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THE LAW OF THE ITERATED LOGARITHM FOR MIXING
STOCHASTIC PROCESSES!

By Warurer Puivipp

Unaversity of Illinois

1. Introduction. Let (¢, ,n = 1,2, -..) be a sequence of random variables
centered at expectations with finite variances. Suppose that

1) 3N2 = E(EngN En)2 — ® N — ©)
2) Svy1/sy — 1 (N — «)
and that

(3) v = B w1 n)’ = (s —sa?) (L +0(1)) (as su — su> — o).

Let M . be the o-algebra generated by the events {¢, < a},a < n < b. Wesay
that the Borel-Cantelli Lemma holds for the process (£.) if ), P (4;) = o implies
that P(4zi.0.) = 1 where Ay e My 1 (1 S mp < my < ---).

The standard proof of the law of the iterated logarithm yields the following

THEOREM 0. Let (£,) be any stochastic process satisfying (1)—(3) for which the
Borel-Cantells Lemma holds. Suppose that uniformly in M and x

@) Psuy Zneuniba < @) = @) [20 67 dt 4+ 0 ((log saw) ™), n > 0,

and that for some constants C > 0, 0 < py = O((log log sx)?) and e sufficiently
large

) P(maxléngN Zkén & >e€) = CP(ZIagN & > € — pasw).
M oreover, suppose that (5) holds with &, replaced by —&, . Then
(6) P (lim SUPy-o (28 log log sy’) D ucn & = 1) = 1.

In short the law of the iterated logarithm holds for any process for which the
Borel-Cantelli Lemma, the central limit theorem with a reasonably good re-
mainder and a certain maximal inequality are valid. The proof of Theorem 0 can
be found in Logve [4, pages 260-263] (see also [1], [5]) where instead of the ex-
ponential bounds we use the fact that for 7 > 0

P bn > msuw) = 2r) 7 exp (=37) (1 + 677°) + 0 ((log saw) ™)
with 0 < 6 < 1. This follows from (4) and the well-known [1, page 175] estimate
[2e dt = a7 exp (—32%) (1 + 027%).

Moreover, we choose 7 to be the largest integer n with s, < ¢, where ¢ > 1is
the constant occurring in [4, page 261], (s, is not assumed to be monotone).
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The purpose of this paper is to prove the law of the iterated logarithm for se-
quences of random variables satisfying two kinds of mixing conditions. Roughly
speaking, we shall assume that as time passes events concerning the “future”
of the stochastic process become almost independent of the events in the “past”.
More precisely, we shall assume that either one of the following two conditions
holds:

(I) For any events A ¢ My; and B ¢ M ¢y, we have

|P(AB) — P(A)P(B)| = ¢(n)P(4)P(B)

with ¢ (n) | O.
(I1) SUD; SUPpenr,,,, [P (B|My) — P(B)| < e(n) | 0

with probability 1.

Moreover, we shall assume throughout this paper that the random variables
x, are centered at expectations with sup, E (z,') < 1 and that sy — . From
Theorem 0 we shall derive the following two theorems.

THEOREM 1. Suppose that the process (x,) satisfies (1) with Y ¢¥'(n) < «and
that uniformly in M = 0,1, 2, - --

(7) 2 B [z, < (B (i )’} H—
®) M+H+1 E(xn ) L (B (Zfﬁgﬂ Tn )2 )3 H— o,

Then the law of the tterated logarithm (6) holds.
Observe that if sup ||a/| = 1 then (7) implies (8), which thus can be omitted.
THEOREM 2. Suppose that the process (x,) satisfies (II) with Y ¢°(n) < oo

and that uniformly in M = 0, 1,2, --- with p < 208/111
9) Nt |zl € (B z)’) H — «,

Then (6) holds.

There are several variations of the hypothesis possible. For example in Theorem
2 one can replace £ by % and p by 2 and the conclusion still remains valid.

For strict sense stationary processes the law of the iterated logarithm has
been proved independently by Iosifescu [3] and the author [6] using different
hypotheses and different methods. We shall discuss the stationary case in
Section 4 (Theorem 4).

