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INFINITE DIVISIBILITY AND VARIANCE MIXTURES OF THE
NORMAL DISTRIBUTION

By DouGLAS KELKER

Washington State University

1. Introduction. In this paper when we say ‘“‘mixture of normal distributions,”
we mean a variance mixture of n(0, u) distributions with characteristic functions
of the form C(r) = | exp (—*u/2) dG(u), with G a distribution on [0, ). The
corresponding density is f(x) = [ 2nu)~* exp (—x?/(2u)) dG(u). To investigate
whether or not C(¢) is infinitely divisible (id), we use Laplace transform theory on
C(2*t}), the Laplace transform of G. A function % is completely monotone (cm)
on (0, o) if and only if (—1)"4™(x) = 0 for x > Oandn = 0, 1, 2, ---. Bernstein’s
representation theorem for cm functions (see Feller [1] page 415) states that 4 is
cm on (0, o0) if and only if A(x) = jexp (—xu) dP(u) with P a non-decreasing
function on [0, 00). From this we see that C(x*) and f(u?) are cm on (0, o) as
functions of u. Or we can say that a characteristic function is a mixture of normal
characteristic functions (densities) if and only if A(x) is an even function and
h(u?) is cm on (0, ). The Cauchy density (n(14x2))"! is easily seen to be a
mixture of normal densities, since (1+x)~! is obviously cm on (0, o). For the
same reason, the characteristic function of the Laplace distribution (1+4¢%)~*
is a mixture of normal characteristic functions. Student’s f-distribution and the
symmetric stable distributions are also mixtures of normal distributions.

Another type of characterization is contained in a result of I. J. Schoenberg [5].
Stated in probabilistic language, his theorem is as follows:

THEOREM 1. A necessary and sufficient condition for a univariate characteristic
Sfunction C to be a variance-mixture of normal characteristic functions is that there
exists a function  such that C(u) = y(u®) and that, with t' = (1, 1t,, -, 1,),
Cy(t) = a,b([t[Z) is a p-dimensional characteristic function for each p (p = 1,2, ---).

2. Infinite divisibility and normal mixtures. An attempt was made to characterize
all distributions G on [0, 00) such that | (2nu)™*exp (—x?/(2u)) dG(u) is the
density of an id distribution. The attempt was only partially successful.

It is known (see Feller [1] page 427) that if G is id, then the mixture is id. How-
ever, not all mixtures are id, as the following theorem shows.

THEOREM 2. If G is a non-degenerate distribution on [0, ©0) and G(b) = 1 for
some finite b, then the characteristic function C(t) = | exp (—t*u/2) dG(u) is not
infinitely divisible. (G is a “finite” distribution according to the terminology of
Lukacs [4]).

PRrOOF. Let g be the characteristic function of G, g(t) = [ €™ dG(u). It is well
known (see Lukacs [4] page 141) that g has infinitely many zeros in the complex
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plane. Noting that g(it?/2) = C(1), it follows easily that C also has zeros in the
complex plane. Hence C cannot be id since C is an entire characteristic function
(see Lukacs [4] page 187).

A. Tortrat [8] proves a particular case of Theorem 2.

But there are id normal mixtures in which the mixing distribution is not id.
The following is an example of a mixture of normal characteristic functions of
the form C(t) = [ exp (—t*u/2) dG(u) which is id even though the distribution G
is not id.

Define
Hx)= 0 x <1
= .26 1Ssx<?2
.52 2<sx<3
= .48 3sx<4
= .74 4<x<5
= 1.0 x = 5.

The function H was constructed to satisfy the conditions:

(i) H is not a distribution.
(ii) H* H is a distribution.
(i) [ (2mu)~* exp (—x?/(2u)) dH(u) is a density.
Define the mixing distribution to be G(x) = e™* Y& (k!)"'H**(x). Routine
calculations show that G is a distribution function. We also have
| exp (—1%u/2) dG(u)
(1 =e ' Y& (k)" (f exp (—*u/2) dH(u))*
= exp [ [ exp (—1%u/2) dH(u)— 1]
exp [ | (cos (tx)—1)(2m)"* | u~* exp (—x2/(2u)) dH(u) dx].

The last expression in the string of equalities is a form of Kolmogorov’s canonical
representation (Gnedenko-Kolmogorov [2] page 85) for id characteristic functions,
provided that | u™* exp (—x?/(2u)) dH(u) = 0 forall x > 0. But H was constructed
to satisfy this condition. Thus C(r) = { exp (—#*u/2) dG(u) is an id characteristic
function.

But G is not id, since H is the spectral measure in the Lévy representation of the
characteristic function of G and H is not non-decreasing.

