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ABSTRACTS OF PAPERS

(An abstract of a paper presented at the Annual meeting, Madison, Wisconsin, August 26-30,
1968. Additional abstracts appeared in earlier issues.)

92. The distribution of the sample correlation coefficient with one variable
fixed. Davip HogBEN, National Bureau of Standards.

For the usual straight-line model, in which the independent variable takes on a fixed,
known set of values, it is shown that the sample correlation coefficient is distributed as
Q with (n — 2) degrees of freedom and noncentrality § = (8/a)/>, (#; — z)?. The Q variate
has been defined and studied previously by Hogben et al. (Ann. Math. Statist. 35 298-314
and 315-318). It is noted that the square of the correlation coefficient is distributed as a
non-central beta variable.

(Abstracts of papers presented at the Central Regional meeting, Iowa City, Iowa, April 23-25,
1969. Additional abstracts have appeared in earlier issues and
will appear in future issues.)

6. Jackknifing U-statistics. JAMEs N. ARvESEN, Purdue University.

Previous work of Hoeffding on U-statistics (Ann. Math. Statist. 19 (1948) 293-325), and
Miller on the jackknife (Ann. Math. Statrst. 36 (1964) 1594-1605) is combined to obtain the
following result. Let X;,---, X, be independent and identically distributed random
variables, and U(X;, --- , X,) be the U-statistic based on these random variables. Assume
U(X1,+-+, X,) is an unbiased estimate of 5, and Var (U(X:, -+, X,)) > o2 < « as
n— «. Let f denote a real-valued function defined on the real line, which in a neighborhood
of n has a bounded second derivative. Let § denote the jackknife estimate of 6 = f (), and
s72 denote the sum of squares as defined in Miller. Then as n — «, n1/2(6 — ) /sy —g N (0, 1).
The result is then extended to functions of ¢ U-statistics, that is real-valued functions de-
fined on Re. Finally an extension is presented to the case where X; , -+ , X, are independent
(not necessarily identically distributed). Applications are then presented to obtain both
asymptotic tests and confidence intervals for variance, components in Model II ANOVA.
The unbalanced case is also treated. (Received 27 January 1969.)

7. Bayesian prediction and population size assumptions. T. L. BraTcHER and
W. R. Scuucany, Southern Methodist University.

This paper is concerned with the distribution of the number successes in a random sample
given the results of a previous sample from the same population. Assuming uniform weights
(i-e., uniform prior) on the proportion of successes in the original population, Bayes rule is
utilized to obtain the desired distribution. If the size of the population is finite, say N,
then the hypergeometric density gives the probabilities for the number of successes in a
random sample. On the other hand, if N is infinite, the binomial gives the probabilities.
Somewhat surprisingly, the resulting distribution is independent of the population size
N and is the same for both the finite and infinite cases. (Received 9 January 1969.)

8. Useful bounds in packing problem. Bopu RAs GuraTr and E. G. Kounias,
Eastern Connecticut State College and McGill University.

Let m.(r, s) denote the maximum number of points in finite projective geometry
PG(r — 1, s) of (r — 1)-dimensions based on Galois field GF (s), where s is a prime or power
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of a prime, so that no ¢ of the chosen points are conjoint (a set of ¢ points are conjoint if
they lie on a flat space of dimensions not greater than ¢ — 2). Bose has shown (Sankhya 8)
that m,(r, s) also symbolises the maximum number of factors that can be accommodated
in a symmetrical factorial design in which each factor is at s = p» levels, blocks are of
size s™ and no t-factor or lower order interaction is confounded. These bounds, which have
been lately useful in error correcting codes and information theory, were introduced by
Bose, Barlotti, Seiden, Segre, Qvist and many others. Their investigations are restricted
to ¢ = 3 but no general methods are available for ¢ = 4. Our results for m.(¢, s)
Ss+t—1,s=2rand m(t,s) = s+t — 2,s = p» (p odd) agree with those of Bush
(Ann. Math. Statist. 23). We have further established that m.(t + 1,s) < s2 +¢ — 2for s
odd. Example of 10 points for s = { = 3 was given by Bose (Sankhya 8) and of 11 points for
s = 3,t = 4by G. Tallini (Acta Arithemetica T (1961)). (Received 11 December 1968.)

