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PRODUCT ENTROPY OF GAUSSIAN DISTRIBUTIONS!

By Epwarp C. Posner, EuceNE R. RopEmica aANp Howarp Rumsey, JE.
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0. Summary. This paper studies the product epsilon entropy of mean-con-
tinous Gaussian processes. That is, a given mean-continuous Gaussian process on
the unit interval is expanded into its Karhiinen expansion. Along the kth eigen-
function axis, a partition by intervals of length ¢, is made, and the entropy of the
resulting discrete distribution is noted. The infimum of the sum over k of these
entropies subject to the constraint that Y, ¢ < € is the product epsilon entropy
of the process. It is shown that the best partition to take along each eigenfunction
axis is the one in which 0 is the midpoint of an interval in the partition. Further-
more, the product epsilon entropy is finite if and only if Y M\ log Ay is finite,
where )\;, is the kth eigenvalue of the process. When the above series is finite, the
values of ¢ which achieve the product entropy are found. Asymptotic expressions
for the product epsilon entropy are derived in some special cases. The problem
arises in the theory of data compression, which studies the efficient representation
of random data with prescribed accuracy.’

1. Introduction. This paper is motivated by the problem of data compression,
the efficient representation of data for the purpose of information transmission.
We shall consider the case in which the data to be represented consists of a sample
function from a Gaussian process X (¢) on the unit interval which is mean-con-
tinuous; i.e. Elz(s) — z ()] — 0 as s — ¢, for all £. Our basic problem is how to
transmit (over a noiseless channel) information as to which sample function of X
occurred. We assume that the recipient of the transmitted data has full knowl-
edge of the statistics of the process. In particular he knows the Karhiinen ex-
pansion [1] of the process; namely

(1) X(t) = 2in My (t),

where the y; are mutually independent unit normal random variables (they
determine which sample function of the processes occurred); the ¢ (¢) are the
(orthonormal) eigenfunctions of the process; they are known a prior: as are the
M. , which are the eigenvalues of the process, and are non-negative. We note that
the series in (1) converges with probability 1. If

2) - R(s,8) = E(X(s)X(®))

is the covariance function of the process, then R (s, t) is continuous, by the mean

Received 28 December 1967; revised 22 November 1968.

1 This paper presents the results of one phase of research carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract No. NAS 7-100, spon-
sored by the National Aeronautics and Space Administration.

870

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. IMKOJN ®

WWW.jstor.org



PRODUCT ENTROPY OF GAUSSIAN DISTRIBUTIONS 871

continuity of X (¢), and
3) R(st) = 22 Nhi () (1),

the convergence being uniform on the unit square. The functions ¢, are con-
tinuous and satisfy the integral equation

(4) MNedi(s) = [GR (s, t)en (t) dt,

where the A are non-negative and are the eigenvalues of this integral equation.
It follows that

®) S M= [oR(s,s)ds < oo.

In the special case when all but a finite number of the A\ are zero, the process
X is just a finite dimensional Gaussian distribution. The interesting cases, from
the point of product entropy, turn out to be the one-dimensional processes and
the infinite-dimensional processes.

In the data compression problem we wish to represent the sample functions
of the known process X. By equation (1) we can fully describe a sample function
X (t) by specifying the values of the y, which occur in (1). Loosely speaking,
we shall call ¥ the projection of the process along the kth coordinate axis.

Our final assumption concerning the nature of our problem is the requirement
that the information which is transmitted must be adequate to locate the sample
function in some set of Li-diameter at most . The data compression procedure
we propose is as follows. Observe X (¢) and compute its projections, yx , along
the coordinate axes. Quantize the kth coordinate axis into intervals of diameter
at most e . For each k, transmit the index of the interval which actually oc-
curred. If the ¢ satisfy

(6) > e =6,

then, with probability 1, when the intervals of uncertainty are known, the original
sample function is known to within a set which is a hyper-rectangle of diameter
at most e.

Our main concern in this paper is to study the entropy of the above procedure.
We observe that this entropy does not depend on the eigenfunctions ¢ of the
process, but only on the eigenvalues ). This is because any two mean-con-
tinuous Gaussian processes with thesame M\, possess measure-preserving iso-
metries between the Hilbert spaces generated by their ¢ . It follows that as-
sumptions about stationarity, band-limiting, etc. are relevant only insofar as
they help estimate the eigenvalues N .

Further discussion of data compression as well as a definition of epsilon entropy
for mean-continuous stochastic processes are found in [2]. The entropy defined
in [2] is bounded from above by the product epsilon entropy considered here; for
it uses partitions by arbitrary measurable sets of diameter at most ¢, instead of
by hyper-rectangles of diameter at most e. In [3]it is shown that the epsilon entropy
of a mean-continuous Gaussian process on the unit interval is always finite. It
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turns out, however, that product epsilon entropy is finite if and only if
>~ M log A\t converges.

We shall now describe the organization of the rest of this paper. Section 2
treats the 1-dimensional case. We show that the best e-partition (the e-partition
with least entropy) is that partition by intervals of length ¢ which contains the
interval [—e/2, ¢/2]. This is the longest section of the paper. We treat the cases
of large andsmall e separately. Techniques of analytic function theory are
necessary.

In Section 3 we show that the product epsilon entropy J.(X) of a mean-con-
tinuous Gaussian process on the unit interval is finite if and only if the “entropy
of the eigenvalues” Y M log Ay " is finite. In the case in which J. (X) is finite,
we give a product partition whose entropy equals J (X).

Section 4 gives an asymptotic form for J.(X) when the eigenvalues satisfy a
relation of the form M\, ~ Bk™. In particular, for the Weiner process,
J(X) ~ C/é as e — 0, where C is a constant between 6 and 7.

Section 5 considers a general lower bound L. (X ) for J,(X). We show that if

Dt M = O (n,)
then the ratio J./L. remains bounded as € tends to 0; and if
Z'o;n N = o(nha),

then J, ~ L. as e = 0.

This last result implies that, when Y .\ = o(n\,), product e-entropy is
asymptotically as good as e-entropy for small e. As an application of our techniques
we show that for a stationary band-limited Gaussian process on the unit interval,
with well-behaved spectrum,

Je(X) ~ (log’ ) (21og log eHh

2. The one-dimensional normal distribution. In this section we consider a
normal random variable of mean 0 on the line. We show that the e-partition of
the line with least entropy is the “centered” partition consisting of non-over-
lapping intervals of length ¢, and containing the interval [—e/2, ¢/2].

We need a series of six lemmas to prove this result, which is Theorem 1. The
first lemma shows that we need only consider portions consisting of non-over-
lapping intervals of length e. Lemmas 2-3 show that the centered partition is best
(has smallest entropy) if e = 3. Lemmas 4-6 are devoted to showing that the
centered partition is best when ¢ < .

We begin by defining the entropy of a countable partition U of the real line
under a probability measure: Let the probabilities of the sets of U be denoted by
p: . Then the entropy H (U) of the partition U is the (Shannon) entropy of the
discrete probability distribution {p.}, that is

(M) H(U) = X ipilogpi .

The term “epsilon entropy” in the following lemma refers to the definition of
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[2]: the epsilon entropy H(X) of a separable metric space X with a probability
distribution on the Borel sets is the infimum of the entropies of all partitions of
the space by measurable sets of diameters at most e.

For conciseness, the statement of the lemma neglects the behavior of the par-
tition on sets of probability zero. More precisely, the sets of positive probability
in an optimal partition can be intervals of length ¢ with sets of probability zero
omitted.

LemMA 1. Let X be the real line with a probabtlity distribution u on the Borel sets
of X such that u has a density p (x) which achieves its maximum value at 0, ts mono-
tonic on (0, » ), and even (p(—z) = p(x)). Then the e-entropy H.(X) of X is
attained only by a partition which consists of consecutive intervals of length e (or one
which agrees with such a partition on the interval supporting u if this interval is
finite).

Proor. Let U be an e-partition of X (partition of X by measurable setsof
diameters at most ¢) which does not consist of consecutive intervals of length e.
We shall show that U can be modified to get another e-partition of X of smaller
entropy.

We can assume that the sets U; of U are intervals. For let U, be a set of maxi-
mum probability which is not an interval. If we modify U by replacing U: by
the closed interval which it spans, removing the adjoined points from the other
sets, the entropy of U is decreased. This follows from the concavity of the func-
tion p log p~*. Furthermore, if any interval of length e contains two of the sets
U, , these can be combined into a single set, which decreases the entropy of U.
Thus we can assume that the partition has the property that as j ranges from
— o to ©, Ujy is the interval to the right of U;, 0 lies in U, , and the length of
U;u Ujy is greater than e.