2. Some lemmas.

Lemma 1 [8]. Suppose that condition (1) is satisfied, that the random variables
£ and n are measurable over M1 and M 41, respectively and that both are integrable.
Then

|E (8) — E(§)E(n)| = ¢ (n) E |&] E |n] .

Levmma 2 [2]. Suppose that (I1) holds and that ¢ and n are measurable over My,
(md M¢+M, respectwely. If E & < o« and E |n|* < o with p, ¢ > 1 and
p "+ g = 1then

\EEn) — EE)E®M)| < 207 @)[E]l [nls -
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Moreover, if £ and n are essentially bounded then

|E(En) — EE)E @) = 4o ®)llEllw 7]l -

Let us observe that (I) implies (II) since (II) is equivalent to
(IT*). For any events A & My, and B & My1n..o we have

|[P(AB) — P(A)P(B)| = ¢(n)P(4).

Let (1,,) be any stochastic process with £ (,) = 0 and E (3,*) < 1.
LemMa 3. Suppose that (n.) satisfies (I1) with X o' (n) < . Then with a fived
constant O (1)

EQ )’ = sv' — su’ + O(1).
Proor. We have from Lemma 2 :
sy = EQ nam) = B i1m + 2 n=miana)’
= 8w’ + B (X na)” + 2 Znma Zsen B ()
= s’ + B haunm)’ + 0 a2 @ (0 — m)-[malle 1l
=8y + E (E:=M+l 1)+ 0 Z:=M+1 (n — m)™")
=i + E(Q n-mnm) + 0(1)

since the monotonicity of ¢ (n) and > o' (n) < o« implies n’p(n) — 0.
LeMMa 4. Suppose that (n,) satisfies (I1) with ¢ (1) < 4. Then for any N, e with
the constant O (1) from Lemma 3 we have

P(maxignsy Jiznm > €) S 3 — o)) P Qrevm > ¢ — 2'sy + O(1)).

For a proof see Logve [4, page 248]. We apply (II *) at the place where the inde-
pendence of the events A; and By is used and Lemma 3 for the estimate of the
median.

LeMMA 5. Suppose that the process (n.) satvsfies either the hypotheses of Theorem 1
or Theorem 2. Then (4) holds uniformly in M.

A theorem of this type has been proved in an earlier paper [9]. The proof of
Lemma 5, apart from a few minor modifications, is the same. I shall indicate the
changes necessary under the hypotheses of Theorem 2. In [9, Lemma 2] we choose
o > Y such that p < (1 + @)52/111a < 208/111 and k = [sy"] with 3 < 8 < a.
We obtain in place of [9, (6)—(11)]—note that we do not have a double sequence
anymore—

E(ng) =" +0() E(Z/%H) < sy”

uniformly in 1 < 7 =< I. Moreover, there is a constant ¢; > 0 such that for all
1 <7 <1 wehave hj = cisy™ Also | = sy" *(1 + 0(sx’™%)), E(Yy') =
svi(1 + 0(sx"™), E(Zy") < sy* °*. Lemmas 3 and 4 [9] remain unchanged
whereas (14) transforms to

P(Yy/sy <) — o) Kgy' +sv “+ sv* "+ sa “ % log sy
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and (15) becomes if we choose 4; = sy, Ay = sy°*/"

gNS << lE lyj3|/81v3 << SN—3+2-a+lllapl52
since by the hypotheses of Theorem 2, P (%;) < sy and ¢ (n) << n~°. Moreover,
by Chebyshev’s inequality
P(|ZN|/SN = SN“ﬁ_a)) < SNﬂ_a~

This proves Lemma 5 for M = 0 with an error term O (sy° *). We observe that
the constant implied by O depends only on (¢ (n)) and the constant implied by
& in (9). Hence defining a new process n, ™ = nap. we see that (4) holds uni-
formly for all M thus completing the proof of Lemma 5 under the hypotheses of
Theorem 2. The proof under the hypotheses of Theorem 1 is similar.

