 7 5 8§ 13
Se 2 6 0 0 7 5 7 5 3 2 1 7 9
Se 3 0 2 1 3 5 11 5 4 7 10 8 14
Sq 1 2 6 6 2 2 5 7 8 10 5 6 9
Sy 2 7 4 4 5 1 2 6 6 7 8 5 4
Sq 3 2 3 3 0 1 7 7 7 14 3 7 12
Ss 1 3 5 5 1 3 7 6 6 10 5 9 9
Ss 2 6 3 1 5 1 0 5 5 5 11 8 8
Ss 3 3 2 5 2 0 5 6 2 10 4 5 11
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design by making suitable transformations which pool up the data in such a way
that the standard procedure of MANOVA becomes applicable. We thus first try
to combine the data from the % sets.

Using (2.7) and (2.14) one obtains

(3.1) Exp (Q:) = CitM: = >7m Fr(asd ).

Define Q(¢t X 2_ ps) and L,(p X 2_ p:) by

(32) Q= (Q,Q, -,Q), L= (aMr, M, -, ).
One then gets

(3.3) Exp (Q) = 2+ F (L, = (F1t, Fot, - -+, Fut)L,

where L(mp X > ps) is defined by L' = (L', L, -, L.).
In order to transfer L to the left side of (3.3), we first observe that

(3.4) Exp (QL) = (Fif, Fot, « -+ , Fuf) (LL')
L/ -+ LL.
(8.5) LL = . .
LnL -+ LnLa
(3.6) LLir = 2ia avpoesr (MM).
Using the definition of M ; given before (2.7), one can easily check that
(8.7) MM/ = D;

where D;is a (p X p) diagonal matrix containing 1 in the lath, lxth, - -, l;p;th
diagonal cells and zero elsewhere. Thus the matrix (3.6) is diagonal and is given
by Z;‘=1 agaypD;.

Consider now the nonsingularity of (LL’). It is obvious that in order that LL’
may be nonsingular it is necessary that

(38) . mp = 2 i pi.

To push our investigation further suppose that A is an mp X mp matrix, such
that it has m row blocks and m column blocks and at the (r, ") block cell, it
has the (p X p) matrlx Ay Let A (s, ') be the element in the (s, ) cell of

A, . Consider the p® matrices A™ each of s1ze m X m, such that the (7, ') cell
of A**' contains the element A, (s, s'). Let A™ be the mp X mp matrix which con-
tains A* at the intersection of sth row block and s'th column block. Thus

An A Al L. AP
(39) A={ . o ), A= o).
Ami *++ Awm APY L. AP

It is easy to see that A* can be obtained from A by an appropriate permutation
of rows and columns. Hence

(3.10) A* = EAE,
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where ¥ is a permutation matrix, which is necessarily nonsingular. Taking in-
verses, one obtains

(3.11) AT = EA¥TE.

Hence A" is obtained from A*™ by the same permutation by which A* is

obtained from A. )
Now if we take A = LL’ with A, = L,L,. , then one can easily check that the

matrices A*" are all zero, for s # ', and that fors = 1,2, - -+ , p,
: afl tete Z:‘ Oyl Oy

(312) Ass = .. , ............ , ...... = (As , Say)
r Olpm Oyl * * ° rafm

where 7 in Z: ranges over the collection U, of all sets S; (of experimental units)
on which the sth response is measured. From (2.10) it follows then that LL’ is
nonsingular if and only if A* is so which in turn is equivalent to A, being nonsingu-

lar for all s.
However, as we now prove, the matrix A, is singular for all s, whatever the

multiresponse design D may be. For this purpose, recall from (2.15) that
Ci = aalfh + apFs + -+ + ambFm,

where Fy, F,, - - - , F, are linearly independent known matrices.
Let fo;;» be the element in cell (5,5) of Fy,8 = 1,2, -+ , m. Then from (2.12)