If not all of the intervals of U have length ¢, we can suppose by symmetry that
thereis a first 7 = jo such that U; has length less than ¢, and such that U, inter-
sects (0, ). Let

Ujo = (ar b); Ujo+1 = (b7 C);

where the assignment of the end points is immaterial. By our assumptions,
b < a + e < c. If we replace these two sets by

U;'o = (a, a+ 5)7 U;o+1 = (a + ¢ C)r
then the monotonicity and symmetry of p (z) implies that
®8) w(Ujy) Z max [u(Us,), (Ui,

with equality only if p (z) is zero to the right of b, or p (x) is constant from « to c.
The new partition U’ has smaller entropy unless we have equality in (8).

If p(x) is zero beyond b, this shows that the lemma is true for the part of U
which intersects (0, « ). Similarly the rest of U also has the stated property.

If p (z) is constant and positive on (a,c) and ¢ = b + ¢, then H(U') = H(U).
The above procedure can be applied to the intervals Uj,11, Usjgra of U, for U -
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has length less than e. We get a partition with smaller entropy unless p (x) was
constant over Uj, , Ujo41, Ujpse . If this procedure is applied repeatedly, eventu-
ally a pair of intervals will be encountered on which p (z) is not constant. Thus
HU) > H.(X). Lemma 1 is proved.

We remark that the hypothesis of unimodality of the distribution is essential
for the conclusion of Lemma 1. (The distribution need not be symmetric, how-
ever. This assumption was used to simplify the treatment of a partition in which
the interval containing zero has length less than e.) In the problem at hand,
Lemma 1 implies that, for Gaussian distributions, the epsilon entropy is attained
only for a partition by consecutive intervals of length e. We are thus led to the
following definition:

DerinitioN. Let X be the real line with the probability distribution of a
normal random variable with mean zero and variance 1: Let 4 (¢, @) be the entropy
of the partition of X by intervals of length ¢ centered at the points e(k — a),

= 0, &1, &2, --- ; h(e 0) is denoted by & (e), the entropy of the centered e
partition of X.

Lemmas 3 and 6 below show that for any € > 0 we have h(e, @) = h(e), with
equality if and only if « is an integer. But we first need to define two functions
and state some of their properties. Let P (¢, z) be the probability of the interval
of length e centered at ez, so that

9) Pl z) = [EBio@) dy = [EEBe e (2r)™ dy,
where ¢ is the normal density function.

Since P(e, z2) ~ ((z — 2)e) "¢ ((z — %)e) for large 2, all the series which we
encounter will converge absolutely; we need make no further mention of con-
vergence.

Define

F(z) = F(e2) =log[P(e, 2 — 3)/P(e, 2 + %))

We observe that P (e, ) is an even function of z, and F (z) an odd function. Some
of the properties of F (e z) which will be needed are given by the following lemma
Lemma 2.
@) F”(z) > 0, for 2> 0;
(i) € > F'(2) 2 F'(0) = 2¢[6(0) — ¢(e)/P (e, 3),
(i) €@ — 1) < Fz) < €z, for z > 0;
(iv) 0 < 8F(e,z)/6e < 2F(e,2)/e, for z > 0.
Proor. The definition of F (2) can be rewritten as

F)=log[J(— 3)/J@+ 3,
where J@) = f% —iee? g
Then F'() = Jo(z — %) — Loz + 3),

where Jo(2) = @)W @) — I @)1/ )
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J2(z) is an even function. It will be shown that J,(z) is strictly decreasing for
z > 0. This implies that F” (z) > 0 for z > 0.

Consider a fixed positive value 2z; of 2, and let J2(21) = M. We consider the
function

ME) =J@)J" @) —J @) — M@

This function can be written as a double integral:
M) = [4 e dg [4 [y + 2)° — e ay

— & [h @+ o) e [L (g 4 )7 gy

- f% et g (3, et g

=[L[hE@—2)w+2) — € — Nexp[—3' (@ + 2)°
e (y + 2)"] da dy.

Now make the substitution x = v + v, y = u — v. We get
ME) =2[]s v —u —2) — &€ — Nexp[—€ @ + 0* + 2uz + 2°)] dudy,

where S is the square with vertices (u, v) = (%%, 0) and (0, &3). Drop the
terms which are odd in v, for they have integral zero. Combining the contributions
of positive and negative u,

M(z) = 8¢ [} cosh (2¢uz)K (u) du,
where K@) =¢"" J&* (2 — & — N)e —
We know M (z1) is zero. Hence K (u) changes signon (0, ), and the function
2¢%" — € — \ must also change sign. Clearly it can only only change from nega-

tive to positive as v increases. Thus K (u) is first positive on an interval adjacent
to 0, then negative on the rest of (0, 1). In the expression

M (z1) = 8¢ [} 2éu sinh (2¢uz1)K (u) du,
K () is multiplied by a more rapidly increasing function than cosh (2€'uz).
Hence M’ (z1) < 0. Since
Ty (1) = M' (1) /T (1),
and 2z, was an arbitrary positive number, J, (z) < 0 for z > 0. As mentioned
above, this proves (i).

The value of F’ (0) given in (ii) follows by direct differentiation of the defining
formulas for F (2). From the asymptotic form of P (¢, z), it follows easily that

F'(z) — €, as z— .

Thus (i) follows from (i) for z = 0, and is also true for z < 0 since F’(z) is an

even function.
It follows from (ii) that F (z) — €% is strictly decreasing function. Its value
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is zero at z = 0, and
2 1.2
F{@) — €z2— —3¢€, as z— o,

from the asymptotic formula for P (e, z). Hence (iii) is true.

The inequalities of (iv) again follow from finding the signs of certain double
integrals. Going back to the expression for F (¢, z) in terms of the funetion J (2),
we have

OF (¢,2)/0e = M1()/J (e + 5)J (& — %),

where
Mi@) =J &+ 3)@J & — $)/0e) — I — $) (0 @ + 3)/9¢)
= e[ g [ g — 3Ty
Foefh e gy o oo 4} g HaErd? gy
=L+ +3 - @+re— D]
expl—3@+z+3) — @ +z—3)dedy
Again we make the substitutionz = u + v,y = u —v. We get
Mi(e) = 2¢ [ [s[duv + dvz + 2u + 2]
cexp [—E@ + o' 4 2ue + v + 2° + 1)) du dv.
Combining the contributions of positive and negative v,
Mi(z) = 8¢ [¢ ¢ Pleosh v — 20 sinh €] i o(w + z)e_‘z(““)2 du] dv
= 8 [He @t D eosh & — 2vsinh €o] sinh [€2 (1 — 20)] do
> 0,

for z > 0. This proves the first inequality of (iv).
Now we put F (2) in the form

Fle2) = —[HT@)/IE) de = € [T/ ) ds

where Ji) = [ L+ z)e_%°2("Jr’)2 dy .
Then 267F(2) — oF (2)/de = & [T Ma(5)/J (¢)' ds,
where Ma(z) = Ji(2) (3] (2)/9€) — J (2) (8J1(2)/ ).

It will be shown that M. (z) is an odd function which is positive for z > 0. Since
J (2) is even, this implies that the above integral is positive for z > 0, proving the
last inequality of (iv).

We have
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_ef*l (x + 2)e —il@ta? g J‘%% (y + 2)2 ~3e (y+2)? dy
+efYe —be(e+2)2 de [y (y + 2)% et g
efHh @ — )y + 2 expl—3 @ + 2)' — 3@ + 2)]dzdy
= 4e f fs —v(u — v+ 2)exp[—€(u + 2)° — V] dudp
=8¢ [ [s0*(u + 2) exp [—€ (u + 2)* — €v'] du dv.
Integrating over u first,
My (z) = 16 [3% " [[55%, (u + 2)e @ du] dv
= 16" [t exp [—€W* — €2 — &3 — v)Ysinh [2(1 — 20)] dv.
This is clearly an odd function of 2, positive if 2 > 0.

This completes the proof of Lemma 2.

The next lemma proves Theorem 1 for large e. However, the difficult case is the
case of small e.

LemMa 3. If € = 3, h(e, ) assumes tts minimum value only when o is an integer.

Proor. Note that A (e, @) is an even periodic function of period 1. Thus it is
sufficient to show that 94 (e, @)/da > 0 for0 < « <

The proof that dh/0a > 0, e = 3and 0 < a < % cons1sts of two parts: first
we prove the result for an interval of the form 0 < a@ = ao, then for an interval
ap £ a < 1. In either interval, we have

h(e, ) = D P(e, k — a)log[P(e, bk — @) .

Mz(Z)

So

Ohfda = € 2 "o [0((k + % — a)e) — ¢((k — % — a)e)]log P, k — a)
(10) 0h/da = € D 2w d((k + % — a)e)F(k + 3 — a),
(11) 0h/da = € Y=o {¢[(k + % — @)F (k + 3 — @)

—¢l(k+ 3+ )dF (k + 5 + a)}.
The kth term in this series is ¢[k + 3 + «)e]Gyx (a), where
Gi(a) = PP+ 4 —a) — F(k + 3 + ).
By Lemma 2, (i), Fk+ 3+ a) < Flk+ % —a) + 2a¢’; hence
(12) Gi(a) > [*“®™ —1F(k + § — a) — 2aé’.