9. Distribution of Wilks’ likelihood ratio criterion in the complex case. A. K.
Gupta, The University of Arizona. )

The null distributions of Wilks’ likelihood ratio criterion A, in the complex case, are
derived, and it is shown that the density and the distribution function of A have exact
closed form representations for all p, the number of variates, and for all f, , the hypothesis
degrees of freedom. Earlier Gupta (to appear) and Pillai and Gupta (Biometrika 56 (1969))
using convolution techniques, have obtained the density and the distribution functions of
A in the real case. Based on a result of Khatri (Ann. Math. Statist. 36 (1965) ), the techniques
of the author’s earlier papers have been used to derive the results of the present paper.
(Received 4 February 1969.)

10. Inter-relations among estimators based on different definitions of effi-
ciency (preliminary report). A. R. PApmMANABHAN, Ohio State University.

Among all unbiased estimators of a given estimable function, the uniformly minimum
variance estimator (UMYV), if exists, is usually taken to be the best. This paper gives a
new justification for considering variance as the criterion instead of any higher order
absolute central moment. It is shown that if a bounded estimator is the best in terms of
variance, (i.e. if it is UMV), then it is automatically the best in terms of any higher ab-
solute central moment. Under some restrictions, this holds for even unbounded UMV’s.
If an estimator T is locally the best in terms of the pth absolute central moment, (p > 1)
and takes only two values then, for any r > p, T is the best (locally) in terms of the rth
absolute central moment as well. However, if T takes even three values, this result may be
false. Finally, the non-existence of the UMV’s in the case of the rectangular distribution
R(6 — %, 6 + %) is generalized with variance replaced by an arbitrary absolute central
moment of order > 1. (Received 6 January 1969.)

11. Multivariate analysis of covariance based on general rank scores. P. K.
SEN and M. L. Purrt, University of North Carolina and Indiana University.

The purpose of the paper is two-fold: (i) to develop the asymptotic distribution theory
of the normal theory likelihood ratio test statistic for the general (multivariate) linear
hypothesis problem when the underlying distribution is not necessarily normal and (ii) to
extend the results of the authors’ earlier paper [Ann. Math. Statist. 40 (1969), 000] on the
univariate analysis of covariance to the multivariate case. It is shown that the normal
theory likelihood ratio statistic has asymptotically a chi-square distribution (with appro-
priate degrees of freedom) when the underlying distribution has finite moments up to the
second order. Further, using the results of Puri and Sen [Sankhya Ser. A. 28 (1966) 353
376], the permutation as well as unconditional distribution theory of the rank order tests
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statisties for the MANOCA problem is studied and the allied efficiency results are con-
sidered. (Received 20 January 1969.)

12. Estimation of effects in a fixed effect model. JaeBIR SienH, Ohio State
University.

A linear model E(y;) = Y %1 z:B; is considered where {z;} are known inputs and
unknown effects {8;} are more or less idealized formulations of some properties of interest
in the phenomena underlying the observations. Following an idea of Katti (Biometrics
18 (1962) 139-147) a sampling scheme is proposed to estimate {8;} when some a prior: knowl-
edge about them is available in the form of guess 8o’ = (B0, *** , Bpo). Choose two integers
n = pandr > 1. Corresponding to (z1:, *** , #p;) determine one y; at random;7 = 1,2, --+ ,
n. The vector Yy’ = (y1, *** , ¥») may be considered as constituting one replication of the
experiment with design matrix X = (z;;). If the experiment is replicated r times, then
Y= 1, ,Y)= (8, ,2B) = X',,,prl B + €. Let r; and r; be two integers to be
determined so that r; + rs = r. Define by = (r18) (Y1 + +++ + Yn) and by = (r28)7!
%(Yryy + -+ + Yr), where S = zz’. Estimate the vector 8 by b as follows: b = b, if b1 e B
and by (rib1 + r2b2) /r otherwise, where R is chosen in some optimum way. For instance if
we choose R so that [E(b — Bo)(d — Bo)’| is minimum then it is determined an ellipsoid
centred at By . Other reasonable criterion are also considered for specifying R. Satistical
inference aspect about {8;} is investigated. (Received 7 February 1969.)