The function H was originally constructed to be used in the following example
to show that the factors of a mixture of normal distributions do not have to be
mixtures of normal distributions. Let C,(f) = [ exp (—#*u/2) d(H * H)(u), C,(1) =
(C,(1))*. The characteristic function C, is a mixture of normals, and C, is a
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characteristic function but is not a mixture of normal characteristic functions
since C,(f) = [ exp (—t?u/2) dH(u), and H is not a distribution function.

The following lemma can be used as a quick proof in certain cases to show that a
real-valued characteristic function is id. The procedure works this way.

LEMMA 1. For a real-valued characteristic function C define h,(t) = (C(t¥))tm

Jort>0(n=1,2,-). If h, is completely monotone on (0, o0) for each n, then C
is infinitely divisible.

PROOF. The fact that 4, is cm for each n implies that 4, is the Laplace transform
of a probability distribution for each n. So according to the Laplace transform
definition of infinite divisibility, we have C(*) = [ exp (—tu) dG(u) with G an id
distribution on [0, o). Then C(t) = | exp (—*u/2) dG(u/2). Since G is id, so is
the characteristic function C.

As an example, the density Je~!*! of the Laplace distribution has characteristic
function C(1) = (1+7*)71. Since (1+1)~ " is cm for each n, we conclude that C
is an id characteristic function. Similarly, all the Student-s densities con51dered as
characteristic functions are id characteristic functions.

THEOREM 3. The Student-t distribution is infinitely divisible for three, five and

seven degrees of freedom (and, of course, also for one degree of freedom, since it is
then a Cauchy distribution).

Proor. It is known that for odd degrees of freedom the characteristic function
of the -distribution can be expressed in closed form (D. Starkey [6]). If # is odd,
the characteristic function is

E (k)| mr2kor

Cult) = exp (=ni) (2k)' D P

with k = (n—1)/2.
We will need a theorem proved by Schoenberg [5] (or see Feller [1] page 425).

THEOREM 4. The function v is the Laplace transform of an infinitely divisible
distribution if and only if ¢ = e™" with h a function with a completely monotone
derivative and with h(0) = 0.

Define V) = Cy(Jt]/n)*) for n = 3,5, and 7. For 1 = 0

Y3(1) = exp (= r*)(1 +1h)

Us(t) = exp (—1?) <1 +t*+§t>

el
VLt = exp(——ﬁ)<1+t*+ t+15).

Since ¥, = exp (log ¥,), ¥, is the Laplace of an id distribution if and only if
—log ¥, has a cm derivative. A knowledge of two properties of cm functions will
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be helpful at this point. If fand g are cm, so is fg. If f is cm and g is nonnegative
with a cm derivative, then f(g) is cm.

Let n = 3. Then
W) dexp(=r) 1
Vi) exp(—=H(A+1H) 141

Since 1/(14r*) is cm, by Theorem 4 we get that ¥3(7) = [ exp (—tu) dG(u), with
G id. Hence

Cs(1) = ¢5(3r*) = [ exp (—*u[2) dG(u[6).

Since a normal mixture with an id mixing distribution is id, we conclude that
C5(?) is an id characteristic function.

For n = 5 we have

_Ys'(0) _ gexp(=H(1+1H) 1 1

Vo)  exp(—)A+2+13) 6 1+1/GB1+15)

The last expression is cm if #/3(1 4 %) has a cm derivative.

d t _ 1 4 1
dr3(1+5)  6(1+152 7 6(1+1%)

which is a cm expression. Accordingly,

1 1

6 1+13(1+1) s e

Therefore, as with n = 3, we have that Cs(7) is a mixture of normal characteristic
functions with the mixing distribution id, so Cs is id.

Forn =17,

v () _ 1 !
Yo 10 T+[(d+H15(1+12+13)]

The last expression is cm if #(14%)/(1+t*+1¢/3) has a cm derivative. The first
derivative is positive and

> 1+ 1 1 . 1 N 5 N 2

A 1+ +13 120 1+[1/B+1*)] 1+F+13 (1+3+143)2  (1+2+1/3)?

]
T+aa +z’f))]]'

We see that each of the summands is cm (1, £, t and ¢/(1 —¢?) all have cm deriva-
tives). Therefore #(1+*)/(1+1*+1¢/3) has a cm derivative, and as with n = 3, 5,
we conclude that C; is id.
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Therefore the Student-z distribution is id for three, five, or seven degrees of
freedom. Although the author suspects the result to be true for any odd n, the
method used was too cumbersome for n > 7.

