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A DELICATE LAW OF THE ITERATED LOGARITHM FOR
NON-DECREASING STABLE PROCESSES

By LEo BREmMAN

1. Introduction and results. Until quite recently, the only analogues for
stable processes of the law of the iterated logarithm were somewhat crude. The
difficulty is basically this: from Khinchin’s paper [1] it is easy to deduce that for
X (t) any stable process of exponent @ < 2, and ¢(¢) any monotonic function

lim sup;.., X (¢)/t'%(t)

is either zero, almost surely, or infinity, almost surely. This was the way the
matter rested until Fristed’s work in 1964 [2] where he proved, that for X (¢) a
non-decreasing stable process with a < 1,

lim inf,.., X (£)/t/*(log log t)™ "™ = ¢ a.s.

where ¢ is a finite positive constant. This sort of a result we call a delicate law of
the iterated logarithm.

Actually, Fristed proved more than the above. For functions ¢(tf) | 0 he
almost proved the analogue of the general law of the iterated logarithm by giving
conditions on ¢(¢) under which

P(X(t) = t"%(t)io. as t— )

equals zero or one. The two sets of conditions are close together but not the same.

The reason we cannot get a delicate law of the iterated logarithm for lim sup
is that the process has upward jumps which are too large. The reason the delicate
result holds for lim inf is that whenever X (£)/t*0(#) moves downward, it does
so continuously. Following Mootoo [3] we can give a simple and elegant proof of
the general law of the iterated logarithm which illuminates the above remarks.
We make use of a simple time transformation to change X (¢) into a recurrent
Markov process which has the property that it moves upward only in jumps and
downward continuously. Then Mootoo’s proof for Brownian motion can be fol-
lowed, virtually word for word, to give a proof of the following theorem, which is
our main result.

TuroreM 1. Let X(2), t = 0, be the non-decreasing stable process of exponent
a,0 < a < 1. Take ¢(t) | 0. Then

P(lim infe.. (X () — t'%(t)) £ 0) =1
if and only if
ff [¢(t)]—kl2e—ﬂl¢(t)]"‘ dt/t = o
where A\ = a/(1 — a) and u is related to the intensity m of the process, which is de-
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Jined through the relation
log (Ee"*®) = mt [§ (67" — 1)a” " dx
by
b= (Il — a)m)"* 21 — a)/a.

From this theorem we get the immediate corollary
Cororrary 1.

lim inf.e X (¢)/ (86" (log log t) ™) = 1.

By exactly the same methods used to prove Theorem 1, we can get a similar
theorem for the behavior of X (¢) neart = 0.
Tueorem 2. Take ¢(t) | Oast | 0, then

P(lim inf,e (X (1) — 7%(8)) £ 0) = 1
if and only if
[l 7 dt = o
where N and p are as defined in Theorem 1.

) 2. Proof of Theorem 1. The essential observation in the proof of this theorem
* .PROPOSITION 1. Let X (t) be any stable process of exponent a, 0 < a < 2, then
Z(t) = X(e")/e"

1s a stationary Markov process with stationary transition probabilities given by

P(Z(t+ s)edx|Z(s) = y) = P((X(e' — 1) + y)/e"" e dx).

Proor. That Z(¢) is Markovian is obvious. Now
PZ{t+ s)ede|Z(s) = y) = P(X () /"™ cdx | X () = &%)
= P(X(e") — X(&))/e“ e ds — &™),
Since
(X () — X(e7)) /e
has the same distribution as
X (e — 1)/e"°,

the process has stationary transition probabilities. Further, since X (¢*)/e”* has
the same distribution for all ¢, the Z(¢) process is stationary.

Roughly, the Z(¢) process bears the same relationship to the X (¢) process as
the stationary Ornstein-Uhlenbeck process does to Brownian motion. The essen-
tial reason that a delicate law of the iterated log holds for the limit inferior of

(X(0) — %))
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where X (t) is a non-decreasing stable process, is that the Z(¢) process does not
jump to the left. That is:

Prorosition 2. If Z(t) = zand Z () = y < z, then forany z,y < z < z, there
sat, bt <t < tysuchthat Z(t) = 2.