13. On Bartlett’s test and Lehmann’s test for homogeneity of variances. NARIAKI
Suvarura and Hisao Nacao, University of North Carolina and Hiroshima
University.

The purpose of this paper is to compare Bartlett’s test (modified likelihood ratio test)
and Lehmann’s test (asymptotically UMP invariant test) for homogeneity of variances of
k normal populations. Bartlett’s test is known to be unbiased, whereas Lehmann’s test is
shown to be biased. These two test statistics are known to have asymptotically the same
x? distribution with & — 1 degrees of freedom under the null hypothesis. We have investi-
gated the limiting distributions under the sequence of alternatives with arbitrary rate of
convergence to the null hypothesis, as sample sizes tend to infinity. Depending on the rate
of convergence, they are given by x2, noncentral x2, and normal distributions. Asymptotic
expansions of the nonnull distributions of the two test criteria under fixed alternatives, as
well as of the null distribution of Lehmann’s test, are obtained, by which some numerical
examples for the approximate powers are computed. (Received 27 January 1969.)

14. On some statistical inferences in a probabilistic pseudo-metric space (pre-
liminary report). Cuia Kuzr Tsao, Wayne State University.

Suppose { (S, &, Py), 6 ¢ @} is a family of probability spaces, where P = {Py, 6 £ @} is
dominated by some o-finite measure x over (S, @). Let F = {f(z; 6), 6 ¢ @} be the family of
probability densities with respect to u. Let X = (X1, -+ , Xx) be a random vector on S
having pdf in F. We assume: (1) f(x; 61)/f(z;6:) > 0a.e.pn, 61,0:Q, (2)e(01, 6:) =
Ey, (In[f(z; 61) /f(x; 62)]) =0, (3) dr(61, 62) = (e(61, 62) + e(62, 61)) /2 satisfies triangle
inequality, (4) for some fixed closed subset w of Q, there exists a continuous function ¢(6)
from © to w such that for any 6 in Q, the distance D (w, 6) from 6 to w is given by D (w, ) =
d(t(0), 6), and (5) there exists an unbiased (or consistent) estimator § = w(X) of 6 having
a covariance matrix (1/N€)=, ¢ > 0 and = being a bounded covariance matrix. Under
conditions (1), (2) and (3), the pair (@, dy) is a probabilistic pseudo-metric space and under
the additional conditions (4) and (5), three random variables L(X,60) =
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In [f(X;0)/f(X;¢(60))],L(X;u(X))and d(t(u(X)),u (X)) may be used in decision functions
(such as test statistics or estimators of distances between 6 and w). Some properties of
these criteria are studied and certain asymptotic optimum properties are discussed. A few
well-known statistics (both parametric and non-parametric) may be shown to be special
cases of these random variables, e.g., under suitable conditions, the statistics L (X, u (X))
and /or d (¢t (u (X)), u(X)) lead to the likelihood ratio criteria and/or asymptotically locally
optimum non-parametric statistics. Some new statistics can also be obtained through
L(X, u(X)) or d(t(w(X)), u(X)) by using various suitable u(X). (Received 7 January
1969.)

(Abstracts of papers to be presented at the Western Regional meeting, Monterey, California,
May 7-9, 1969. Additional abstracts will appear in future issues.)