Ci(j, §) = 155 — 2ghamigi/kig = 201 ctafoss
and
Ci(3,5") = — 2201 Migiigr/lisg = 251 ctiafose .
Hence
Db D oy = i — Dot igilizg (20511 Mgy
=1y — DM = 145 — 15 = 0.
This implies that
S (D fey) =0, forall 4=1,2---,u; j=1,2 -,
Now multiplying the 6th row of A, by (2 -1 faj;») and adding, we get
(X rev, an( i an( D251 foiir) )y v+ 5 Dorev, cm( 2= aro( 2o 5r =1 fojr)))
= (Ot om0, Doramn0 -, 2orom0)
= O, forall 7=1,2, ...,

which completes the proof of our assertation.
Define

fu fe o Ju
(3.13) foi = Db friy, F=|- + o |
ml fm2 et fmt
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Then the last result implies that

(3.14) AF = Ope .
Now let

(3.15) p = rank F,

so that

Rank (LL') = Rank (A) = X2, Rank (4,) £ p(m — p).

Asis usual in ordinary experimental designs, here too we shall take recourse to
the conditions (2.8) on the matrix £ so that we may possibly “remove” the singu-

larity of A.
For any fixed ¢, we can replace C; by C,, where
(3.16) Cio=0C;+ o/ss,

o; being an arbitrary constant. We shall have by (2.8) and (2.14),
Cios(i) - Cig(i) + U'thtg,:(i) — Cig(i) — Exp (Qi)-

Thus the replacement of C: by Ci does not alter the equations of expectation,
though it changes e to (as + o), in case D 5= Fo = J,, . Before investigating
further the effects of this change we shall show that if w > 1, and there is some
variate (say sth) which is measured on just one set S; then 4, is singular, and the
singularity is not removable by introducing the change proposed at (3.16). We
are considering the caseu > 1, forif u = 1, we are reduced to the customary prob-
lem when all variates are measured on each unit, and in which the consideration
of the matrix A does not arise.
When « > 1, we consider A. Then we obtain under (3.16),

’
Ay = i,

where ;' = [(aa + 0i), (a2 + 02), - -+, (aim + 0:)], which is of rank 1 for all
ai, which proves our assertion.

In Section 5 we consider the conditions under which the matrix A and hence
LL' could be made nonsingular by altering the equations of expectations (2.14)
to the form (3.16) and appropriately choosing ¢’s. Throughout this paper we
assume that for some real number »

(3.17) (i) 2r1Fs = vJan, (ii) p= RankF = 1.
These conditions are satisfied for example when F; , F;, --- , F,, are the associ-

ation matrices of a partially balanced design with m associate classes (including

the Oth associate class).
ExamprLE. (Continued from last section.) For our design, it is easily checked

that

i ,:LILI’ L1L2'] [2414 (—8)I4] A [24 —8]
L L.r'| | (=81 (9] TL-8 (24/9) |
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for s = 1, 2, 3; and |A,| = 0. Also

3 3 3 3
so that (3.17) is satisfied. Finally, the matrix @, defined by (3.2) and (2.13) can
be easily obtained:
-73 7.7|-6.7 7.7|-7.0 —6.3|—-8.7 —2.0| 7.0 -7.7| 6.7 —-5.0
-27 -5.0{-2.7 -3.0|-1.0 —-1.0| 0.7 -3.0|—4.7 0.7(-1.7 —-0.7
3.0 -1.0/ 1.3 —2.0f 2.0 1.0] 4.7 —4.0|-1.3 —2.7|—4.3 —4.0
70 -1.7| 8.0 -2.7| 6.0 6.3|] 3.3 9.0]—-1.0 9.7|-0.7 9.7
-5.3 6.7 =7.71-6.7 7.7 -3.3
-1.0 -3.0 -3.7|-1.3 —1.3 —-3.7
0.3 —2.0 —2.3| 0.7 —3.3 —4.0 |
6.0 —-1.7 13.7, 7.3 -3.0 11.0

