The Annals of Mathematical Statistics
1971, Vol. 42, No. 2, 755-759

ON THE MULTIPLE AUTOREGRESSIVE SERIES

By JIRI ANDEL

Charles University and Mathematical Institute of the Czechoslovak
Academy of Sciences

0. Summary. This paper deals with the finite part of multiple autoregressive
series. The conditions of stationarity are derived and the inverse of the covariance
matrix is evaluated (without assumption of stationarity).

1. Introduction. The models based on the autoregressive series are widely used
in many fields. Their applications in economics, geophysics, hydrology etc. are
well known. If we know the covariance matrix of a finite part of random series,
the best linear unbiased estimates may be constructed for unknown parameters
occurring in the trend. But this requires the inverse of the covariance matrix.
This problem must be solved theoretically, as numerical methods are not available
with respect to the order of the covariance matrix, which is commonly large.

The inverse of the covariance matrix of one-dimensional stationary autoregressive
series is given in [1] in some implicit form. The further papers, namely [10], [7],
([5] Example 5B), [2] and [3] contain explicit results.

We shall keep following notation. A number a is complex conjugate to a. If
A = ||a;]| is a matrix, then A = ||a;||. Matrix A’ is transpose of A. The covariance
matrix of a random vector Z = (Z,, ---, Z,)" is denoted either by Var Z, or by
Var (Z,, -+, Z,), whereas the covariance matrix between random vectors V and Z
is Cov (V, Z). It means that for EV = FZ = 0 we have Cov(V,Z) = EVZ'.
The unit and null matrices are denoted by I and 0, respectively.

Let X, ---, X, be p-dimensional random vectors with zero mean values. Denote

B = Var (X, -, X,

the covariance matrix of np-dimensional vector (X,’, ---, X,/)". Let Y,.,, -+, Yy
be p-dimensional random vectors such that

EY,=0, VarY,=I Cov(Y,,Y)=0, Cov(X,,Y)=0

IA
=

for 1 =k=sn<st=

Define vectors X, ; , -, Xy by the recurrent formula
¢y YicoAX, =Y, n<t=N,

where A,, -+, A, are given matrices of the type p x p, the elements of which are
real. Suppose that |A0| # 0, A, # 0. Then the series X, ---, X is called (general)
multiple autoregressive series, or, more precisely, the finite part of it. The numbers
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n and N are the order and the length of the series, respectively. The assumption
Var Y, = I may be made without any loss of generality. Another form of (1) is

@) X, = Y, UX,_;+W,, n<t<N,
where U; = —A,7'A;, W, = A,7Y,.

2. Conditions of stationarity.

DErINITION 1. Put G = Var (X, .-+, Xy") and write G in terms of the pXp
blocks Gy,, G = ||G,,||¥,= . We say that G is stationary, if

Gy = Gy pe4x for 1 Zs,t,5+k, t+k < N.
LEMMA 2. The matrix G is stationary if and only if
Var (X,/, -+, Xy_1) = Var (Xy/, -, Xy)).
PRrOOF. Is clear.
LemmMma 3. If
3 Var Xy, -+, X,) = Var (X, -+, X;4 ),
then under (1) Var (X,’, ---, X,’) = Var (X;/, ---, X;,,) holds for n £ h < N.

ProOOF. For h = n the assertion holds. Further we use the induction. Let the
assertion hold for some h—1, where n < h < N—1. In order to prove it for h
it suffices to find out that

(4) COV (Xh+l’ Xj+l) = COV (Xh, Xj) fOI‘ l §j =< h.

From (2) we get

%) Cov Xp+15 Xj41) = Z'i'=1 U; Cov (Xp41-45 Xj4 1) +Cov (Wyy 4, Xj+1)
Cov (X, X)) = ZLI U, Cov (X,,_;, X;)+ Cov (W,, X)).

Let1 = j < h. Then according to induction Cov (X, _;, X;+1) = Cov(X,_;, X))
holds for 1 =i = n; further, Cov(W,, X;) = Cov(W,,,, X;+1) =0, and (4)
is proved for j < h. Now, we repeatedly use the formulas (5) for j = 4 and with
respect to Cov (W, X;) = Cov (W, 1, X,41) = (Ag’Ag) ™! we easily finish the
proof.