LEmMA 6 [7]. Let (E. ,n = 1) be a sequence of events and denote by A (N, w) the
number of integers n = N with w ¢ E, . Put

¢<N) = Zn§NP<En)-

Suppose there is a convergent series Y, o (n) with o(n) = 0 such that for all positive
integers m, t

P(EEuw) = P(E)P (Bnye) + o@m)P (E).
Then with probability 1
AW, 0) — ¢(V) < ¢ (V) e> 0.
Note that Lemma 6 was proven under the assumption that
P(E i) = PEP Enre) + ¢m)P (Bnye).

However, this does not affect the estimate [7, (3)]. For an improved version of
Lemma 6 see Theorem 3 below.

Observe that if (1) < % or ¢ (1) < 1 respectively the proof of Theorems 1 and
2 is complete.

3. Proof of Theorems 1 and 2. Suppose that either the hypotheses of Theorem
1 or 2 are satisfied. Let 7 be with ¢ (j) £ % or ¢(j) =< % respectively. Given
1 > & > 0 we define two new processes (y.) and (2,) as follows:

nm=uo+ -+ 21 = T + 000t Tagts
yn = xl’n"‘l + e + xp,,-l-h,, n = xpn+hn+l + e + xﬂn+l

where p, = X ,<n (b + 7). We choose the h, inductively as the largest integer A
such that

E(Q b x) < (G/6)
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LemMA 7. We have uniformly inn = 1, 2, - - -
(10) E@') = G/ +0@1), E@)SS hzal/s)

with a constant O (1) depending only on > ¥} (n) or > o' (n) respectively. More-
over, let | be the index such that xy occurs in either in yy or 2; . Then

1) s’ = (/1A + F0Q)) = EQuziya)’(1 + §0(1)),
E(Qugiza) < &sy

The proof is similar to [9, Lemma 2] or [8, Lemma 4].

We observe that both (y.) and (z.) are mixing in the same sense as is (z,) and
from Lemma 7 that ¢, (1) < L, ¢, (1) < 2 ore,(1) < 1, 0. (1) < % respectively.
Hence from Lemmas 3, 4, 5 and 6 we conclude that the hypotheses of Theorem 0
are satisfied and thus—that sup, E (y.*) < 1 follows in the same way as (15)
below—

P (lim $UPrac [2E (Dng1¥a)’ loglog BE(Qnziyn)’ Znzitn = 1) = 1
and similarly for > 2, and |, 2.| by symmetry. Therefore with probability 1
lim SUpx-e (2857 loglogsy®)™ D i<y & = lim SUppae (262, log log s2,) 7 D ic,, 2

2 limsup ((3C y»)) — limsup ((|2 za)))
=21+46-0(1)

by (11) which proves the lower estimate of the law of the iterated logarithm.
Similarly we have with probability 1

(12) lim SUp,.. (255, log log s, y* D<o i = 14+ 6-0(1).

Now let N be arbitrary and let n be the largest integer with p, < N. Write
R = pu1 — pa, R* = [R/j] and

(13) frs = Tpppotri O=sr=sR,1=s=s).

For fixed s the process (5, , 0 < r < R™) is mixing in the same sense as (z,) with
Yy (1) < %ore,(1) = %respectively. For fixed s we have from Lemma 7 and (9)—
now under the hypotheses of Theorem 2—

E(Xrzr ) K 2szi 2rsee B(nn) + 2rcrisne [B (rairys)]
(14) K (s llmmalla)” + Zrcrigrrissi @™ (rn — 1)llnlls
< (B @) < (/8)",
Hence we obtain from [8, Lemma 10] with P < (j/6)* and 4; = 4, = P
(15) B (X rsne ) K (3/8)".
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Thus from Lemma 4 for fixed s
P (maxigrogre D rsrrtive > Sp,)
S AP rsmetee > 8, — (§/8)) K (85, — (G/8))'E Qrsrenn)’
K (8, = G/ONTG/H) K s
and since s ~ (j/8)’n by (10) and (11) we obtain
(16) P(MaXi<r<r Dotsr Toptt > Spp) K Jsom K 0
The result follows now from (12), (16) and the fact Y n > < .