F'=|:1 s 3 1]5 p=Rank(F) =1, Fi+F; = Jua,

4. Regular multiresponse designs. Suppose now, that by suitable choice
ofg1,02, -+ , 0u, the matrix A and hence LL’ has been made nonsingular. This
means that we now have

[Z; (arl + U'r)z te Z: (arl + Ur)(arm + 01)}
(4.0) A, = , . e .
Zr (am + O'r)(arl + ‘71‘) te Z: (arm + O'r)2

where 7 in _, runs over the collection U, of sets of units in which the sth charac-
teristic is measured. Also, the new (LL') is defined as before by (3.11), with the
only change that the new value of A, given above be used in the formula for A* at
(3.9). Define

T Tt Tim
(4.1) H8=A;1=[-s SRS J s=1,2 -, p
Tml Tme '  Tmm
(4.2) Hy = diag (mopr , mopr , -+, maer); 6,0 = 1,2 -+ m.
Then we can write, using (3.9), (3.10), and (3.11):
[Hu Hy -+ Hy, }
(43) (LL) 7= H.” H.“ o H?’" =H, say.
Huy Hpo - Hom
Define
(4.4) H' = (Hy, Hyi, -, Hpi), i=1,2,---,m.
Then

(4.5) (LI = H = (Hy,,H,, -+, H,).
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‘Going back to (3.4), we then get
(4.6) Exp (QL'H) = (Fi§, ok, -+, Fpf).

We shall now investigate how (4.6) could be put into a form to which the
-customary model of multivariate analysis of variance is directly applicable. For
this purpose we first proceed to obtain the variance matrix of the left hand side

in (4.6).
From (2.9), (2.10) and (2.13), we can write
(4.7) Qi = Q'Y

where Q;* is a (¢ X N,) matrix such that the element in the cell (5, 7) of Q. is
given by qii; as defined below:

(1) qf,v ; = 0, if the jth row in ¥; corresponds to an experimental unit ¢;" (say),
such that e;* lies in a block in which the j'th treatment does not occur at all.

(ii) q;k i =1 — (niy/ks), if ¢ (as defined above) is in the gth block and has
the j'th treatment allotted to itself.

(iil) ¢Fj = — (mijry/ksy), if €, is in the gth block, and the j'th treatment occurs
in this block but is not allotted to e;'.
It can be easily checked that

(4.8) Q: Q" = C;,

Now using (2.6), (2.7) and (2.5) one could write (under an obvious convention)
(4.9) Var (V) = Iy, ® 29 = Iy, ® (MJ/ZM,),

where ® denotes Kronecker product. Hence from (4.7) and (4.8),

(4.10) Var (@:) = C: ® (MJ/ZM.).

Also, if ¢ # 7', then Q; and Q. refer to two different sets of units S; and Sy re-
spectively. Hence we have

(4.11) Cov (Q:, Q@) = Opt,p: -

Next we consider the left hand side of (4.6). We have using (3.3) and (3.2), and
then (2.13),

(4.12) QL = ; an Qi M, -+, ; Qim Qs Mi,]
rou u
Z 575} Qil ]Wi,, cety Z &im Qil Mi,
=1 =1
Zl a4l Qit Mi,, Tty Z_; Xim Qit Mi,
Define the (p Xp) diagonal matrices Gy (2 = 1,2, -++ ,u;0 = 1,2, -+, m)
by

(4.13) Go = 235:1 ag o .
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Then using (4.3) we get, for6 = 1,2, .-+, m,

[o; ;1 i Qa M Ho'a] [Zl’ Qu MGy
(414) QL'H,= [ -

> Z; aior Qi M, Ho'oJ [E Qi: M/ Gio

6'=1 =1

In order to obtain the variance matrix for the expression under expectation sign,
in the left hand side, we start with the expressions in (4.14). For convenience we
define the (1 X p) vectors

(4.15) Zjy = D2 QuMi{Gu; j=1,2,---,8 60=1,2---,m.