1. Some useful bounds in symmetrical factorial designs. Bopa Ras GurATI,
Eastern Connecticut State College. (By title)

Let m.(r, s) denote the maximum number of points that can be chosen in the finite
projective geometry PG (r — 1, s) of r — 1 dimensions based on Galois field GF (s), where s
is a prime or power of a prime, so that any set of ¢ points are linearly independent. It is
well known that m.(r, s) also symbolises the maximum number of factors that can be
accommodated in a symmetrical factorial design in which each factor is at s levels, blocks
are of size s7, and no ¢-factor or lower order interaction is confounded. In a technical report
RM-117 of Michigan State University, 1964, E. Seiden studied the maximum number of
points in PG (r — 1, 2), no four coplanar. We have generalised the following results for any
arbitrary ¢ = 4.

1) me(t,2) =t + 1, (ii) me(t +1,2) =t + 2, (iii) me(t +2,2) =t + 4 fort = 4,5
and =t +3fort> 5 (iv)t+4=m(@+32) =t+7,¥)t+5= m(t+42)=t
+ 13. Examples are given demonstrating that for ¢ = 5, the upper bounds are achieved
in (iv) and (v). (Received 4 February 1969.)

2. A two sample test of equality of coefficients of variation. Ronarp K.
Lourping, University of California Los Alamos Scientific Laboratory.

A likelihood ratio testing procedure, which assumes a normal distribution of the samples,
is developed in this paper for testing the equality of two coefficients of variation. The
asymptotic distribution of the test statistic is found and the distribution is tabled for small
samples. The rapidity of convergence of the small sample distribution to the asymptotic
distribution is demonstrated graphically. The power of this test statistic is investigated by
simulation techniques. (Received 10 February 1969.)

(Abstracts of papers not connected with any meeting of the Institute.)

1. Optimum best linear unbiased estimates of the location and scale param-
eters based on selected order statistics from finite cesored samples (pre-
liminary report). LAt K. CuaN, University of Western Ontario.

Let X(rp) < X(r41) <+ < X(n—ry), 71, T2, = 0, be a censored sample corresponding
to an ordered random sample of size n from an absolute continuous distribution whose
cdf is of the form F ((x — u) /o), where u and ¢ are called the location and scale parameters,
respectively. For an integer £k, 0 < k < n — 7 — r1 + 1, let s(n1, -+ , nx) be the set of
order statistics with ranks #; , -+ , n; taken from the censored sample. An optimum best
linear unbiased estimate (BLUE) of u, o or (u, o) based on s(n,, *-- , ni) is defined to be
the BLUE (obtained by the Gauss-Markov theorem. ¢f. Sarhan & Greenberg, Contributions
to Order Statistics, (1962), Wiley, Chapter 3) such that its variance (or generalized variance
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when (u, o) is estimated) is the minimum among the variances of the BLUE’s based on the
choices of (*~7,~r2*1)s(ny, **+ , ni). Tables up to 6 decimal places of the ranks, coefficients,
variances (covariances), efficiencies (relative to the BLUE’s based on the correspond-
ing complete samples) of the optimum BLUE’s based on k = 1, 2, 3, 4 order statistics from
all possible censored samples from the following distributions have been completed: (1)
normal distribution, n = k(1)20, (2) Cauch distribution, » = 5(1)20, (3) double ex-
ponential distribution, n = k(1)20, (4) logistic distribution, » = k(1)10, 15, 20. (Re-
ceived 18 November 1969.)

2. Marginal homogeneity of multidimensional contingency tables. S. KULLBACK,
The George Washington University.

Tests of marginal homogeneity in a two-way contingency table given by Bhapkar (1966),
Caussinus (1966), and Stuart (1955) do not seem to lend themselves to extension to the
question of m-way marginal homogeneity in an N-way r X r X +++ X r contingency table,
m < N. The principle of minimum discrimination information estimation and the associ-
ated minimum discrimination information statistic applied by Ireland, Ku and Kullback
to the problem of marginal homogeneity in an r X r contingency table can be easily ex-
tended to the case of a multidimensional contingency table. Estimates of the cell entries
under the hypothesis of marginal homogeneity are given. Relationships among the tests of
homogeneity for m-way, m = 1,2, +++ , N — 1, marginals are given by an analysis of in-
formation. Numerical results are given for two sample 3 X 3 X 3 tables. (Received 8 January
1969.)

