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ASYMPTOTIC BEHAVIOR OF A CLASS OF CONFIDENCE REGIONS
BASED ON RANKS IN REGRESSION

By HirA LAL KouL
Michigan State University

0. Summary. Asymptotic behavior of a class of confidence regions, based on
rank statistics, for the regression parameter vector is considered. These regions
are shown to be asymptotically bounded and ellipsoidic in probability. Asymptotic
normality of their center of gravities is also proved. It is noted that the asymptotic
efficiencies of these regions when defined in terms of ratio of Lebesgue measures
corresponds to that of corresponding test statistics that are used to define these
regions. Similar conclusion holds for their center of gravities, where now asymptotic
efficiency is defined as inverse ratio of their generalized limiting variances. Also a
class of consistent estimators is given for some functionals of the underlying
distributions. Finally simultaneous confidence intervals, based on the above
center of gravity, for linear parametric functions are shown to have asymptotic
coverage probability 1 —a. Basic to this work are two papers, one by the author [4]
and one by Jureckova [3].

1. Introduction, notation and assumptions. Theory of rank statistics has made
several advances in fields such as testing of hypotheses and point estimation.
Comparatively very little work using rank statistics has been done in confidence
regions. Perhaps the first work in this direction is due to Lehmann [5]in 1963. Here
he constructs confidence intervals using Wilcoxon rank statistic for shift parameter
in one- and two-sample problems. He proved that the length of interval tends to a
finite and positive limit. His work was generalized by Sen [7] (1966) to a class of
rank statistics in two-sample problems involving shift parameter. In [4] this author
gave similar results using Wilcoxon type signed rank statistic for regression para-
meter vector. The current work might be considered the generalization of the above
works. Theorem 2.3 here is precisely the generalization of Theorem 1 of [5] and
Theorem 2 of [7] to multiple regression model and to a wider class of rank
statistics. In addition to this we prove that the corresponding center of gravities
have limiting normal distribution. This work also generalizes the results of [4] to a
much wider class of rank statistics but on the other hand puts somewhat restrictive
condition on regression scores (see 1.4b below). However the assumption on the
underlying distribution are not as restrictive as in [4].

Let {Y,,1 <i = n}n = 1 be independent rv’s such that

(L.1) PrY, =yl =F(y—0X,) 1<i<n
where " = (0, ---, 0,) is the parameter of interest and

Xin = (xin(l)’ ) xin(p))

Received March 7, 1969; revised April 22, 1970.
466

g:]

v

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ /2
The Annals of Mathematical Statistics. IIKORS ®

.‘w 3

Z)

Www.jstor.org



CONFIDENCE REGIONS BASED ON RANKS IN REGRESSION 467

are some known regression constants. We shall usually write x;, for x,(v),
1 £v<=p. Fisacdf Let, for each 0, R, be the rank of Y,,—0'X;, among
{Y,,—0'X,,,1 <i = n}. Let ¢ be a given score function. We make the following
assumptions on the above set of given things.

F is absolutely continuous cdf with F’ = f, f’ existing almost everywhere such
that

(1.2) 1(f) = rw ({;)2 dF < co.

Let Xn = ((xiv_)_cv))9 i = 1’ e, Hy, V= 15 s Py Wlth gv = n_l z:'l=1 xiv'
Assume
(1.3) limn™'X,X, =lim) ¥ =>*

exists and is a positive definite matrix, where the limit of a matrix is the matrix
formed by the limit of each entry in the matrix. The limit will be always taken as
n-— .

Notice that (1.3) implies that

RS

-

(x;,—X,)* >0, 1<v<yp

1

for all but finitely many #n’s. We also assume that
(1.4a)  limmax, gign(xiv_’—cv)z[z;l= (X =% =0 l=<v<p, and
(1.4b) (= xp)(xiy=x;,) 20 or (xp—x;)(x;—x;) S0

forall 1Z5i,jEn;1Sv#y=p.

So far ¢ function is concerned we assume

(1.5) pel’[0, 1],
(1.6) a,> = [o[o(u)— 51> >0 where @ = [5 o(u)du,
(r.7) ¢ is nondecreasing on [0, 1].