Note that in Zj, the only matrices involving the observations are the @’s.
Hence using (4.11), we immediately get

(4.16) Var (Zjs) = Dot GaM [Var (Qi;)IM{Ga,
Covar (Zjo, Zyrer) = D= GuM {Covar (Qij, Qi) IM; Gsor .

To obtain the values of the quantities inside the bracket in (4.16), we use (4.10),
(2.12), and (3.7) to get for all permissible 7 and 6,

(4.17) Var (Zjs) = 2. iw GaM {(ri — wisi) -MIEM MGy
= Z?=1 (rij — wii) (GuDZDGa).
Similarly for all j, and 6 = ¢,

(4.18) Cov(Zy,Zy) = Do (rij — i) (GuDZDGr).
Also for all 6, ', and for j = j', one gets
(4.19) Cov (Zjp, Zyw) = — 2 i=1 (nip)(GuDZDGa).

To evaluate the matrices occurring in (4.17)-(4.19), we have from (4.13) and

(4.2),
(4.20) Gy = diag (ZS’LI g y 25”'=1 Qigrmorg R Zg" —1 Qi) 1)

diag (gis, g3, -+ , gh), where

I

(4.21) gl = Do awmrs, 1=1,2,-,p; =12, u;
0=1,2,+--+,m.

It can then be easily checked that the element in the cell (7,7),1,1 = 1,2, -+, p,
of the matrix (GyD:ZD,Gy ) occurring in (4.17)—(4.19) is

(4.22) (i) awgﬁog%, ,if both the variates ! and I’ are measured in the set S;, and
(ii) zero, otherwise.

Let U, be the collection of sets S;, such that the variates { and I’ both are
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measured on each unit in a set S; if and only if S; ¢ Uy . Then using (4.22) one
gets for the (1, 1) element of Var (Z5),

(4.23) (228 (ri — wa)giegiolow

with similar expressions for the other two cases. Here . indicates that the sum
is to be taken over all values of ¢ such that S; € U,y .

Let us now consider the vectors Z]a again. Since )i Qi; = 01y, , it can be
checked using (4.15) that D ie1 Zjp = 01, , for all 6. Thus the vectors Z;; are
linearly dependent, and the rank of the vector space generated by them is at most
m(¢ — 1). Apart from having this linear dependence they are in general cor-
related, too, as is shown by (4.23), (4.19) and (4.22). To be able to transform
them (by a known linear transformation) to a set of vectors which are uncor-
related, one way appears to be to require that the expressions like the one in
curly brackets in (4.23) be factorisable into two factors, one of which depends on
(1, I') and the other does not. This motivates the following definition: A multi-
response design D is called regular, provided (i) D is homogeneous, (ii) the cor-
responding (LL') eould be made nonsingular by using (3.16), and provided that
there exists a positive definite p X p matrix I' = ((yu)), such that for all

=12 L1 =12 - ,p;and 6,6 = 1,2, --. , m; the following
factorisation is possible.
(4.24) (8) ewinoy (1 — wi)ghgie = wib v,

(0)  Zawinu) (=) ghge = wiivw,
where W = ((wii’)) i isan (mt X mt) matrlx, which is positive semidefinite, with
rank m(t — 1). Let o3y = ywou ,and =* = ((a1y)). Then, for a regular design,

(4:25) Var (Z) = Va,r [(Zu e Ztl Z12 R Zm s Zlm R Ztm)

=W ezz*
where Z i 1s defined by (4.25) above, ® denotes Kronecker product and where
clearly =* must be positive definite. Thus we are in the possession of mpt random

variables (with mp linear relations between them), whose variance is given by
(4.25) and expectation by

(4.26) Exp (Z) = Exp [(Zu -+ Zw)'] = [FY' | Y| -+ | F'