8. A bound for the variation of Gaussian densities. S. KurLBack, The George
Washington University.

Schwartz and Root used Mehler’s identity to obtain a bound for the integral of the
absolute difference between the bivariate gaussian density function and the product of its
corresponding marginal densities. The result was also extended to the case of two dependent
gaussian vectors. The bounds were given in terms of the correlation coefficient in the
bivariate case and canonical correlations in the two vector case. In this note an information-
theoretic inequality is applied to derive a better bound than reached above and to extend
the result to the case of m > 2 dependent gaussian vectors. No series expansion is required
as in Schwartz and Root. (Received 10 January 1969.)

4. Locally asymptotically most powerful tests about the effects of K treatments.
S. R. KuLkarni, Karnatak University.

Tn this paper we obtain optimal asymptotic test of the general linear hypothesis in the
effects, £, &2, '+ , & , of k treatments Ty, T, -+ , T) , when the underlying density in-
volves several parameters which are functions of & , &, *++ , & and a random variable.
More specifically let ¢ = m with probability mm ,m = 1,2, «++ kI, > 7m = L.t can be associ-
ated with the random choice of one of the k! arrangements of the k treatments, for expen-
mentation. Let Y; be the response on the jth member of the ¢thset and Yy = (Ya, «** Y,
i =1,2,--+, N. Under a mild assumption the ]omt dens1ty of (t:, Yi) w111 be
g@t, =)p(y I o (5 gD+ + agd), o, oi(e g + o0+ Bgit), 0), where = =
(i, me, ,m0), g, =) = T if £ = m, w;(£) is a vector of l, functions and is of the form
0;(§) = @; + fo; + £ o + o(8), where 6; is a row vector of I; components and
0,’ and 6} have obvious meaning, @, is a vector of s components and g1;(!) = Oor 1 and is
defined to satisfy (i) E,-l g (t) =1,1=1,2,--- , k, and (ii) g;(¢) = 1 if for the tth
arrangement the jth treatment occurs on the Ith plot. On the basis of N observed vectors
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(t:, Y;), we obtain locally asymptotically most powerful test of general linear hypothesis
in #’s. The linear and multiplicative parametric functions are treated as special cases.
(Received 17 January 1969.)

6. Small sample distributions of score product-moment statistics (preliminary
report). PETER A. W. LEwis, IBM Research Center, Yorktown Heights.

The small sample distributions of score product-moment statistics of orders one, two
and three have been obtained by synthetic sampling for normal scores, exponential scores,
double-exponential scores, uniform scores, half-gamma scores and half-Weibull scores. The
rate of convergence to the asymptotic normal distribution depends critically on the skew-
ness of the parent populations, especially in the case of positive random variables. For
normal scores the convergence is complete for series of length n = 40 or greater, but for
exponential scores convergence is complete only for series of length n = 10,000 or greater.
The convergence is even slower for half-gamma and half-Weibull scores. This work is part
of a continuing large-scale computational investigation of tests of randomness in time
series. (Received 7 January 1969.)

6. Applications of order statistics to the multivariate exponential distribution.
Russenn MAIk, Southern Colorado State College.