Also define
(1.8) @(u,f) = =f"(F )/f(F~'(w)) 0Osusl
Note that (1.2) is equivalent to (
(1.9) Jo@*(u, f)du < 0.

Observe that (1.5), (1.9) and usual Schwartz inequality implies that

(1.10) b(e, /) = [ p(w)p(u, f)du < co.
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We also note that (1.3) and (1.4b) yields
(1.11) max, c;<,n” '(x;,—X%,)* >0, 1<v=p.

We further define .£y(X) as law of rv X when 0 is the true parameter. For any
two sets 4, B; A A B will denote symmetric difference of the two sets. For event E
depending on {Y,,}, P,[E] will mean probability of £ when 0 is the true parameter.

A will denote the p dimensional Lebesgue measure. For a vector

0l = 27-1 [0}

Next define, for ¥ = (Y,,, 1 £ i £ n),

m>

0,

(1.12) Su(Y,0) = n = Y1 xiu@(Riy/(n+1)) 1<vsp,
(1.13) S,/(Y, 0) = (S, (Y, 0), -, S,.(Y, 9)),

(1.14) 2a=2r0,,

and finally

(1.15) M,(Y, 0) =nS,(Y,0)3 ;' S,(Y. ).

Many times we shall write M,(0) for M, (Y, 0). The same applies to S,,(0).

Suppose one accepts the hypothesis H(8,): 8 = 8, at level « when M, (Y, 0,) <
kg This test is distribution free and &, , can be determined from y,* tables for
large n. Consequently &, , is determined for all n. The confidence region one gets
from the above test is

Also define
(1.17) n*0, = {2[n*R(Y)]} 7! [tI[n*R(Y)]dA(t)

where the integral is to be interpreted as a vector valued integral. I is the indicator
function.

Throughout this paper we shall assume that the true parameter point is 0.
This will not change our conclusion, because R,(Y) is such that

0e R(Y+b'X)<>0+be R(Y)
for any vector b and all n. We now define

(1.18) Vi ¥, 0) = S,,(0)—0'b,,, 1

IIA
<
IIA
S|

where

(119) bnv :n_lZ:"=1(xiv_'—fv)xin.b(qo$f.)‘
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Note that if 8, were true parameter, one would have (§—8,) in place of 6 and 0
would be replaced by 8, in (1.18). Furthermore define

(1.20) B,=0,"%}.,b0.f),
V(Y 0) = (Vo (Y, 0), -+, V,(Y, 0))
(1.21) T(Y,0) =nV,/(Y,0)), ' V/(Y,0)
=n(S,(0)—0'B,) )., ' (S,(0)—0'B,),
(1.22) DY) ={0; T(Y, 0) < k, .},
and finally .
(1.23) n*0, = {A[n*D,(Y)]} ™" f[n*D,(Y)]4(dt)

where again | is p-vector valued integral and 7 is indicator.

0, as defined by (1.17) and (1.16) may be considered as an estimator of the
parameter 0. Adichie in [1] considered a class of estimators for the case p = 1
using the statistics S,; defined by (1.12) above. If in (1.16) and (1.17) above one
takes « = 1, p = 1 and use the appropriate M, for this case, one can see that 8,
reduces to Adichie type point estimate of 6,. By reducing regression problem to
two-sample problem in usual fashion similar relation holds between 8, and Sen’s [7]
estimators.

2. Boundedness of #n*R (Y). Our main problem is to see how the regions R,(Y)
behave asymptotically. It turns out, as will be seen in this section, the regions
n*R,(Y) behave like n* D,(Y) in probabilistic sense and consequently n*8, behaves
like #%0,. In order to make these statements and their proofs precise we need the
following

THEOREM 2.1. (Jureckova, J. (1969)).
Under the conditions (1.2) through (1.7)
(2.1) P,[max g < n?|Sn(0n %)=V, (00" %)| = €] > O, 1Sv<p

for every ¢ > 0and any 0 < a < o0, fixed.
Now one of the immediate consequences of the above theorem is the following

LEMMA 2.1. Under the conditions (1.2) through (1.7), for every ¢ > 0
(2:2) lim P,[max, g <4 |[M,(Y, 0n™ )= T(Y, 0n %) 2] =0
forany 0 < a < o, fixed. /

PROOE. The proof follows by noting that
(23) M, 007~ Ty(0n )| < n][S,(6n ™)~ V,(0n7Y)|

HLZ (Y, 0n7 ) [+ |Int V(Y 0n )1}
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and applying Theorem 2.1 to the first term of the right-hand side of (2.3) and
using the fact that max g <, ||n*Y., 'S,(Y, 0n%)| has a limiting distribution, for
max o) < ||n*Y., 'Vi(Y, 0n~%)| has limiting distribution. The latter fact follows
from the definition of V, and the fact that |n*Y ;7 'V,(Y, On~%)| has a limiting
normal distribution (see [2]), and therefore the former statement follows in view
of (2.1.).