This expression is clearly an increasing function of k¥ = 0, for « > 0. Thus the
terms in (11) are all positive if

(eaz62 —1)F G — a) — 20€ > 0,
or
(13) [ — 1) (@) IFG — a) > 2.
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The two factors on the left are both increasing functions of € for 0 < a < %, using
(iv) of Lemma 2. Thus 8h/da > 0 fore < 3if (€ — 1) (9a)"'F (3,4 — a) > 2.
By (i) of Lemma 2, F (3,3 — a) > (3 — a)F’(3,0). Hence it is sufficient to show
that

(14) @ — 1)) G — a) > 2/F'(3,0).

It is easily verified that the function on the left in (14) has one relative maxi-
mum on (0, « ), and no other stationary points. Thus the set of positive « for
which (14) is true is an interval. The left side takes the values 1 at @ = 0,and
(¢* —1)/72 = 0.74 - - - at & = 4/9, both of which are greater than

2/F'(3,0) = 1@m)- (1 — ™) [(o(x)de = 042 --- .
Hence .
(15) oh/da > 0, for e = 3, 0< a=4/9.

We now turn to the case in which « is close to 4. It is convenient to rearrange
the series for dh/da (equation (10)) as follows:

(10) Oh/oa = €2 Zud((k + % — a)e)F (e, k + } — a)
= € 22 ¢((k + B))F (¢ k& + B),
where we have set 8 = & — a; 500 < 8 < 4. Continuing with (10"), we have
Oh/da = ¢ (eB)F (¢, B)
+ e 2 {6 ((k + B)F (k + B) — ¢ ((k — B)e)F (k — B)}.
Thus,
(16) (et (eB))™ (9h/0ax)
= F(e8) — 27 ¢ e™F (k — 8) — ¢ “"F (k + B)}.
Now by (ii) and (iii) of Lemma 2,
R — B) — e HEF(k + B) < (67 — ¢ YR (k)
< 2¢% sinh €%B.
Returning to equation (16), we find that
a7) (e (e8)) 7 (9h/3a) > F (¢, B) — 27 ¢ "2 sinh %8
=F(,B8) — 21 4r  say.
We have
Apa/Ar = €% (6 + 1)k (sinh € (k + 1)8)/ (sinh €%8).

Since the function ctnh z is decreasing for z > 0,
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cosh €8 + sinh €8 ctnh €'k8
cosh €8 + sinh €8 ctnh €8
2 cosh €8
< 27,
fork = 1. For 0 < 8 < %, thislast function is less than 2¢* ) and
Apa/Ar < 2 + DI < 467 < 467,
for € = 3. Therefore 21“’ Ar £ 4,/ (1 — 4¢™*). Combining this with inequality

(17), we see that 9h/da > 0 whenever
(18) F(e, B) > 28 2(1 — 4¢ ) sinh €8.

A simple calculation shows that the right-hand side of the above inequlity is a
decreasing function of € for fixed 0 < 8 < 3. We have already shown that the
left hand side is an increasing function of ¢ ((iv) of Lemma 2). So again, it is
only necessary to consider the case ¢ = 3.

By Lemma 2, (ii),

F(e, B) = BF'(0) = 268(6(0) — ¢(e))/P (e, ).
Combining this with (18), we see that d4/da > 0 for e = 3 if
68(6(0) — ¢(3))/P(3,%) > 18¢ "*(1 — 4¢°)" sinh 96,

(sinh € (& + 1)8)/ (sinh €%8)

Al

or

(19) (sinh 98) (98)™"

<@ =11 —4e)27@2r)! [ p(x) da] = 2.63 --- .
This is true for 8 < 1. Thus
(20) oh/0a > 0, for €= 3, i2a< i

By combining this result with (15) we have finally proved Lemma 3.
To complete the proof of Theorem 1, we shall have to study the function
h(e, @) very carefully. This is because for small e
@/3)h(e, @) = 0@,

so that h is very flat as e — 0.

The rapid convergence of the series for % (¢, &) ensures that it is C*. From the
periodicity of the functionin e, it follows that itis the sum of a convergent
Fourier series:

(21) hie, @) = 2Co(e) + Dmei Cn(e) cos (2nma),
where
Cue) = 2[4 h(e, @) cos 2nra) da
2 (L e Pk — a)log[P(e, k — )] cos (2nma) da.

I
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We interchange the order of integration and summation here; after the substi-
tution £ — @ = z, we have

(22) Cn(e) = 2 20 P(e, x) log [P (¢, )] " cos (2naz) da.

To get useful inequalities for these coefficients we need to investigate the proper-
ties of P (e, 2) as an entire function of the complex variable 2.
Define

(23) Qe 2) = (2n)' e “P(e,2/e), sothat Q(,2) = [L e qy,

which shows that Q (¢, 2) is an even entire function of z of exponential type.Hence

it can be expressed in terms of the canonical product of its zeros #=¢1, +=¢2, -+,
as
(24) Qe 2) = Qs 0) ITim (1 — 2%/5").

Thus, information about the zeros of @ (¢, 2) would be quite useful, and the next
lemma, furnishes the required information.

Lemma 4. The zeros {=={1} of Q (e, 2) are all distinct and are on the imaginary
azis for 0 < e < ¢ = 4.309 - - - . Furthermore, under the appropriate indexing, we
have

2rk < &/i < 2w (k + 1), k=12 -

Proor. Ase— 0, Q (¢, 2) — (2/2) sinh (2/2), with zeros at =24, =43, - - - .

Integrating by parts twice in (23), we get

(25) (1 + €/2)Q(, 2) = ¢ **[(2/2) sinh (¢/2) + (¢/2°) cosh (¢/2)]
+ (2€'/2%) [} 4 cosh yze ¥V dy.

The integral in (25) is bounded by %e¢*'®° *!. Hence for small ¢, and |2| not small, the
last term on the right in (25) is small compared to the sum of the first two, except
in small neighborhoods of the zeros of
(2/2) sinh (2/2) + (€/2°) cosh (2/2),

or equivalently, except in small neighborhoods (for ¢ small) of the zeros of
(2/2) sinh (2/2). Hence, as ¢ — 0, the zeros of @ (e, 2) either converge to the
zeros of (2/z) sinh (2/2), or else approach infinity. It follows that for e sufficiently
small, the ¢ are all distinet, and can be indexed so that { — 2wk as e — 0.

For any e, if 2 is sufficiently large, the first term on the right in (25) is dominant
in the sense described above. Thus when e varies, no zeros can appear or disappear
at infinity.

The set of zeros of @ (e, z) must be symmetric with respect to theimaginary
axis as well as to the real axis. Since this set varies continuously with e, it is easily
seen that the {; must lie on the imaginary axis up to the first value ¢ of € at which
two zeros coincide.

Let primes denote differentiation with respect to z. Then

Q' (e, 2) = 2 f 3y sinh z'ye_*ez”2 dy ,
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and, by integration by parts,
Q(e, 2) = (2/2)e* sinh (2/2) + (2¢/2) [}y sinh zye " dy.

Comparing these two equations, we see that for e > 0

(26) Q (6 &) = —2¢7%* sinh (5/2).

Hence a zero of @ (¢, 2) is not simple if and only if it is one of the points =2 nx,
n =1,2, .-+ ; and ¢ is the first positive value of ¢ at which one of the numbers
@7) gn(e) = ﬁ cos (2rny)e ™ u dy, n=12- .-,
is zero.

If we differentiate (27) with respect to €, then 1ntegrate by parts, a differential
equation satisfied by g, (e) is obtained:

eww+a—h-kmw—<4w%.
The constant of integration in the solution of this equation is fixed by the con-
dition
a(e) ~ )7 @), as e > .
Thus we have
g(e) = QT @) — (= 1) [T g

We see that ¢, (e) has no positive zeros if n is odd, while for n» even there is a
unique positive zero at

[ gy (on )

This zero is clearly an increasing function of n. Hence ¢ is the zero of ga(e), so
that
J'°° —§’02+87r2/1)2 dy = (2'"_)%.

By numerical integration it is found that ¢, = 4.309 - - - .
Differentiating with respect to ¢, we have

(0/0¢)Q (e, 2) = —2e f3 4’ cosh 2ye Y dy.
Comparing with equation (25), we have
(28) 0/3€)Q (¢, 2)|st, = € %6 *[2¢s sinh (71/2) + € cosh (5/2)].
The differential equation satisfied by ¢ as a function of e is
0 = (d/de)Q(e, ) = (8/3€)Q (e, 2)|o=t, + Q' (&, £1) (din/de).
Using (26) and (28), we get
e(dtr/de)

$x

&+ %62 ctnh (g‘k/2)
Put
2nks + 6.

I
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Then disreal for 0 < € < €, and d — 0 ase — 0. This § (¢) satisfies the differential
equation

(29) e(ds/de) = 2rk 4 & — i ctn (5/2).