The concept of an order statistic for a univariate distribution is well known. The ques-
tion naturally arises as to how this concept could be extended to a p-variate random vector.
Among the various possibilities are to order the vectors by their minimum or maximum
coordinate. For example, the random vector X is said to be less than or equal to the random
vector Y if mini<i<p #; £ mimgi<p ¥s . These two definitions are examined in detail for
both continuous and discrete distributions. The method of ordering the vectors would
depend on the type and purpose of the experiment and on the underlying distribution. The
results are then applied to the multivariate exponential (as defined by Marshall and Olkin
in the J. Amer. Statist. Assoc. March, (1967)) when the vectors are ordered by their mini-
mum coordinate. Among the numerous results we obtain are the joint asymptotic distribu-
tion of the 7th order statistic from the bivariate exponential. The estimation of the param-
eters of the multivariate exponential using this definition is left for a latter paper. (Received
19 December 1968.)

7. A characterization based on the absolute differences of two independent
copies of a random variable. Prem S. Puri, Purdue University.

A discrete random variable X is said to have z as a possible value if Pr(X = z) > 0.
Obviously such an X cannot have more than a denumerable number of possible values.
Let X; and X be two independent copies of a nonnegative discrete random variable X.
The following theorem characterizes all the nonnegative discrete distributions with the
property that the distribution of the absolute difference [X; — Xb| is the same as that of X.
The reader may find a different characterization based on [X; — X,| in author’s earlier
paper (P. S. Puri, Proc. Nat. Acad. Sci. 56 (1966) 1059-1061). TuEorREM. Let X, and X be
two independent copies of a nonnegative discrete random variable X. Then X and the absolute
difference | X1 — X,| has the same distribution, if and only if the distribution of X is given for
some positive constant a, by Pr(X = 0) = po ; Pr(X = ka) = 2po(1 — po) (1 — 2po)*~4; k =
1,2,3, -+, where either po = 1 0or 0 < po < 3. Note that the case with p, = 1 is that of a
degenerate random variable X with Pr(X = 0) = 1, while the case with py = 3, corresponds
to the one with Pr(X = 0) = Pr(X = a) = 3. (Received 20 January 1969.)
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8. Interval estimation of the largest variance of % normal populations (pre-
liminary report). K. M. LAL SAXENA, University of Kansas.

Let ay, - , mx be k normal populations with unknown means p; and unknown variance
oi%. Let ¢2* = maXi<i<k oi%. There is no a priori knowledge about ¢ = (o2, -+ , o4?). For
preassigned a(< 1) and v ¢ (0, 1), the following is the single stage procedure for obtaining
a confidence interval I such that P (¢2* ¢ I | 62) = v, based on the largest of the sample
variances. Take n observations from each population and assert that I = (aT'»*, b.T»*),
where Th* = maxi<i<i Tin and Ty = Sri (Xi; — X%/ (n — 1). Tt is proved, under
certain conditions, that infg, P(s?* £ I | 62) = P(¢%* £ I | 62) where 62 has 012 = -+ = o2,
The sample size required is the smallest integer n (say n*) such that G.*(1/a) — (1 —
Gn(1/a))* = v, where G, (t/s:2) is the distribution function of T, . Then b+ = max (1,
inf (b: aells < bel®), 1/Gur(1 — Qo (1/a))). Two other types of confidence intervals are
considered, namely I; = (¢Tr+ , ), a < 1; I, = (0, 5T »+), b > 1. For I, the sample size
required is the smallest n such that G:*(1/a) = ~. For I, the sample size required is the
smallest » such that 1 — G,(1/b) = . These results easily ‘extend to the case when the
populations belong to a scale parameter family. (Received 11 December 1969.)