Our next result shows that the regions n*R,(Y) are bounded for large n. Define

(2.4) V(a) ={0;|0|| < a}.

THEOREM 2.2. Under the conditions (1.2) to (1.7), for every & > O there is an n,
and 0 < a < o large such that

(2.5) P[y; n*R(y) = V(a)] > 1—¢

forn =z n

&

Proor. The proof of this theorem will be split among several lemmas.
We introduce two functions g, and 4, as follows.

For any real number — o0 < r < + oo and vector 0 such that 0] = 1, define
(2.) (1, 0) = [0S, (0)— r0' B4 (@' 5, 0)*
= n*[0'S,(0)~rb0' Y, 0]/(6' Y., 0)*
2.7) hy(r, ) = n*[0'S,(r0)]/(6' 3, 0)?,

where b = o, *b(o, f).
Assume the conditions (1.2)—(1.7) hold.

LEMMA 2.2. For every ¢ > 0 and a given d > k,, there exists an 0 < a < o©
large enough and n, such that n = n, yields

(2.8) P[ inf inf |h(r,0)| = d]=1-c

11611=1|r|=an=1/2
Proor. It will be enough, in view of Theorem 2.1, to prove the statement like
(2.8) for g, function. For, implications of Theorem 2.1 are that for every ¢ > 0
there is n, such that

(29) PI| inf lg.(r, @)= inf |h(r,0) <e]=1—c
rl=an-1/2 rl=an-1/2

[o11=1 1011=1

forany0 < a < oo, n = n,.

Thus we set to prove the following.

For every ¢ > 0 and a given d > k, , there exist n, and 0 < a < oo large such
that for n = n,

(2.10) p[ inf inf |g,(r,0)|=d]21-¢

Hol1=1 |r|=an-1/2

Now it is well known that the lim £(n*S,’(0)) ") is a normal law (e.g. see Hajek
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and Sidak [2]). Consequently since Y, has limit, it follows n#||S,(0)| has a limiting
distribution also. Also note that since lim ), is positive definite, there are two
constants > 0 and k < oo such that

(2.11) 0<n=(0),00<k<oo
uniformly in all ||0|| = 1 and for n large. Therefore for any 0] = 1 we have
(2.12) A0S, O)][0Y, 017+ < b0~ nt][S,(0)]]
Combining (2.12) with the above remarks, for every ¢ > 0 there is a “’c’’ and n,
such that n = n, yields
P[| inf [b7'[6 5,017 nt0'S,(0)|| S c] = 1—e.
Choose o=
(2.13) a 2 (d+ble)(nb) "
Then for this “a”” using (2.11), (2.12) and (2.6), it is easy to see that
P[ inf inf |g,(r, 0) 2 d]
[oll=1 |r|=an-1/2
=P,[|b| inf inf [b71(0"),0) *n*0'S,(0)—r(0'}., 0)* = d]

Helf=1lr|=a

> P,[|bln inf inf [b='(0'Y,0) 'n*0'S,(0)—r| = d]

o1l =1 Ir| =a
= P,.[Iblrl“allrlli1 |b=1(0'Y.,0)"'n*0'S,(0)| < —d+albln]
2 P[IbIn(r") inf (670X, 0) 0, 0)| < ~d-+albln]
> P,.[”oilrll{ 1602, 0)72n¥10'S,(0)]| < €]
=>1—¢

for n = n,. This proves (2.10) and hence the lemma.