Since § (0+ ) must be zero, § cannot enter the interval (—=/2, 0), for at all points
of this interval the right-hand side of (29) is positive. Hence we see that
0 <6< 2rfor0 < e < &, which verifies (30):

(30) 20k < /i < 2r(k + 1), k=12 ---.

This completes the proof of Lemma, 4.

Next, Lemma 4 will be applied to get estimates for the Fourier coefficients
C.(¢) of h(e, ). Thisis the content of Lemma 5.

LemMA 5. If 0 < € < ¢,

(31) Cile) < =261 — P (e, 0)],
and, forn Z 2,
(32) Cu(e)l S ™2 + 4P (¢, 0)]
+ 207 2r) " DonT exp [— 202 (2nk — K€Y,
Proor. Integrating by parts in (22), we get
Cn(e) = — (nr)™ [2osin 2naz)[log [P (e, z)] " — 1](d/dz)P (¢, ) dx.
The derivative of P (¢, z) can be expressed as
(d/dz)P (e, ) = elp((x + )e) — ¢ ((z — F)e)]
e@r)Hexp [-3€ (@ + 3)'] — exp[—3'@ — 3)7}.
Using the exponential formula for the sine function, we obtain
(33) Cale) = te@nr@r)) ™" Doromis s [Zo exp [2mirna — 36 (x + $/2)7]
“flog [P (e, )] — 1] d.

The function log [1/P (e, x)] is analytic throughout the complex plane except
at the points £ = =£{/e", k = 1, 2, - - - . Take the branch of this function which
is real on the real axis and with cuts along horizontal lines from the poles to + «.
In (33), move the path of integration to the line Im 2 = 2znr/é’. The result is the
integral along this line, together with a contribution from each pole of log P*
that has been crossed, due to the jump in the logarithm across the cut. We obtain

C.(e) = te(nrw (2#)"‘)_1 Zr,s=:|:1 rs { — ZTZ'TZKn f:ork/ez
(34) exp [2rirna — 3&(x + s/2)% da + [Talirarils exp [2rirna — i (x
+ 5/2)"] llog [P (e, 2)]” — 1] da},

by (30).
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The integrals from the poles to « in (34) can be combined after the substi-

tution = —2s -+ ry. In the integral along the line Im z = 2rnr/é, replace z by
(2anri/e’) 4 u. The result is
Cale) = —2¢(=1)"(n(2m)!)™ 223 [Hjat] 7 gy

4+ de(—1)" 2nr (2r)) IS 3y s [2, g i re?
log [P (e, u — 2win/e’)/P (e, w + 2min/é)] du.
In the second integral, express P in terms of @ by (23). We find that
log [P (e, w — 2mwin/e)/P (e, u + 2win/e")]
= 4minu — 20 arg Q (¢, €u + 2mwin)
= 2ri(n — 1+ 2nu) — 2 arg [(—1)"7'Q (¢, €u + 2min)],
where the branch of the last argument is zero at v = 0. Hence
Cae) = e(—1)"(nm (2m)}) e 3o iys [2, g0
(35) carg [(—=1)"7'Q (¢, €u + 2min)] du
+2(=1)¢" = 2e(=1)" 0 20)) 7 Tcn L
where
(36) Iy = [fatl e ay.
First we consider
(37) Ci(e) = €79[=2 — e(a 2n)") ™ Domsrs [L0 gt OH?
-arg Q (e, €u + 2mi) dul.

In the integral, @ is evaluated on a line which lies below the first cut in the upper
half plane. Hence, the argument is an odd function of %, and the sum of integrals
is just Jy , say, where

(38) Ji=2]7 [ @ _ DY 10 Q (e, fu + 2mi) du.
The function Q (¢, z + 27¢) is positive at z = 0, while for z real and positive
Im Q(e, 2z + 2ri) = 2 [4sin 2ry sinh 2ye ¥ dy > 0,
since the integrand is positive. Thus the argument in (38) lies between 0 and =,
and
|J1] < 2x [§ [it@TDT _ et gy

=27 fg e du = 2r (2r)e P (e, 0).

It follows from (37) that (31) is true.
To estimate C, (¢) for n = 2, we need to first estimate

(39) Jn = [20 [ FOHD? _ O gre [(—1)"Q (¢, € + 2min)] du.
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From the product expansion (24),
arg [(—1)"7Q(e, & + 27in)] = 2 ucnarg [2min + 2)°/5" — 1]
+ Zkgn arg [l — 2rin + )/,

where the branch of each argument is zero at = 0. Any linear factor of @ has
argument which varies by 7/2 on each of the halflines0 < z < « and — o < z < 0.
Thus, putting 7 = Im ¢,

larg (—=1)"7'Q(e, x + 2min)| < nx + Zk>,, tan™" [dan 2|/ (n’ — 4x’n’ + 27)]
Note that, since 7, > 27k by (30),
e — 4r'n’ > 4n'(k — n)’,
and
Diontan” [an fol/ (n’ — 4a'n’ + 2")] £ Foia tan” [ Jal/ (4a' + 2)]
< Do 4mn x|/ @x + 27)
< [T 4mn 2|/ @x + o) dv = nr.
Thus the argument in (39) is bounded in absolute value by 2n=, and
[Tl £ 2nm [2, ¢80t giewd?) gy
= 4dnxw fig e du = dnr 2r)eP (e, 0).
Now from (35)
40)  [Cu(e)l < € CUP (6, 0) + 2] + 26 2r)) T D [T
In formula (36) for I, puty = (¢/€) + v:
Ll < J4 exp [Re 2riny — 3'y)] dv

fl_; exp [— 1" + Inle ? — 2mnme ] dv

I

< exp [Anile T — 2mnme 7,
where ¢, = @ . By (30), m > 2rk. Hence
[T| < exp [—2¢° 20k — K*)/€),

which, with (40), yields (32). Lemma 5 is proved.
LeMMa 6. For 0 < ¢ < m, h(e, @) > h(e) when a s not an integer.
Proor. From the Fourier series for 4 (¢, ),

h(e, ) — h(e)

> met C (€)[cos 2nra — 1]

(1 — cos 2ra)[—Ci(e) — D=2 Cn(e) (1 — cos 2nma) /(1 — cos 2ra)].
It is enough to show that this difference is positive for 0 < a = %. To do this,
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we will show that
—Ci(e) > Z::=2 Cn(e) (1 — cos 2nmwa)/ (1 — cos 2wa).
Since
(1 — cos 2nwa)/ (1 — cos 2ra) = (sinnra/sin ra)® £ 7’
it is sufficient to show
(41) —Ci(e) > 2n2an’|Cule)l.
Using (32), we see that
a2 |Ca(e)] S [2 + 4P (6 0)] Xia e’
+ 26(2n) 7 Do Domessr Wexp [—2n° (2nk — E*)e 7.

In estimating these sums, we use the fact that when the ratio of successive terms
in a series decreases, the sum is less than the sum of the geometric series with the
same first two terms. Thus

S amexp [—202(2nk — K)/E] £ (k 4 1)¢ 2R
L= k+2)E+ )"

. e—41rzk/e3]—l

A

k + 1) % + 2k)

[1 _ %6—472/62]—1,

I\

(1 _ %6—412/62)—126—612/e2

> Dok moexp [— 20" (2nk — E*)/€]

.[1 _ %e—Iszlezl—l

—27r2n2/e2 —872 — 2
a,nd °:=2nze 27 2n2/e é 81r/e/[1 9 101:'/6]

Applying these estimates and the inequality (31), we see that (41) is true pro-
vided

42) 21 — P(, 0)] > 4¢*™/[1 — 27|72 + 4P (¢, 0)]
+ 4e (217) 4 —4r2/e2 [(1 —41r2/e )(1 3 —1072/e2 )]—l

The left side of inequality (42) decreases as e increases, while the right side in-
creases. Hence if it is true for any value ¢ of e, it is true for 0 < € < ¢, so that
(41) is true for 0 < ¢ < min (e, €). On the other hand, (42) is easily verified
for e = m, using the computed value P (r, 0) = 0.884. Hence, Lemma 6 is proved.

We can now state and prove Theorem 1.

TaEOREM 1. The e-entropy H.(X) of the real line X under a one-dimensional
Gaussian distribution with mean 0, variance o°, is h(e/a). The only e-partition of
the line with this entropy 1is the partition into consecutive intervals of length e with
one interval centered at zero.

Proor. We canassume ¢ = 1, since the general case follows by a change of
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scale. By Lemma 1, the only e-partitions whose entropy can be the e-entropy of
the space are those which subdivide the line into intervals of length e. We run
through all these partitions by taking the partition into e-intervals with one
interval centered at —ex, 0 < a < 1. These partitions have entropies % (¢, a),
so that

H,(X) = inf0§a<1k(€7 Ol).

By Lemmas 3 and 6, for each positive e, this infimum is assumed only at a« = 0,
which proves Theorem 1.