If W were positive definite, the usual multivariate analysis of variance model
would apply to the above after making an obvious and known transformation.
However we are now faced with the singular case. A general solution to the
MANOVA problem, when the dispersion matrix is unknown but known to be
singular, will be considered elsewhere. But the problem here is simpler, since the
dispersion matrix splits into W and =*, and the singularity is in W which is
known. Consider W. There exists an orthogonal (mt X mt) matrix T such that
TWT' is a diagonal matrix Dy which contains the characteristic roots of W.
Then we have Var (TZ) = (TWT') ® =* = Dy ® =*. Since W is only of
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rank m(t — 1) exactly m roots in Dy will be zero. Also the singularity in W is
caused by the relations )5y Zjy = 01, (6 = 1,2, - -+ , m). Hence it is clear that
without loss of generality we can assume 7 to be of the form 7" = [T} : T,],
where Ty and T.' have respectively m and m(t — 1) columns, and where T} is
of the form:

Jlt Olt Olt et Olt

(4.27) T, = | O Ju 0}‘ o 0{‘
013 Olt Olt M J 1t
Thus,
(428) Dy ® Z* = Var (TZ) = Var [2 g:l = [08"‘ TzWOITz,:I @z
= [0’6’" 00] ® ¥, say,
where Dy is diagonal with all elements positive. Defining
(4.29) Ts = DiT., X = TiZ,
we finally have
F
(4.30) Exp (X) = Exp (T:2) = To| I |5 = g, say,
Frn

Var (X) = Var (T3 Z) = I ® =¥

to which the usual MANOVA model becomes applicable ([9], [1]). An estimate
of ¢£1is
i \*
(431) E=[¢ol"¢'X = |[F - F./U(T5'Ts) : [Fy - F.|(T5'T5)Z,
Fn

where * denotes a conditional inverse (for definition, see [2] or [9]). Asis the case
even for ordinary linear models, the estimate is not unique unless [¢'¢] is non-
singular.

We can formally summarise the above results in

TrrorREM 4.1. For a regular muliiresponse design, there exists a linear trans-
Jormation of the original data, such that the standard techniques of MANOVA re-
garding estimation or hypotheses testing on the parameter matriz & become applicable.

To compute £, there is an easier way than is evident by (4.31). We calculate
(T5'Ts) directly in terms of W, as indicated below. We have by (4.29) and
(4.28),

(4.32) T'Ty = T'Dy"' Ty = Ty (T,WT)™T, .
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Now let
(4.33) Jo=TV'Ty, Wo=W + &Jo,
where 6 is a nonzero real number. Then W, is nonsingular. In fact after a re-
arrangement of the rows and columns, of W, one can write
0
D, |

(681,
0

TWo T = TWT + 6(TJ, T') = [

Then

() In | O ]
0 | Dt |’

o ptremn] )L, |0 T
W —[leTz][ 0 "Dy T,

= (6)"Jo + (T:'Dy™" To).
Hence from (4.32), we get the useful result
(4.34) (T5'Ts) = (W + 8Jo)™ — (86)7 .

If we want to test any (testable) hypothesis regarding £ we can use any of the
three tests (largest root, trace or likelihood) based on the roots of (SiS.™),
where S; and S, are respectively the hypothesis and error dispersion matrices
(starting from the model (4.30) ). The formulae for S, and S, are easily available,
(e.g., [1], [10]), and will not be reproduced for brevity. It should be remarked
however that in S and S, also, W would enter in the form of (75 7T;) which is
given by (4.34).

We illustrate the above with the earlier

ExamprLe. To make LL’ nonsingular, we choose ¢; = (2), (and hence
ai = (), a1, =0)fori=1,3,57, and o; = 0 (and hence iy = 2, ajp = (—2))
otherwise. We then get

A, = (4/3) [_?))5 _{I, I, = (3/64) I::]; 22] , s=123;

W7 = [

and

(L) = I: (3/64)1; f (9/64)1; :l _ [ Hy | Hye

(9/64)I; | (75/64)1; Hy | He

and gir = (%), 95 = (2),70dd; gir = 0, giz = — (%), 7 even; for all Z. Thus equa-
tions (4.24) are satisfied with T' = (3)I; 4+ (2)J33, and

J* 3 * ,
W = (1/32) ar* osy* |0 where J© = 4, — J4, , and Rank (W) = 6.