One easy way to see this is to use the well-known fact that X (¢) is the sum
of its jumps up to time ¢.

If we start the Z(¢) process off at time zero at £ = 1, then the times between
successive returns to the point ¢ = 1 are independent and identically distributed
with finite expectation. Starting from z = 1, let t* be the first exit time of the
Z(t) process from the interval (z,1],0 < z < 1, and

u(z) = P(Z(t*) = 2).
Then for ¥(t) any non-increasing function, it follows from Mootoo’s work [3]
that
P(liminfe.e (Z(¢) — ¢(8)) = 0) =1
if and only if
S u) de = o.
Actually, Mootoo proves this result only for positive recurrent diffusions, but
the proof goes through, word for word, for strong Markov processes whose sample
paths satisfy Proposition 2 and which have finite expected recurrence times. The
proof then reduces to finding u(z). An expression in closed form seems difficult to
come by (except in the case @ = ). But all we really need is:
TuaeorEM 3. Asz | 0,

u(z) ~ 2 M,

With this result a simple change of variable in Mootoo’s integral gives Theorem
1. Hence we complete the proof of the main result by now proving Theorem 3.

Take f(x) to be any continuous bounded function on [0, « ) with a continuous
bounded first derivative. The infinitesimal operator Sf is given by the limit as
t | 0of

T (Bf(Z(1) — f() = £ (F((X(e" = 1) + 2)/e"%) — f(=)).
The infinitesimal operator for X (¢) is
m [§fz +y) — f(@)y " dy.
A Taylor expansion gives
8) (=) = m [T [f(z +y) — f(@y " dy — a72f" ().
Let t* be the first exit time from (2, 1] and define
h(z) = P.(Z(t*) > 1).
I assert that asz | 2
lim kh(z) = 0.
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An elementary proof is to show that asz | 2

P, (Z(1 —z2/x) £ 2)— 1.
Let

log (1 +¢) = (1 — 2)/z,

then the above follows from a quick computation based on the fact that X (e)/¢
has the same distribution as X(1). Define A(z) = 1, 2 = 1, and A(z) = 0,
0 £ z < 2. Tt is well-known (see [4], pg. 143) that if U is the characteristic oper-
ator for the process, that

(UR)(z) = 0, <z =1

Notice also that h(z) is continuous on (z, 1]. By using the minimum principle
([4], pg. 141) we can furthermore show uniqueness: Any function f agreeing
with A outside of (z, 1], satisfying (Uf) (z) = 0 on (2, 1], and continuous on
(2, 1], is equal to h. We look for a function f satisfying these conditions which is,
in addition, differentiable on (z, 1]. Then (Sf)(xz) = (Uf)(z) on (#, 1], and the
equation we want to solve is

af () = am [T (fz + y) — f(@)y " dy

= am 2 (f(y) — f@)(y — 2) " dy
am(f2 (f(y) — f(@)(y — &)™ dy + (1 — f(2))/a(l — 2)%).
Integrate by parts in the integral, getting

af (@) = m[2f )y — ) "dy + (1 — f(1)m(1 — )"
Let ¢ = 1 — f(1). To show that the integral equation

w0(z) = m [20(y)(y — @)™ dy + om(1l — 2)™°
has a unique solution on (0, 1), break (0, 1) up into intervals
I = (z1,1), L= (22,2], ---

such that for each I,

la

may " [, (y —2) “dy S v <1
Use successive approximations
20n41() = m [20.(y) (y — @)™ dy + om(1 — 2)™"
and verify that
SUPsza, 0 (2) — Ba(2)] = Cln + 1)

If we solve this integral equation putting o = 1, denote the solution by 6(x).
Then, in general, f'(z) = o6(x), and

f1) = [if (@) dz = (1 — f(1)) [36(z) dz.
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By definition, u(z) = 1 — f(1), so forz | 0,
u(z) ~ c/[:0(z) de.