The final lemma of this section lists some properties of the function A (e).
These properties are interesting in themselves, and they are also needed at various
points throughout the remainder of this paper.

LevMma 7. For 0 < € < «, h'(e) < 0 and (W' (¢)/e)’ > 0. The function ' (¢)/e
various monotonically from — « to 0 for e on (0, « ). Also, the following asymptotic
Sformulas hold:

ase— 0,

“3) he) ~log (1/e), K (e) ~ —1/¢;

as € — oo, '

@) k) ~e@EnNTE, K~ =SB @)

Proor. From the definition of P (e, 2),
(3/8¢)P (e,2) = (3/8¢) [(Thi e (1) dt
= (& + 3)leiz + )] — (& — )l — )]
Hence
K (&) = (8/d€) 2w P (e, k) log [P (e, B)I™
= 2w {(k+ $)olek + )] — (b — $)ole(k — $)]}[log [P (e, k)" — 1].

Rearranging terms, we obtain

B () = D2imw (b + 3)le(k + $)]1og [P (e, k + 1)/P (e, k)]
The terms of this sum are unchanged when k — —k — 1. Hence
45) K (e) = —2 2%~ (k+ 3)le(k + $)]log [P (e, k)/P (e, k + 1)].

This formula shows that 2’ (¢) < 0, the first assertion of Lemma 7.
Now define 6; , £ = 0, by

(46) log [P (e, k)/P (e, k + 1)] = €(k + 3 — 6).
In the notation of Lemma 2,
(47) Flek+13)=¢k+3—6).

By part (iii) of Lemma 2,
48) 0< 6 <3
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By the last inequality of (iv), Lemma 2, F (¢, k + 1)/ is a decreasing functien
of ¢, with a negative derivative. Hence

(49) dfr/de > 0.

Expressing the right side of (45) in terms of 65 , we find
(50) W(e)e = —2 2 iodlelh + $)elk + ) (& + 3 — 6),
and

(B1) [B(e)/ed =22 pmodlete + DET+ 3 — 1k +3—6)(E+3)
+ 2> vodle(k + 1)le(k + ) dby/de.

The terms in the second series are positive by (49). If ¢ = 2, then by (48) the
terms in the first series are all non-negative, and ('/e)’ is positive. If ¢ < 2, and
if &y is the integral part of 1/e — %, the terms of the first series are negative up to
k1 , positive for & > k; . Thus we have

W (e)/d > 2 Ztadlek + DIEE + ) — 10k + 3)°
+ 2 2 i dle(b + DIEE + 3 — 1k + 3),

and
(62) [ ()/d > 267 @r) H X omle(e + 3)] + 3 2k mle(E + )},
where m@) = @' — 2t ™

This function m(z) is negative on (0, 1), assuming its minimum value
m(r) = —0198 atx =2, = [(5 — (17)%)/2]. The following argument shows
that any closed interval of length 2 or more on the positive real axis must contain
at least k1 + 1 points of the sequence e(k + ), when e < 2: If the interval con-
tains exactly n points, then (n + 1)e > 2, n > 2/e — 1, and n = [2/¢]. For
€e<22/e=1/e+ %, hencen = [1/e — ] + 1 = k1 + 1. In particular, there are
at least k&1 + 1 terms in the second sum in (52) which have values greater than
(3)|m (21)], since the interval (zz , ;) on which m (z) > (3)|m (21)| has 2, =2 1.19,
23 =2 3.51, and has length greater than 2.

Thus (k'/e)’ is positive for any ¢ > 0. This proves the second assertion of
Lemma 7.

We now know that 4’ (e)/e is an increasing function of e. Its range will follow
from the asymptotic formulas to be derived.

First we consider the behavior of 4 (e) as e — 0. The asymptotic form of A (e)
is a general property of the epsilon entropy of continuous one-dimensional dis-
tributions [4]. However, the form of % (e) when ¢ — 0, as well as when ¢ — oo,
follows directly from the forms given for the derivative. To show the second part
of (43), note that when (50) is multiplied by ¢, the sum on the right tends to an
integral as e — O:

eh' () > —2 [o @r) e ¥t de = —1.
This proves (43).
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Again, as e — «, the contribution of the terms after the first in the series (50)
is 0 (e¢**"'*). Thus

W) = —ép(e/2) (3 — 60) + O (&%),
But as e —» «©, P(¢, 0) — 1, and
P, 1) = @r)7F [1 e dy ~ 2674 /e (2 ).

2

From (46),
€G3 — ) ~ 3
Thus, as e - o,
~€9(c/2)( — 60) ~ —§'D(e/2)
~ —%@r )‘%2.;—6”’8.

Since the contribution of the remaining terms in the series is the smaller value
0 (e¢**""*), the above expression is asymptotically the value of A’ (¢), and the
second half of (44) holds. Lemma, 7 is proved.

Now that we have gotten “preliminaries” about the one-dimensional Gaussian
distribution out of the way, we can begin to study the case of arbitrary mean-
continuous Gaussian processes on the unit interval.

3. The product epsilon entropy function J.(X). In this section we define
the product e-entropy J.(X) of a mean-continuous Gaussian process X on the
unit interval. The main results are contained in Theorem 2. We find a necessary
and sufficient condition for J(X ) to be finite. In the case when J.(X) is finite
we construct a product e-partition with entropy equal to J(X).

In order to define the product e-entropy function J.(x) we first consider
the class = of all product e-partitions of Ls[0,1]. A product e-partition of Ls[0, 1]
is the Cartesian product of e-partitions of the kth coordinate axis in the Kar-
hiinen expansion of the process, where D & =< ¢. Thus product e-partitions
consist of hyper-cubes of diameter at most e. Next define 7. to be that subclass of
me consisting of partitions in which a countable collection of the sets have a
union of probability 1. L.e., a product partition in . contains a denumerable
partition of a subset of X of probability 1. By the entropy of the product par-
tition we mean the entropy of this denumerable partition.

The product epsilon entropy is defined as

Je(X) = oo, if me is empty,
J(X) = infy.r, H{U), if = isnot empty.
The entropy H (U) is defined as in (7) over the sets of U of positive probability.

It turns out that =, is empty if the series (64) diverges, and otherwise J,(X) is

finite.
Our first lemma shows how to compute the entropy of a product partition in
terms of the entropies of its one-dimensional partitions.
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Lemma 8. Let the probability space X be the product of a sequence of probability
spaces Xy , Xz , - - - ,with product measure. If Uy s a partition of X ,k = 1,2,---,
and U the product partition of X, then

H(U) = 2 H(U).
This is to be interpreted to mean that if the union of countably many sets of U does

not have probability 1, then H (U) is infinite.
Proor. It follows from [2], Lemma 3, that

(53) HU) £ 2 im H(Uy),

even with the special interpretation on H (U). Hence, we need to show that in-
equality cannot occur. The above-cited reference shows that we can assume that
the union of countably many sets of U has probability 1.

For any positive integer n consider the finite product

X™ =X, x X, x -+ x X,.

The partition U™ = U; x Uy % --- x U, of X has the same entropy as the
partition U™ % X,11 % --- of X, of which U is a refinement. Thus H {U™)
< H(U). If the sets of U}, have probabilities px;,j = 1,2, - - - , then the sets of
U™ have probabilities pij,Pejy = * * PnjsJis ==+ »Jn = 1,2, --+ , and

HU™) = 25wt Priy *** Poia 10g [Py ++* Dugn]
Breaking up the logarithm into a sum,
HU™) = 3ona 251wt Py =~ P 108 (D)™
= Dot Dimet Pin 108 (Dmip) ™
= 2o H(Un).
Hence
H(U) 2 2na H(Un),
and, letting n — oo,
HU) 2 2 oma H(Uy).

This inequality together with (53) proves Lemma 8.

The next two lemmas taken together show that, for a mean-continuous Gaussian
process on the unit interval, either . is empty for all ¢ > 0, or else m. contains a
partition of finite entropy for all ¢ > 0.

LemMA 9. Let X (t) be a mean -continuous Gaussian process on the unit interval.
Let U be a product partition of L0, 1] obtained as the product of partitions Uy of
the coordinate axes by intervals of lengths e . Then the following three conditions are
equivalent:

(a) The union of countably many sets of U has probability 1;

(b) U contains a set of positive probability;
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(¢) With probability 1, all but a finite number of components of an element of
L, [0, 1] lie in the unique interval containing zero in the partition of that coordinate.

If the partitions Uy are centered, these conditions are also equivalent to

d) D Mle ¢ (e/2M) < o, where ¢ is the unit normal density function
and {N\i} are the eigenvalues of the process.

Proor. Clearly (c¢) implies (a), since the collection of sets of U with the
property (c) is denumerable, and (a) implies (b). The equivalence of these
conditions will follow if we show that (b) implies (c).

Assume (b) is true. Let the set V of positive probability be the product of
the intervals {V;} on the coordinate axes, with pr = u(Vy). Then

(54) w(V) = Hl?—lplc > 0.