TP

LEMMA 2.3. For every ¢ > 0 and a given d > k,, there exists an “‘a’ and
n,, 0 < a < oo, such that

(2.14) Pl inf inf |h(r,0)|=d]=1—¢

[16l1=1|r|zan-1/2

forn =z n,.
Proor. Since ¢ is non-decreasing, one can see, after rewriting 4, as
(0/ Zn o)hn(r’ 0) =n" ! ZT= 1 din(p(Rin/n + 1)

where d;, = 0'X,, and R,, is the rank of Y;,—r d,,, that A,(r, 0) is a non-increasing
function of r for every 6. Hence the lemma follows from (2.8).
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PROOF OF THE THEOREM. Note that (2.5) will follow if we show that for every
¢ > 0 and a given d > k, ,, there is an “a” < oo large and n, such that n > n,
implies

(2.15) P,[ inf IM(Y,0)=2d]=1—e.

|16]]zan—?

However, since Y, is positive definite for all but finitely many n, one uses inequality

(2.16) MY, 0)2L(f's,,(o_)|2
, " (0'2.,0)

and the fact that for any vector 0, there is a vector 8* and a real number r such that
|6%] = 1 and
(2.17) 0=ro*
Hence using (2.17), (2.16) one concludes the claimed theorem using Lemma 2.3
and definition (2.7). The proof'is terminated.

REMARK. As may be seen from the above proof, one can also say that for every
¢ > Othereisann,and 0 < a < oo such that n > n, implies
(2.18) Ply;n*D(Y)cV(@@)]=1—s.
This “a” is the same as given by (2.13).

THEOREM 2.3. 2[n*R,(Y)An*D,(Y)] — 0 in P,-probability and consequently
(2.19) An*R(Y)] = C,ol{o,™ "blo, £)}Y**
in probability, where C, , = (nk,)"*|T((p/2)+1)), Y * is defined by (1.3) and k, is
limit of k,,, determined by y,*.

PROOF. Last statement of the theorem follows, because the right-hand side
is precisely the Lebesgue measure of the ellipsoid n*D,(Y).
In order to prove the first statement we introduce

(2.20) W,(») = n*R,(y) An*D,(y)

(2-21) Kn(a’ 3) = {J’§ SUPg e y(a) IMn(y3 0”_%)_ Tn(y’ 0’1_%)' 2 8}
(2.22) Uy, &) =1{0; kypy—e < T,(y, On™%) < k,+2¢}
(2.23) Ou(a) = {y; W,(y) = V(a)}.

Observe that from (2.5), (2.18) and Lemma 2.1 it follows that for every ¢ > 0
thereisan0 < a < oo and n, such that

(224) Pn[Knc(a’ E)QQ"(CI)] 21-¢

forn =z n,.
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Butforay e K, (a, &yn Q,(a), a @ in W,(y)is such that for every ¢ > 0it also belongs
to U,(y, ¢). Therefore for every ¢ > 0 there is n, such that

(2.25) Ply; W(y) = Uy, )] 2 1-¢

for n = n,, which implies

(2.2 PLy; AIW,(»)] = AUy, l] 2 1 e
But it is easy to see that

(2.27) AU, )] = O (et 2672 = (ko= )2}

where J, is a constant depending on 7 only through the determinant |} ,| and
hence lim §, < 0. (2.27) can be thus made arbitrarily small for arbitrarily small e.
This concludes the proof.

Asymptotic efficiency of the regions. Suppose Y is any other score function
satisying the conditions of Section 1. Let R, (Y, ¥) be the corresponding region.

DEFINITION.
E,,, =lime(R,(Y, ), R(Y, ¢))
= lim [A[n*R,(Y, ¥)]/A[n*R,(Y, ¢)]]?

will be called the relative asymptotic efficiency of the region corresponding to ¥
function relative to the one corresponding to ¢ function. From Theorem 2.3 it

follows that

g, 'b(o, [)]*?
(2.28) Ey o= [m]

B { Te@e, N)([¥w)-¥)*)* }2”
(o) = 0)*) [Y(w)e(u, )
Now suppose p = 1, Yy(u) = @(u, f) = @(u) then from (2.28) one observes that
Fuvo ~{ F
or [ (o) —0)* [ oo ()]
which is precisely the asymptotic efficiency of the test based on S| statistic, generated
by ¢ function, to test 8, = 0 against 6, > 0. This expression appears e.g. in

Hajek and Sidak [2] page 268.
One can, in general, write

o0 (b, /) ?
Eio = [Uw— 11_*(f)b(lp,f)]

_ [p((p, coo):lz"
p(l//’ (Po) ’ ’

where p(, 9o) = [ 0@,[f(p)— ). ([ 9o*)] ™%
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3 Asymptotic normality of #*0,. The following result gives asymptotic normality
of n*@,; the center of gravity of the confidence region n*R,(Y).