] = [H:| H.l;

Hence our multiresponse design is regular, and the usual techniques of multi-
variate estimation and hypothesis testing can be employed using the matrix Z
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(defined by (4.25) and (4.15)), which is given by l

—246 —058 067 238 | 363 —0.08 —133 —2217] -
Z' =| 267 —158 —054 —054 | —300 —175 321 1.54].
—271 —050 —0.50 371 | —296 217 450 —3.71

For example, as mentioned earlier, the matrices 75 and X do not need to be ob-
tained to get &, which from (4.31) is

—077 073 —0.06
. | —008 —003 -—032
£=1 025 —044 —058
059 —025 096

5. Removing the singularity of LL’. In the beginning of the last section, we
assumed that (LL’) can be made nonsingular. We now study a necessary and a
sufficient condition under which this can be done.

Consider A, given by (4.0). Suppose 4, is singular. Then there exist constants
Cs1, Cs2, " * , Cem , SUCh that

(5.1) Dricar 2 (g + 0,) (e + o) = 0, o =1,2,---,m.
Hence for all 6, we have
(52) Z; (arﬂ’ '+' O'r)(zg;l Cs60ir0 + Or Zg;l 030) = 0.

Let the collection U, contain m, sets, say Se , * -+ , Ssm, . For the design over the
set S.; , let the o’s be denoted by a1, sz, * ** , Qsjm , OF in vector notation by
o,; . Let the vector space generated by the vectors e, s, =+ , @m, and Jm be
V, with rank m,” (Sm, + 1). Then it is clear that if m > ms and R, is the vector
space of rank (m — m,’) orthogonal to V,, we can satisfy the condition (5.2) by
letting (ce1, ez, =+ , Cem) = Cs belong to R, , whatever the values of ¢’s may be.
Thus we have proved the following necessary condition.

TarorEM 5.1. If m > min (my, my’, -+ , my ), then the singularity of A is not
removable by using (3.16).

Our next result will show that there also exist sufficient conditions under which
the singularity of A is removable. For simplicity we shall assume

(5.3) m o= my = --+ = My = Mgy, Say, and
(54:) m = Myg.

Consider A,, and suppose that the (m X m) matrix A, = ((ase)) is non-
singular. Also let

(55) Jsr = Zg;l CoOlsrg » Cs = Z:;l Csf and 68, = (0'81 y "t Usm)
where o,; is the value of ¢ chosen for the set S,; . Furthermore let

(5.6) gs’ = (931, ttty gsm)-
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Then equations (5.2) can be written
(5-7) Asgs + (Eg;l gsﬂasﬂ)t]ml + csAsds + cs( Z:;l Ugo)t]ml = aml .

We now prove
LemMA 5.1. If A, and 8, are such that

(5.8) 1+ 6’4, Tm # 0,

and A, is singular, then Cy 5= 0.
Proor. Let C; = 0. Then (5.7) gives

Asgs + (ds,gs)']ml = Oml .
Premultiplying by 4, , and then by ¢, and simplifying one gets
(dS,gs) (1 + ds’As—l ml) = 0.

Noting (5.8) and also that g’ = A/'c,, one obtains 4,g, = 0,1, or equivalently
(A4:4,)¢ = Om ,i.e., c; = O , showing that A, is nonsingular. This contradiction
proves the lemma.

TrEOREM 5.2. If the arbitrary constants 1,03, « + + , oy are so chosen that for all
s, 8, s such that (5.8) is satisfied, then the mairices A, as at (4.0) and hence
the corresponding A are all nonsingular.