First we note that this product can be positive only-if p, — 1 as k — «. In
particular, for k sufficiently large (¢ = K), pr > %, which implies that V has
the origin of the kth coordinate axis in its interior. Another consequence of
(54) is that

(55) ]-anm—»oo H;:=mpk = 1.
For m = K, consider those sets of U which are formed by using V; for £ = m.

The union of these sets has probability ][ ps, and is a subset of the set
characterized in (c). Hence, by (55), (c¢) is true.

Now let the U be centered. The set in U which is the product of the center
intervals of the U; has at least as large a probability as many other set, so that
(b) is equivalent to (54), where p: is the probability of the center interval of

Uk . Then

(56) 1 — e = 2 [opo /M) dt ~ 2u'a’'d (@/2M)), as b — «.
Condition (b) is equivalent to

(57) i (L =) < =,

which is equivalent to

(58) 2 Ne's (@/20h) < o,

since the convergence of either of these series implies that e/ M — . Therefore
(56) is true. Thus (b) and (d) are equivalent. This completes the proof of
Lemma 9.

Lemma 10. Fork = 1,2 - - -, let U be a given & -partition of the kth coordinate
azxis. Let Z e converge and let a countable subpartition of the product partition
U = [Ix Us cover a set of probability 1 in Ls [0, 1]. Then for every ¢ > 0 there
exist e-partitions Vi of the kth coordinate axis such that

&= Zekz and EH(V];) < o,

Proor. We can assume that U} is a centered partition, and that every interval
in Uy is of length &’. By Lemma 9, if a countable subpartition of U covers a set
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of probability 1, then
(59) Send(e) e ™ < o,

On the other hand, by (44), we will have > H (Vi) < o if both &/\* — o
and

(60) Dadte ™ < oo,

Now if (59) holds with e, we proceed as follows. Let K be so large that for
]C > K, ek'/)\k% % 10 and

(61) Diore’ = €/4.

The function ¢ *"® is less than 1/2* for ¢ = 10; hence, for such ¢,
e < Tl

and for k > K,

(62) 2Nl M <\ (g )T,

Thus if we put & = 2%, for & > K and assign to e, - - - , ex any positive values
such that )&’ = ¢, (60) is satisfied, for the terms in that series are bounded
for k£ > K by the terms in the series (59). This proves Lemma 10.

The next lemma, is the last before Theorem 2.

LemMa 11. For a mean-conttnuous Gaussian process on [0, 1] with etgenvalues
M=o, m=1,2, -, the product e-entropy is given by

(63) Jo(X) = infgg-e 2 5= h(er/on),

where h(x) is the function defined on page 874.

Proor. With each product e-partition of X we can associate a sequence {e}
such that the partition of the kth component space X is an e-partition, and
E e’ = €. For given {e}, the minimum possible entropy of the partition of
X is h(ex/or), by Theorem 1. Hence (63) follows from Lemma 8. Lemma 11
is proved.

Equation (63) reduces the problem of finding an optimal product e-partition
to the problem of selecting an optimal set {e:} of ‘“quantizations” for the co-
ordinate axes. The next theorem solves this problem and gives at the same time
a necessary and sufficient condition for J(X') to be finite.

TuaeorEM 2. The product e-entropy J.(X) of a mean-continuous Gaussian
process on [0, 1] with eigenvalues {\i} is finite if and only if

64) S onlog At < oo
If this condition is satisfied, the equations
(65) B () = —ANdr, k=12

have a unique solution {8}, with A such that
(66) Z )\k5k2 = 62.
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Then
(67) Je(X) = 2 5ah ().

On the other hand, if (64) is violated, (65) and (66) have no solution. The condition
(64) vs also the condition that there be a countable subpartition of some product
epsilon partition covering a set of probability 1.

Proor. Set or = M'. We want to minimize J (1, e, --+) = 2 h(e/ox)
subject to condition ) &’ = ¢’. Equations (65) are the conditions for a mini-
mum, by the method of Lagrange multipliers, if 6 = e/0% . To avoid justifying
the use of this method in an infinite-dimensional space, we will consider finite
dimensional subspaces of X.

First we show that (65) and (66) have a (unique) solution for any ¢ > 0
if and only if (64) is satisfied. According to Lemma 7, for any A > 0 there is a
unique solution {8z} of (65); each 8y is a monotonic decreasing function of 4, and

limA..,o O = ©, limA_m 6k = 0.

For a given value of A, ANy — 0 as k — . Hence for k sufficiently large, &
is so large that we can conclude from Lemma 7 that

B (3) = —Cidile %,
where T%(Zvr)_* < Cpr <1
Then we have

Cise ¥h = AN,
which implies
(68) & ~ 8log (1/M\).

We see that the series (66) is finite if and only if (64) is satisfied. If (64) holds,
then the monotone dependence of §; on A shows that the series in (66) is a strictly
decreasing function of A, taking all positive values as A ranges over all positive
values. Therefore, (65) and (66) have a unique solution.

Notice also that the existence of a solution of (65) and (66) implies that J.(x)
is finite, for if we put e = ox0r, then

Sal=¢ and  J(X) = X h(a/or) = 2 k().
This series converges, for by Lemma 7,
h(&k) ~ —5kh’ (Bk) = AB;}M .

Now let X be the product of the first n coordinate spaces. By Lemma, 11,
J(X™) = inf, S h(en/on).
3 ep2—e?
1

This sum is a continuous function over the positive 2"-tant of the n-sphere
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2 . . . . . .
. &’ = €, approaching infinity at the boundaries. Hence the infimum is assumed
at some interior point, and we have there
’ )
W (e/or)/or = —A™e, k=1,---,n,

where 4™ is a positive constant. Let ¢z = 8y, be a solution of this system of
equations, which lies on the m-sphere. Then

(69) KO0 /60 = —A™,, Fe1 . m,
and
(70) Do\ (B57)?

For any value of 4™, the solutions of (69) are unique, by Lemma 7. Further-
more, as A™ varies from 0 to «, each 8{ varies monotonically from o to 0.
Thus there is a unique value of 4™ at which (70) is satisfied. We have

(71) J(X) = J(X™) = 2pah (7).
This bounding can be done for any n. In particular, for the numbers 4™
and {85"7), 88, ... 8" are solutions of (69) with A™ replaced by

A(n+1), and ’
Do M (3M) < €
It follows that A™™ = A™. Define
A = limp.o A™.

A is either a positive real number or «.
First suppose A = . Then asn — ©, A™)\ — « and 6" — 0. From (71),

T(X) 2 hG) — e,

50 J(X) = oo. It follows from above that in this case (64) is violated.
Now let A be finite, and let {3} be the solution of (65).-when A = A. Since
A(‘n) § A-’

52 (w2 2
El?=1 by = Zl?=1 MNdx” T = €,
hence
Db = €

This shows that there is a value A* of A for which the solution of (65) satisfies
(66), and A* < A. Denoting this solution by {6.*}, we have

SNy S €

Hence A™ = A™ for all n. It follows that A = 4™,
For each k, we have 6, — & asn — . From (71),if m < n,

J(X) = e h(e™).
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Let n — oo ; then m — «, and we obtain
Je(X) = 21 h(5).

On the other hand, we have seen above that this series is the entropy of an
e-product partition of X. Therefore equality holds, and (67) is true. The last
assertion of the theorem follows from Lemmas 9 and 10. This completes the
proof of Theorem 2.

CoROLLARY. J (X)) s a continuous function of e.

Proor. This is a consequence of the formulas of Theorem 2. Namely, the
asymptotic formula (68) is uniform over any interval 0 < 4; £ A < 4; < .
Thus the series in (66) and (67) are uniformly convergent. It follows that
these series are continuous functions of A. Since ¢, given by (66), is a strictly de-
creasing function of 4, 4 and J.(X) are continuous functions of e. This
proves the corollary. .

We remark that when the A, are written in non-increasing order, condition
(64) is easily shown to be equivalent to the condition

S nloghk < .

Also note that (64) is the entropy of the distribution {\;}, provided the A, are
normalized so that Y\ = 1. The occurrence of the entropy of the eigenvalues
in this way appears to be fortuitous, although quite intriguing.

4. Some special processes. In this section, we shall consider a class of Gaussian
processes whose product e-entropies can be estimated for small ¢ by Theorem 2.

We begin with some general remarks on product e-entropy. Let X be a finite-
dimensional mean-continuous Gaussian process on [0, 1]. That is, X has only a
finite number of non-zero eigenvalues, A1, - -+, A\, say. It is an easy consequence
of Theorem 2 and Lemma 7 that

J(X) ~nloge™

as € — 0. For this reason the interesting processes to now consider, from the
point of view of product e-entropy, are the infinite dimensional ones.

The first thing we observe about an infinite dimensional process X is that,
as e — 0, its product e-entropy must increase faster than any positive multiple of
log ¢ . To verify this let X™ be the finite dimensional process obtained from X
by setting A, = O for £ > n. Then ase — 0

Je(X) = J(X™) ~nlog ™

Since n was arbitrary this proves our assertion.