THEOREM 4. Define the matrices

0 I 0 - 0
y 0 0 I e 0 A 0 0
= e Y oo “ee s = , -1 ’
. ST 0 (A/Ag)
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both of them of the order pn x pn. Then the relation (3) holds if and only if the
matrix B = Var (X,/, ---, X,,) satisfies the equation
(6) B = MBM' + A.

Equation (6) for B has unique symmetric positive definite solution if and only if all
the characteristic roots of the matrix M have their absolute values smaller than 1.
The characteristic roots of M are the same as roots of polyncmial

K(Z) = 'Z’;=0 AjZ"_j',
where | -+ | on the right-hand side denotes the determinant (cf. [4], page 192).

ProOF. It is clear that

X, X, 0
: =M | : +1:
X, X,_; 0
QXn+ 1_| _Xn - _AalYn+1

and (3) is satisfied if and only if (6) holds.
We obtain by induction with respect to n that [zZI—M| = |Ag " Yi-0 2" /Aj| =
IAE 1|K(z) and thus the characteristic roots of M are the same as roots of K(z).

The rest of the proof is similar to that for one-dimensional series belonging to
Professor Hajek (see [3]). Consider the series

() A+MAM' +M2AM2+ ... = B.

If all the characteristic roots of M have their absolute values smaller than 1,
then we obtain from the Perron formula that (7) converges in the norm. Its sum B
satisfies (6) obviously. Using (6) repeatedly, we get that the solution must be of
the form (7) and it implies unicity. Matrix B = > > ; M'AM" is clearly symmetric
and positive semidefinite. In order to prove its definiteness, consider arbitrary
p-dimensional vectors yy, ---,y, and put y=(y,, -, y,). If y, + 0, then
yBy =2 yAy > 0.Ify, + 0andy,,;, = --- =y, = 0forsomep = 1,2, -, n—1,
then M Py = (0', ---, 0", y,’, ---, ¥,/)" and

yBy = yM" " PAM" %y > 0.

If z is a characteristic root of M, then it is that of M/, too. Suppose |z| = 1. A

vector y = (y,’, ==, ¥,') + 0 exists such that M'y = zy. If it were y, = 0, then it
would be

M,y = (Ols yl/a AR y;l—l), = Z(yl,a  Ya-1s OI)I
and y = 0. Consequently y, = 0. We obtain from (6)
¥'By = YMBM'y+§'Ay = |z|*§'By+§'Ay.

This need not take place when B is a positive definite matrix because of y'Ay > 0.
The proof is finished.
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COROLLARY 5. If B is the positive definite solution of (6) then the matrix G is
Stationary.

Proor. Follows from Lemma 2 and Lemma 3 and Theorem 4.

3. The inverse of covariance matrix. Let us return to the general model (1)
without assumption G to be stationary.

THEOREM 6. Let B = Var(X,', ---, X)) be regular and write its inverse
B™!' = E = ||[E,||,=, in terms of p x p blocks Ey,. Then the matrix G is regular
and for its inverse G™' = H = ||H,/||N,=, written in p x p blocks H,, the following
Sformulas hold:

Hst = Est+z;cn=i‘;1(l-{is’"+r’N) Alk—sAk—t for 1 = S, I = n;

— min(n+s,n+t,N) ’ v
H,, = ) e Ao A, otherwise.

Especially, H;, = 0 when |s—tl > n.

ProOF. Define the pN x pN matrix

_ £ l 0 _
A, A - A, 1A 0 0 o
0 A, A, | Ay Ap 0 0
C = |
0 0 0 | 0 0 A, A,
One sees that
_ moX, 7
X; E? :
: L X, |
C : =
: Y, .1
L Xy | :
_ Yy _

and so CGC’ = I. Thus G must be regular and we have H = C’'C. Using the ex-
pression in terms of the blocks we obtain the formulas for Hg,.

If the one-dimensional autoregressive series is stationary, then its covariance
matrix H is persymmetric, as it is well known. This enables us to find an explicit
formula for the matrix E, if N = 2n. Unfortunately, H is not generally per-
symmetric “in the blocks™ in stationary case if p > 1. It may be shown on an
example. Then the matrix E must be determined from B separately to obtain all
the elements of H. This complication is connected with the time reversing problem.
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Matrix B may be evaluated numerically using either (6) or (7). Another method
may be based on the formulas given in [6] or on the spectral theory (see [8] and

%D.
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