Proov. Consider A, again. On substituting g,” = 4,’c, , we have from (5.7)

(A,A0)ce + (8,4 C)Tm = —Ci[As8s + (8,6:)Tm], oT
(5.9) € = —(8,/4,c.) (AA) T — co(AeAd) ' [Aebe + (6,/60)Tml
= —dyo; — Cod2, Say, where d, = (6,/4,'c,).
Multiplying by Jim , we get
(5.10) ¢, = —de1mo1 — CoJmez, OF Cs(1 4+ Jimws) = —do(Jimon).
Now from (5.9),
1+ Jinor = 1+ Jinds 60 + (6,/6:)T1m(4:4 ) Vma
=1+ (Jinds )6 + (6,/6,) (Jinds ) (AsVm)
1 4+ (Jmds 76) + (Jmd, 6,)°, by Cauchy’s inequality.

v

But this last expression is obviously always >0. Hence

(5.11) 14+ Jimwe >0 and ¢ = —de(Jimo1)/ (1 + Jin2);
(5.12) ¢ = —dfor — (Jimon) (1 + Jimee) ‘@] = —dew, say.
Hence

(5.13)  dy = /A c, = —dy(6/ASws), or di(l + 6 A ws) = 0.
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However, from (5.9) and (5.12) one gets

1+ ¢,/4) s

(1 4 6’47 Vm) — (Jime1) (1 + J1me2) [(6/6s) + (3:65) (8" As™ Tm1)]
(1 + 6’47 Tm)*/ (1 + Jimen),

which is greater than zero. Hence from (5.13), d; = 0, and from (5.12), ¢, = 0.
Thus A, is nonsingular. This completes the proof.

Due to lack of space here, a general study of the situations under which A
could be made nonsingular is deferred to later communications.

6. Discussion of results. Let us now consider the nature of the preceding
development, the problems emerging from it and possible generalisations.

Consider the variance-covariance matrix =* for the new variables and compare
it with Z. Define

1 1
(6.1) p;kz' = ngkl'/[tffwfz']g, N o= v [yuverl’, pur = Gu'/[crzwzfz']%
Then pfy = Awpw and
(6.2) o] £ M

IA

1,

which shows that unlike =, the matrix =* is not a general covariance matrix,
but has the known restrictions (6.2). How to modify the MANOVA test when
T issingular (the case of dependent variables), or has restrictions of the type
(6.2) (a shift towards independence) is not known. However, the author feels
that the Hotelling-Lawley trace criterion ([4], [6]) should be less sensitive to
restrictions of the type (6.2), than the likelihood ratio or the largest root.

For a regular multiresponse design, we find that one can transform the ¢( >_1 p:)
random variables Q:; to mp(f — 1) new variables X, where from (3.8),
mp < 2% pi. The number of new variables is thus proportional to m, which
denotes the number of the matrices {F.}. It might be fruitful to stress here that
we have not assumed that the matrices Fi, Fy, ---, F, are necessarily the
association matrices of any PBIB design. This holds out the possibility of dis-
covering new designs D,; such that the D,; themselves may be complicated, but
the overall design D is simple to analyse, and is, in some sense, balanced. These
matrices determine how the treatments stand relative to each other in the overall
design D.

The regular designs considered herein could be of two broad types. The first
is when the D,; are designs (used at separate locations for example) which them-
selves have some importance, the problem being to choose the response design
D, in such a way that (i) Dy is convenient or useful to the experimenter, and
(ii) the overall design D is regular, so that the whole data could be pooled, and a
simple analysis could be carried out. The other case arises when we essentially
wish to lay out a single experiment but do not desire to measure each response
on each experimental unit. While many examples of the first type can easily be
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constructed by trial and error, the structure of the regular designs of the second
type may be more complicated.

The approach in this paper can perhaps be further generalized to weaken the
various requirements for ‘regularity’ of a design. Thus if the singularity of (LL')
is not ‘removable’ even by using (3.16) one could consider taking a basis of LL,
and then attempting to transform the data. The effect of this will in general be to
decrease the number of final variables to m'p(¢ — 1) where m’ < m. These and
other generalisations will be considered in later papers.
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