In the final section of this paper we shall develop some techniques which are
more generally applicable than Theorem 2. For the present, however, we shall
content ourselves with the consideration of mean-continuous Gaussian processes
on [0, 1] whose eigenvalues satisfy a relation of the form

e ~ BE™? as k— o,
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where B > 0 and p > 1 are constants. Special cases of these processes arise
as solutions of the stochastic differential equation
dX/d" + Gua-dX/d" + oo+ @X = bu-d"N/d" + oo + bN

where N (t) is white Gaussian noise of spectral density 3 and the a’s and b’s
are constants with b,, # 0 and n > m. For these processes B (s, t) = E(X (s)X (£))
can be found as well as the A, . However, for our purposes it is enough to know
that \x ~ Bk, where B > 0 and p = 2(n — m). This is true for stationary
processes by [6], and (apparently) is also true for non-stationary processes.
The most important special case is the Weiner process, for which dX/dt =
N, R(s, t) = min (s, t) and

Ak:l/wz(k—%)z’ . k=1727”"

The main result of this section is the following theorem which gives an asymp-
totic formula for J.(X) as e — 0.

TuroreM 3. Let X be a mean-continuous Gaussian process on the unit interval
with eigenvalues {\,} such that

A~ Bn™?,
B> 0,p> 1. Then,ase— 0,
(72) Je(X) ~ @B/ (p — 1) T[T =K (@)/2] T dn} 0

ProoF. According to Lemma 7, the equation —4'(e)/e = x has an inverse
e = r(z), where r(z) is a monotonic function with

(73) r(x)Nx_é as & — o,
r(z) ~ [8 log (1/z)] as z—0.
In terms of this function, the solution of (65) is
o = r(4AN),
and (66) becomes
(74) E = A7 D AN (AN

We want to get an symptotic formula for this function of 4 as A — . Thus
we are led to consider sums of the form

(75) D= f(AM).
Suppose that f(z) is a continuous function on (0, «) with
(76) f(x) = O(z log z ), xz— 0,
= O (log z), z— oo,

We break up the sum (75) into three parts. Let # be a small positive number,
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fixed for now. Since
>z AN log (AN) ™ ~ D arsasn ABn? log (n"/AB)
~ (AB)"?(p — 1) " log n ",
as A — «, we have
7) Doz f(AN) = 0 (A" log 7).

By hypothesis, there is a constant B; such that A\, < B ” for all n. Hence,
if M is any positive number,

EA)‘I;EM (A)\k)llﬁ’ é EMnP<ABl (AB1)1/217n—§ ~ 2(AB1)1/pM_1/2p
as A — «. From (76), f(x) = 0(x1/2p) for large 2. Hence
(78) Szaf(AN) = O (A7),

Now for 0 < @ < b < =, consider »(a, b), the number of values of & for
which AXN; lies on (a, b). The condition ¢ < AN, < b is equivalent to
o < ABE™® < b, where ¢’ — a and b’ — b as A — «. The inequality which &
must satisfy is

(AB/W')? < k < (AB/d')"™.
Hence
v(a,b) ~ (AB)"? (@ — b7'").
It follows that
Prcacu ] (AN) ~ (ABY'? [ f(@) d(—z"7).

Comparing this result with (77) and (78), we have
(79) 2 (AN) ~ p T (AB)? [T (2)a™ T da.

If we take f(z) = ar(x)’, (76) is satisfied. Hence from (74)

&~ (AB)"?(Ap)7 [T r (@) da.

Put x = —A4'(t)/t, and integrate by parts. The integrated term vanishes at the
limits, and we get

(80) &~ 2(AB)P[A(p — VI [T =1 @)/ "t de.
From (67),
J(X) = 2 h(r(AN)).
We apply (79), with f(z) = h(r(z)); this function f satisfies (76), so
Je(X) ~ p (AB)? [3 h(r(z))a™ V" da.
After the substitution # = —4’(t)/¢ and integration by parts, this becomes
Jo(X) ~ (AB)' [T =1 @)/ "t dt.
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Eliminating A by (80), we obtain (72). This proves Theorem 3.

CoRroLLARY. For the Weiner process on [0, 1], we have
Je(x) ~ C/¢
as € — 0, with
C =20 [ [—ah' ()] da)® = 6.711 -+ .

Proor. We apply Theorem 3 with B = 1/7°, p = 2, and evaluate the integral
numerically to prove this corollary.

In [3], the e-entropy H.X) of the Weiner process was considered, where
H{(X), as in Section 2 of this paper, is the infimum of the entropies of all count-
able partitions of sets of probability 1 in L, [0, 1] by méasurable sets of diameters
at most e. Thus, H.(X) = J.(X). However, it was shown in [3] that for the
Weiner process

17 L
3262 S HG(X) S €

(the notation U S V means lim sup (U/V) =< 1). Thus, for the Weiner process,
lim infe,oJ (X)/H(X) = 6.711 --- .

This means that for small ¢ the optimal product e-partition requires at least
6.7+ times as many bits, on the average, to transmit the outcome of the process
as does the optimal e-partition.

5. The order of magnitude of J(X). In this final section, a useful lower bound
L (X) for J.(X) is considered. Conditions on the eigenvalues \; are given, which
guarantee that J.(X) = O (L.(X)), or even J (X ) ~ L.(X). Since L.(X) is a
lower bound for the epsilon entropy H.(X), these results imply that H.(X) is
of the same order as, or even asymptotically equal to, J.(X), so that not much
is lost by the restriction to product partitions in these special cases. Finally,
these results are applied to a stationary band limited Gaussian process on the
unit interval to obtain a simple asymptotic expression for J, (X ) in that case.

The lower bound L. (X) derived in [3] for the e-entropy H.(X) of a Gaussian
process X is as follows: Assume ¢ < > \y. Define the number b = b(e) by

(81) € =20/ + d\).

Then ,

(82) L (X) = 3 2 log (14 b\).

Since L.(X) < H.(z) and H (X) = J(X), L. (X) also provides a lower bound
for J.(X).

The next lemma gives a lower bound for L. (X ), which is actually the bound
we shall be using instead of L. (X) itself.

Lemma 12. Let X be a mean-continuous Gausstan process on [0, 1] with etgen-
values \t = N2 = --- . Define A(z), x = 1, as the function such that \(n) = \,,
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n =12 -, and such that x\(z) is linear on each interval (n, n + 1). For
& < N, define the function y = y(e) to be the smallest root on (1, ») of the equa-
tion y\(y) = €. Then

(83) L(X)z Me) — 1'd+01) as e—0.
Proor. Let N = N (¢) be the integral part of y(¢). Consider
S(e) = 3 2t-log () (1 + d)/M,
where b = b(e) is determined by Equation (81). From that equation,
(84) SN/ A+ D) S €

The problem of minimizing S(e) for any set of N satisfying (84) is easily
solved. We find that :

S(e) = iN log [N\(y)/] = 3N log (N/y) = 3N log [N/(N + 1)] 2 —3.
Hence
85) LX) = 320 log (1 + bh) = 3 i log (w/AA®)) — 3

Fork < z < k + 1, since A (z) is linear'and Ny = M1, it follows that M (z) =
(1 4+ 1/k)\ . Hence

[¥1og @)/ @) de < 2ok log u/A(®)] + O (log y),
and, combining this inequality with (85),
(86) LX) 2 % [{log M(@)/M(@)] dz + O (log y).
If we define
e@) = PA@))
then, by integration by parts, we find
@87)[*log [\ (@)/A )] do = —log Du/A@)] + [izd log [1/\(@)]
~log Pu/A@)] + v — 1+ 2 [{zdlog [e@)].
In terms of the variable t = e(z),
(88) [1edlog @)™ = [ y@) " dt + R,

where R accounts for the ranges of values of  which have been lost.

We shall show that B = 0. The function ¢ = e(z), 1 < 2 < y, can have the
same value for several values of z. The interval which is the range of ¢(z) for
1 < z < y can be broken up into a finite number of intervals such asa < e () < b.
each of which is the 1-1 image of each of m intervals, I1, I3, - -+ , In, (in order of
increasing ), contained in (1, y). Let the inverse function from (a, b) to I;
be y;(¢). For m = 2, the last 2[m/2] of these intervals contribute to E. The func-
tions y;(¢) are monotonic with alternate senses. If & = ¢, yn (t) is a decreasing

Il

Il
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function, and
fIIUI2U"'UIm zd log [e (x)]_l = ﬂ; ?=1 (—1 )m_jyj (t)t_l dt.
Since Ym (t) = Yna () = -+,

2ot (= 1)y ()

v

yi(¢) = y(@), modd,
= 0, m even.