Suppose we can find a function g(z) on (0, »), vanishing for 0 < z < 2, and
satisfying for £ = z, the equation

zg(z) = m [S9(y)(z — y)*dy + 1.

Multiply the integral equation for §(z) by g(z), and integrate from zero to one,
getting

[20(z)g(z)z da
= [smb(z)(f39(y)(x — y)™dy) dz + m [39(y) (1 — y) ™ dy.
Therefore
J:0@) de = m fig(y)(1 — y) ™ dy

Let the Laplace transform of g(z) be §(s). The right hand side above is the
convolution of g(z) and m/z* evaluated at one. Hence equals

mT(1 — a)(2m) ™" [ia e's* 4 (s) ds.
The transform of the equation satisfied by g(z) is

—4(s) = T(1 —;cu)gj(s)s"‘"1 + g7
The appropriate solution is

§(s) = ™ [T ds
where 8 = I'(1 — a)m/a. Write
R(z) = [T£¢#*dr, F(x,2) = [t d
Then
J:0(z) de = R(z)m [5 (1 — )" da
+ ml(1 — &) (2m) ™ [Lic s e P F (s, 2) ds.

The second term approaches a constant asz | 0. Hence the whole thing revolves
around the asymptotic behavior of B(z). Let 8 = 1/(1 — «) and make the
substitution ¢ = 2%z in R(2) to get

R(z) = [Ge =5 g,
The asymptotic expansion for this integral is easily gotten by Laplace’s method
(see, for example [5]), with the result

R(z) ~ M

where

uw = max (—z + 82%) = (aB)’(1/a — 1).
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3. The situation as ¢ | 0. To look at X(¢) as ¢ | 0 we need to examine the
oscillations of Z(t) as t — — . By a slight reworking of Mootoo’s proof we get
that

P(lim infs_w (Z(t) — ¢(t)) £ 0) = 1
if and only if
JReu@p(t)) dt = .

Changing variable in this integral and using Theorem 3 yields the result of
Theorem 2.

4. Remarks. Obviously, these results indicate that a similar theorem should
hold for sums of independent identically distributed non-negative random
variables in the domain of attraction of a stable law of exponent less than one.
In the second moment case, by using Skorohod’s idea of embedding the sums in a
Brownian motion, Strassen [6] showed how to get the law of the iterated logarithm
for random variables from the theorem for Brownian motion. But it is not at
all clear that anything like that kind of embedding holds for stable processes
and random variables in the domain of attraction of a stable law.

However, as an indication that this should hold, look at this argument: let
S be a sum of n independent identically distributed variables with zero means
and finite variances o”. Define ladder variables n;* by

Ny = min {n; Sy — S > 0,1 > m*}, n* = 0.
Then write, with
o(n) = [26°n log (log n)’,
1 = lim sup S./¢(n)
= lim sup Sn+/o(n*) = lim sup (Sa/k)- (k/o(m*)) a.s.
Now Sp,+ is the sum Y; 4+ --- + Y3 of independent, identically distributed

variables given by Y = Sy» — Sa}_,. Since EY; < o, then the law of large
numbers gives

<p(nk*)/k = EY1 a.s.

The ladder variables n;* are sums X; 4 -+ + X of non-negative independent
random variables in the domain of attraction of a stable law with exponent 3.
The above relationship leads to

lim inf (X3 + -+ 4+ X3)/(K/loglog k) = ¢ a.s.

Regarding the proof of Theorem 1, Sidney Port has pointed out to me that
by very similar reasoning a delicate law of the iterated logarithm should hold
for the completely asymmetric processes with exponent @ = 1. I am indebted
to the referee for pointing out some key references, especially Fristed’s work.
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