9. Estimation of location parameter on the basis of pooling data. J. SineH,
University of California, Berkeley.

Suppose that 2; ¢ = 1,-++, n1) and y; (j = 1, --- , n) represent two independent
samples from the distributions F(z — 6) and F(y — 6 — A) where F is assumed to be sym-
metric and continuous. If 2 and y represent measurements on the same biological substance
obtained at two different laboratories, a common procedure will consist in deciding on the
basis of a preliminary test of the hypothesis A = 0 whether or not the samples may be
pooled in finding an estimate for 6. Let XM < X® <+ < X)) and YO < Y® < ---
<Y () be the ordered samples. Let Z® < Z® < .-+ < Z where m = (n1 4 n2) be the
ordered sample when X’s and Y’s are combined together. We use Wilcoxon’s test for the
hypothesis A = 0. The following procedure is suggested for estimating ¢: (i) If the hy-
pothesis A = 0 is accepted, use T1 = Med {3(Z® + Z@D)} (1 £ 7 £ j = m) as an estimate
of 6. (ii) If the hypothesis A = 0 is rejected, use T>» = Med {3 (® 4+ D)} 1 =7 = j = n1)
as an estimate of 4. We denote this estimate by T*. The distribution of 7™ and its other
asymptotic properties are investigated. We also plan to compare this estimate with the
Hodges-Lehmann (1963) estimate, here denoted by T’ . Next let us consider the problem of
interval estimation for 6. Let D® < -.- < Dm(m+D/2 he the ordered set of ny(n, + 1)/2
averages (z: + %:)/2 (0 < j) and EW < -+« < Emm+Di2 he the ordered set of m(m + 1)/2
averages (Z; + Z;)/2 (1 =< j). If V is the Wilecoxon one sample statistic based on n; observa-
tions we can get two numbers ¢; and ¢z such that Ple; <V < ¢3] = 1 — a. ¢’ and ¢;’ can
be similarly obtained for a sample of size m. We then give the following procedure for
determining a 100(1 — «) percent confidence interval for 0: (i) If the hypothesis A = 0 is
accepted, use the limits B¢+ < 9 < EC,+1, (ii) If the hypothesis A = 0 is rejected,
use the limits D@D < 9 < D@+, (Received 3 February 1969.)

10. A-minimax estimates (preliminary report). Danier L. Soromon, Cornell
University.

Statistical decision problems are considered in which the decision maker is assumed to
have prior information but cannot completely specify a prior distribution. His prior knowl-
edge is reflected in his willingness to specify a subset, A, (called an incompleteness specifi-
cation), of the class of all prior distributions. He is then recommended to select a decision
rule to minimize the maximum over distributions in A of the Bayes risk. Such a rule is
called A-minimax after Blum and Rosenblatt (Ann. Math. Staiist. 38 (1967) 1671-78).
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Estimation of the mean of a p-variate random variable with known covariance matrix is
treated. Here A is the class of all prior distributions with given covariance matrix and
mean in a specified compact convex set. For quadratic loss, the linear (of the form §(z) =
Bz + C) A-minimax rule is obtained. Also obtained are A-minimax estimates of a (uni-
variate) normal scale parameter when the mean is (1) known and (2) unknown. Problem
(2) is reduced to problem (1). Finally, a cost is postulated of obtaining an incompleteness
specification. The design problem consists of selecting a sample size and an incompleteness
specification to minimize the total expected loss. Examples are given. (Received 3 January
1969.)

11. Equivalence of ‘“test deficiency” and general deficiency for dichotomies.
Erix N1xovra1 TorGERSEN, University of California, Berkeley.

In this paper we consider dichotomies, i.e. experiments where the parameter space con-
tains two points. It is shown that to any dichotomy F and any ordered pair (e1, e:) of
non negative numbers there correspond a dichotomy G on the same sample space which
represents the minimum of all dichotomies (regardless of sample space) which are (e: , e2)
deficient (as defined by LeCam in 1964) relative to F. The construction implies an extension
of the “errors of the first and the second kind” criterion for comparison of dichotomies
given by Blackwell in 1953. In particular it is shown that the Lévy diagonal distance be-
tween the curves representing the relation between errors of the first and the second kind
is a natural distance for dichotomies. It is shown that this distance is, but for a trivial
modification, the same as that defined by LeCam in 1964. The criterion implies for di-
chotomies a result proved by LeCam, that this distance is equivalent to the Lévy diagonal
distance between laws of likelihood ratios. (Received 13 January 1969.)