Thus these intervals give a positive contribution to B. All of R is thus accounted
for, because the definition of y = y(e) implies that e(z) > e for z < y. Hence
R = 0. Thus, using (86) through (88), we conclude that

89) LX) = [2y@)"dt + 3y — 1 + log Du/A(@)]] + O (log y).
The terms after the integral in (89) are
ly—3—loge' +0(ogy) = —loge ' + O(1),

since y is bounded away from zero as ¢ — 0. Hence (83) is true. This proves
Lemma 12.

The next lemma estimates the number 4 = A (¢) given by (65) and (66) in
terms of the function y(e) of the preceding lemma. To make these estimates,
certain restrictions must be put on the eigenvalues A ; these restrictions imply
that the influence of the eigenvalues “far out” is not “too large.”

Lemma 13. Let A = A (e) be the number in the solution of (65) and (66).
If the Gaussian process X has an infinite number of positive eigenvalues, and

D ieahe = O (n)\,)

when the eigenvalues are arranged in mon-increasing order, then (65) and (66)
have a solution, and Aé = O (y(e)) as e — 0. If the stronger condition

(90) > e\ = 0(n\,)

holds, then Aé ~ y(e).
Proor. Under the first hypothesis,

(91) > =i < Dn),

for all n, where D is a positive constant. Using the inequality logz < = — 1,
we have for L > N’ = 1

D b= M log (/M)
= Y ohewii M Domewr41108 Mnc1/An) = Domnrit Mmet/Mn — 1) Dpem M
< Ynewst Oma/Am — 1)DmAy = DIV + D 4+ 2amviade — LM
SDW + 1)z + DAV + 1)\

Hence, letting L — o,

92) Di=wa M log (\wr/Ne) = (DM + D'\yrga) N’ + 1).
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This shows that >\ log M converges. By Theorem 2, J.(X) is finite and
(65) and (66) have a solution.
Using the function r (z) defined in the proof of Theorem 3, we have, as in (74),

93) Aé = Yo AN (AN
Let 6 < 1 be a positive number, and N’ = N’ (e) the positive integer for which
(94) ANgr > 6 = Alyrya.

Also let the first condition of the hypotheses hold. We have by (73), for z < 4,
zr(z)’ = O (zlog (e/z)).

Hence .

(95) Dot AN (AN = O (D imwria AN: log (e/ANy)).

The inequality (92) was shown by using (91) only for » > N’. Hence we can
replace Ay by /A there, and, by (94),

2t ANs log (e8/AN:) £ (eD + D")3(N' + 1).

Breaking up the logarithm into two parts, and applying (91) and (94),
S v AN log (6/AN) = A log 7 Y pwah + (D + DN’ + 1)

< Alogd ™ DWN' + 1)5/A + (eD + D*)s(N' 4+ 1)

= O(N's log (e/5)).
Thus, from (95),
(96) Aé = 2V AN (AND)E 4 O (V'8 log (e/5)).
The function zr (z) approaches 1 as z — o, If

B = supocs<e 27 (x)z,
97) Aé < N'B + ON's log (¢/8)) = ON').
Multiplying by Ay-, we have, by (94),
€ = 0N\ /8).

Let N1 = Ni(e) be the smallest integer not less than y (), so that Ny, < €

then there is a constant C; such that
(98) Nivy, < CiN'\yr

for e sufficiently small. This inequality implies that there is a constant C» such
that

(99) N’ = C.Ny.
To show this, we can assume that N' > N;. Then by (91),
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DY v = A E?:k ¥

M Do (N 4+ 1 — k)/k > A\ [o N — z)/zde
= N' v (log (N'/N1) — 1 + Ny/N').

From (94) and (98), we must have

log (N'/N1) — 1+ Ni/N' £ CiD”.

Thus if we define £ = F (¢) to be the solution of logz — 1 + 1/z = ¢, z > 1,
(99) is true, with Cy = F (C,.D?).
Now by (97) and (99),

Aé = ON') = O(N1) = O(y(e)),

which proves the first part of the lemma.
To prove the second part of the lemma, let M4 be a large positive number. If

Agrar £ M < Args

DNy, =
2

then by (94)
Mr1 S M5 N\,
and, since N +1<N +1= 2N',
(N + 1)Ayry1 < 2M8 Ny .
As above,
N' £ FCMD*/s)(N" + 1).
Let
gu = max,zu or (2)" — 1,
so that lima.o gar = 0. Then
|30y AN (AN)? — N
(100) S N'gu+ W' = N")(1 + B)
S {1+ 1 — YFEMD/5)N'F (L + B) + gulV.

Under hypothesis (90), the inequality (91) is valid for arbitrarily small D if
n is sufficiently large. For all inequalities developed above in this proof, we need
(91) only for n such that A\, < M/A. Hence D can be arbitrarily small, since
A — o ase— 0. Since

limp.o F (CD?) = 1,
we see from (100) that
|2 AN (AN)? — N'| < gV’ + o (V).
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Applying this to (96),
|Aé — N'| < guN’" + O(N's log (e/5)),

which can be made less than any multiple of N’ by taking & small, M large.
Hence

(101) Aé = N'[1 + o(1)].
In particular, if C; > 1, we ultimately have
N' 41 = G4,
and, by (94) and the definition of N = N (¢),
(V' + 1)Ays < CdNAy »
This equation is another equation of the type (98). It therefore implies
N £ F(CsD*) (N’ + 1).
Thus we have from (99)
N'/F(CiD*) — 1 £ N £ F(CsD)(N' + 1).

The values of the function F here can be made arbitrarily close to 1 by making
D small. Hence N ~ N’. Combining this result with (101),

Aé ~ N' ~ N ~ y(e).

This completes the proof of Lemma, 13.

We now are ready to proceed with the main result of this section.

TaEOREM 4. Let X be a mean-continuous Gaussian process on the unit interval
with infinitely many non-zero eigenvalues {\,} arranged in non-increasing order. If

D i = 0 (ny),
then, as ¢ — 0, we have

J(X) = 0L(X)).
If the stronger condition
(102) S M = o(m\,)

holds, we have J¢(X) ~ L.(X).
Proor. Denoting the solution of (65) and (66) by {8 ()}, 4 (¢), we have

h(3k(e)) = [ —h (3u(t))(doe (t)/dt) dt
= [2 A @)\ () (dbe/dt) dt.

Since the integrands are non-negative, we can interchange the order of summation
and integration in (67). We find

Jo(X) = [0 A() 20 Mde (2) (i (2)/dt) dt = [7tA () dt,
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since D My’ = #. Thus
(103) J(X)=Mua@)dt+0Q),
since J. (X ) is finite.

When infinitely many eigenvalues are positive, y (¢) — « as ¢ — 0. Hence, by
Lemma 13, under the first hypothesis

tA(t) = 0(y()/t) = Oy () — 1)/,
and rawyde = o2 ) — 1 ae).
Since the second integral approaches infinity as e — 0, the terms O (1) in (103)
and (83) are negligible, and by Lemma 12
Je(X) = O(Le(X)).
Similarly, under the stronger hypothesis (102),
J(X)~ [ y@t) — 1" dt S Le(X).

Asymptotic equality must hold here because L.(X) =< H.(X) =< J.(X). This
completes the proof of Theorem 4.
An important consequence of Theorem 4 is the next result, which has been

proved within Theorem 4.
TareorREM 5. Let X be a mean-continuous Gaussian process on the unit interval

with infinitely non-zero etgenvalues {\,} arranged in non-increasing order. If
2= N = 0 (nhs),
then
J(X) = 0 y(t)™" dt).
If the stronger condition
D M = 0(n\,)
holds, then
J(X) ~ [ y@) de.

Note that Theorem 5 applies in the case of Theorem 3, but gives less precise in-

formation.
Since J(X) = H(X) = L.(X), Theorem 4 can be thought of as a condition

for
(104) J.(X) = O(H.(X)), or J«(X)~ H(X).

In the former case, X can be transmitted by produet partitions with a number of
bits not worse than the optimal system by more than a constant multiple. For
processes with the stronger property (102), the product partition system is
asymptotically as good as the best possible system as e — 0. It can moreover be
shown that J. (X ) can be finite and yet not O (H.(X)).
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We close this paper with an application of Theorem 5 to band-limited processes.
That is, let X be a mean-continuous stationary Gaussian process on the real line
whose covariance function

p(r) = B(s, s+ 7)

has Fourier Transform dS(f) with support in some finite interval. Suppose
dS(f) = a(f) df with a(f) continuous. Then when X is restricted to the unit
interval, it is known ([7], Lemma 2) that

e ~ 07 (Cn )2

for some constant C. It is then easily seen that
1

y(e) ~log e /logloge ™.
Theorem 5 now implies that
Jo(X) ~ [ [log (1/t)/log log (1/0)I¢ db,
so that
(105) J(X) ~ 3{log (1/)I’/[loglog (1/€)].

Equation (105) shows that band-limited processes are not much more random
than finite-dimensional distributions, since J.(X ) does not increase much more
rapidly than a constant times log (1/¢). This is to be expected, since the sample
functions are analytic with probability 1, and not very ‘‘random.”
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