4. Some applications. In this section we shall consider two special cases.
Let (E,,n = 1, 2, ---) be a sequence of events with indicators x,. Let M
be the s-algebra generated by the E,(a < n < b) and ANV, @) = D nenxn (@)
the number of integers n < N such that w ¢ £, . (By » we denote the elements of
the sample space.) With this notation we have

THEOREM 3. Suppose that the sequence (E,) satisfies (1) with Yn) < »
and that P (E,) — 0. Moreover, let

¢WN) = 2w P(By) = @ (N — ).
Then almost surely
lim supy-ce (26 (V) log log ¢(N)) ANV, ) — ¢ (V)] = L.
Proor. In [8, Theorem 6] we showed that
sy = ¢(N)(1 + o(1))
6(M,N) = X0 P(E,) < EQ ¥ iuxn — ¢(M, N))
NV — «)
uniformly in M and that E|x, — P (E.)| < 2P (E.,).
If we set 2, = x» — P (E,), Theorem 1 applies.
The second application deals with stationary processes considered already in
[3] and [6].
THEOREM 4. Suppose that the weak sense stationary process (Tn,n = 1,2, ---)

has the random variables x, centered at expectations with sup, (E(z.') < .
Further assume that condition (I1) holds with 3 ¢'*(n) < . Then

¢® = lim N_IE(anan)Z N — =)
exists. Moreover if ¢ #= O then
P (lim SUpy-e (26°N log log N)? ann z, =1) = 1.

The proof of the theorem is an immediate application of Theorem 2. As
is well known (see e.g. [8, Theorem 9] we have sy’ = Né® + 0(1) and using Lem-
ma 3 we have fore # 0

fn‘:gﬂ lza]]s £ N K No* K E( f:ﬁ...l z.)"



LAW OF ITERATED LOGARITHM FOR MIXING PROCESSES 1991

It is not difficult to see that it is enough to assume »_ ¢'(n) < « and the con-
clusion of Theorem 4 still remains valid. The same is true if we assume
> o) < o and sup [|[Za]le = 1. This improves a theorem of Iosifescu [3].
He additionally assumed ¢(1) < 1, which in many applications seems to be
rather hard to verify, see, e.g., [10]. Theorem 4 has also been proved independently
under somewhat different hypotheses by the author [6]. For a comparison of the
hypotheses see [8, Chapter 2].

Note added in proof. For strict sense stationary processes Reznik [Teoria
Verojat. Primen. 13, 642-656 (1968)] has Theorem 4 in a slightly sharper form.
As a matter of fact, the remainder of the remark to [8, Theorem 9] applies for
the present situation, too.

REFERENCES

[1] FeLLER, WiLLiam (1968). An Introduction to Probability Theory and its Applications,
1 3rd ed., Wiley, New York.
[2] IsrAGIMOV, I. A. (1962). Some limit theorems for stationary processes, Theor. Proba-
bility Appl. T 349-382.
[3] IosiFescu, M. (1968). La loi du logarithme itéré pour une classe de variables aletoires
dependent, Teorza Veroj. 13 315-325.
[4] Lo&ve, MicHEL (1963). Probability Theory 3rd ed. Van Nostrand, Princeton.
[5] PeTROV, V. V. (1966). On a relation of the remainder in the central limit theorem and
the law of the iterated logarithm, T'heor. Probability Appl. 11 454-458.
[6] PuiLipp, WALTER (1967). Das Gesetz vom iterierten logarithmus fiir stark mischende
stationdre prozesse. Z. Wahrscheinlichkeitstheorie verw. Gebiet. 8 204-209.
[7] Priipp, WALTER (1967). Some metrical theorems in number theory. Pacific J. Math.
20 109-127.
[8] PuiLipp, WALTER (1969). The central limit problem for mixing sequences of random
variables. Z. Wahrscheinlichkeitstheorie verw. Gebiet. 12 155-171.
[9] PuiLirp, WALTER (1969). The remainder in the central limit theorem for mixing sto-
chastic processes. Ann. Math. Statist. 40 601-609.
[10] Priripp, WALTER (1970). Some metrical theorems in number theory II. To appear in
Duke Math. J.