COROLLARY 1. Let g,(x) = T'(n/2)~(n/2) "2 x~*2/2) exp (—n/2x). Then g, is an
infinitely divisible density for n = 3, 5, or 7.

ProOF.
1 2\ —(n+1/2)
(nm)~*T(n/2)"'T ('%) <1 +x—)
n

= (2m)7* [ exp (—x*/(2u))(n/2)"*T(n/2) ™ 'u="+212) exp (—(n/2u)) du.

The function g, (n = 3, 5,7) is the density of the id mixing distribution, the
existence of which was shown in the proof of the theorem.

Goldie [3] has shown that any mixture of exponential densities of the form
j'u exp (—xu) dG(u) is id; i.e., any cm density is id. Thus any mixture of normal
distributions with the mixing distribution cm is id. Steutel [7] has shown that
mixtures of Laplace distributions of the form [ u/2exp (—|x|u) dG(u) are id.
We can get this result by noting that

J uj2 exp (— |x|u) dG(u)
= [ @ny) ™ exp (= x?/(2)) [ exp (—yu?[2)(u?[2)dG(u) dy.

This is a mixture of normal densities with the mixing distribution a mixture of
exponential densities, and hence the original mixture is id.
The following theorem is equivalent to Theorem 1 of Tortrat [8].

THEOREM 5. All scale parameter mixtures of Cauchy distributions are infinitely
divisible.

Proor. We will show that the nth root of the characteristic function is convex
on (0,00) and hence is a characteristic function. C(t) = [ exp (—|t|u) dG(u).
Clearly, (d/dt)C(t)''" < 0.

2

%2 CO'™ = n~" ([ exp (—tu) dG(u))""* 2 [[ exp (— tu) dG(u)
“f u? exp (—tu) dG(u)— (1 — 1/n)(J u exp (— tu) dG(u))>].

For ¢ fixed consider the distribution F(x) = [§ exp (— tu) dG(u)/[§ exp (— tu) dG(u).
Since

Ex(X?) z (Ex(X))? > (1= 1/n)(ER(X))?,

we conclude that
d2
Ez—(C(t))”’l >0

and thus (C(#))'"™ is convex on (0, o) and therefore is a characteristic function.
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Some of the mixtures of normal distributions present an interesting duality.
Consider the functions h(u) = ko(1+u*)™", g(u) = k, exp (—|u|), —0 < u < o0.
With ko, = 77! and k, = 1, his a density and g is the characteristic function of A.
With k, = | and k, = 4, h is the characteristic function of the density g. But
the interesting fact is that both sets are id. Also, let f(u) = k exp (—|u|"),
0 < a <= 1. For k=1, f,is an id characteristic function. With & a normalizing
constant, f, is an id density, since it is cm. The next theorem gives a class of
mixtures which have this property.

THEOREM 6. Let h(t) = j3° exp (— t?u) g(u) du with h(0) = 1 and [*  h(t)dt = K< oo.
If g is completely monotone or if u~*g(1/u) is completely monotone, then h(t) is
an infinitely divisible characteristic function and K~ 'h(x) is an infinitely divisible
density.

ProOF. If g is cm, then [ exp (—r*u)g(u) du is an id characteristic function, as
was noted previously. As a density

K™ [exp(—=x*u)g(u) du = K~ [ exp (—x?u) | exp (—uy) dP(y) du
= K™ [(y+x)71 dP(y),
which is a scale parameter mixture of Cauchy densities and therefore id.

If u"#g(1/u) is cm, then K~ ' [exp (—x*u)g(u) du = K~ ' [ y™* exp(—x?/y) -
¥~ *g(y) dy, which is an id density. As a characteristic function

fexp (=r*u)g(u) du = [ y~* exp (—1*/y) [ exp (—yu) dP(u) dy
= [ (n/u)* exp (—2|t|u*) dP(u)
= [ n* exp (—|tjv)2v0™ ! dP(?/4).

This is a mixture of Cauchy characteristic functions and hence is id.

But if the id density f is a mixture of normal distributions, it is not true in
general that f(¢)/f(0) is an id characteristic function. To see this, let g(x) =
exp (1 —x) for x = 1. The Laplace transform of g is (14+¢)~! e, and we see that
the nth root of this will be cm, so that g is an id density. Therefore f(x) =
| 2nu)~* exp (—x*/(2u))g(u) du is an id density. As a characteristic function,
S@0/f0) = f(0)~! [ 2n)~* exp (—1%y/2)y~*g(1/y) dy. The support of y~¥g(1/y)
is (0, 1), and therefore from Theorem 2 we conclude that f(¢)/f(0) is not an id
characteristic function.
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