THEOREM 3.1. Under the conditions (1.2)~(1.7) on the underlying quantities
(3.1) lim Z, (n*(0,—0,)) = N(0, Y. "' b7?)

where b = 6,7 %b(p,f) and Y "' =1im Y%, and N stands for the multivariate
normal distribution.

PROOF. Since regions n*R,(Y) are invariant under translation in the sense
mentioned at the end of Section 1, entailing invariance of n*8, it will be enough
to prove (4.1) with 0, replaced by 0.

We first prove that

(3.2) n|0,~6,|| -0

in P,-probability.

For, by definition (1.17) and (1.23) and the usual properties of the norm |- |, we
have

[A(n*R,(y)— A(n*D,(y))|
An*R,(»)]ALn*D,(»)] Jatr2gu)

+ LD, ()] [{[H [TV ()] dA(e).

Now note that by Theorem 2.3 the first factor in the first term of the right-hand
side tends to zero in P, probability and by Theorem 2.1 the second factor is at most
a-A[V(a)] for an a < co. Hence the first term on the right-hand side of (3.2)
tends to zero in P, probability.

Again by Theorem 2.3, A[n* D,(Y)] having finite limit, the second term tends to
zero for A[W,(Y)] — 0, in P, probability.

Now next observe that by definition (1.24)

(3.4) nt0, = n*b=1Y,71S,(0)

(3.3) n*|18,—0,]| = €]l dAct)

The claimed asymptotic normality now follows by using the well-known fact
that £ o(n*S,(0)) > N(0, Y) and (3.2). The proof is terminated.

Asymptotic efficiency of the center of gravities. If we define asymptotic efficiency
of the estimator #%*0,(p), generated by ¢ function, relative to another estimator
n*0,(y) the one generated by ¥ function, as an inverse ratio of their generalized
asymptotic variances and denote it by C(F, y, ¢), we have

Consistent estimators of b(¢, f). Theorem 2.3 enables one to define a class of
consistent estimators of the functional b(¢, 1) as follows.
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Define
(3.5) b(9) = [Cpar 0, (A R(Y) I} X717
Then b,(¢) is consistent for b(¢, f) follows from (2.26).

4. Rank competitors of Scheffé’s S-method. Let C = ((c;;)) be a g x p matrix of

known real numbers whose rows are linearly independent so that rank of C is g.
Define

(4.1) C,—=le~=lc,-j9j i=1,"',q

'//, =(‘p1’ "'5!//q)'

Let L be a ¢ dimensional linear space generated by y. Let 3, = C@,. Clearly, in
view of Theorem 3.1 Ly(n*(§,—¥)) —» N(0, B) where

(4.2) B=1mC),'Cbh™! =limB,.
Suppose Cissuchthat C Y ;! C’ hasinverse, then
(4.3) Ly(n(,—¥)B,” (I, —¥)) > x,°

and the following inequality n({, —¢)'B,” ', —¥) < K,
g dimensional space.

For any i € L, there is a vector h, ; such that = h’y and we define Y, = W'y,
as its rank estimator. Let 6; = Var () and K = (K, ,)*, where K, , is such that

Prob [xq2 2 K, ,] = a. Then, following the proof of Theorem 3.5.1 of Scheffé [6],
one can conclude

g defines an ellipsoid in

THEOREM 4.1. Under the assumptions (1.2)—(1.7), probability that simultaneously
forallyeL,

(4.4) Vo—Koy <Y <¥,+Koy,
tendstol—o asn — 0.

Consequently one can construct simultaneous confidence intervals for linear

contrasts using rank statistics such that for large » one hascoverage probability
1—oa.

REMARK. It must be noted that all the above results are also valid for tests
based on the scores of the type Ep(U®), where U™ is ith ordered statistic of a
sample from uniform distribution.
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