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THE STRUCTURE OF RADON-NIKODYM DERIVATIVES WITH
RESPECT TO WIENER AND RELATED MEASURES'

By THOMAS KAILATH
Stanford University and Indian Institute of Science

The Radon-Nikodym derivative (RND) with respect to Wiener
measure of a measure determined by the sum of a differentiable (random)
signal process and a Wiener process is shown, under rather general
conditions, to have the same form as the RND for the case of a known
(nonrandom) signal plus a Wiener process. The role of the known signal is
played by the causal least-squares estimate of the signal process given the
sum process. This formula can be shown to be equivalent to all previously
known explicit formulas for RND’s relative to Wiener measure. Moreover,
and more important, the formula suggests a general structure for engineer-
ing approximation and implementation of signal detection schemes.

Secondly, an explicit necessary and sufficient characterization, in
signal plus noise form, is given of all processes absolutely continuous with
respect to a Wiener process. Finally, the results are extended to some
reference measures related to Wiener measure, in particular to measures
induced by martingales of a Wiener process. We also note that the case
where both measures are Gaussian permits some stronger results.

The proofs are based on several recent results in martingale theory.

1. Introduction. The problem of determining the Radon-Nikodym derivative of
the absolutely continuous part of one measure with respect to another has,
especially in recent years, been of considerable interest—we mention here only the
survey papers of Yaglom [20] and Skorokhod and Gikhman [6]. The Radon-
Nikodym derivative can be used as a tool to calculate probabilities and to evaluate
function space integrals (see, e.g., Shepp [26]), but it also has major applications
in the statistical theories of estimation and signal detection (hypothesis testing)
and in information theory.

The basic problem in these latter applications is to decide, given a sample
function, whether it comes from one stochastic process or another. Regarding
the stochastic processes as measures, say P; and P, in a function space, it can be
shown that an ‘optimal’ solution, under a wide variety of error criteria, is obtained
by comparing the Radon-Nikodym derivative, dP/dP,, with a preset threshold
that depends upon the costs and prior probabilities.

Our aim in this paper will be to present some results that elucidate the structure
of the Radon-Nikodym derivative (RND). We shall also discuss the considerable
engineering significance of the results. To introduce such practical considerations,
we first note that “structural” information on the RND is often more valuable in
applications than the explicit analytical or numerical evaluation of the Radon-
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STRUCTURE OF R-N DERIVATIVES 1055

Nikodym derivative (RND), or likelihood ratio (LR), as it is often known in
statistical applications. This aspect has been illustrated in some detail in the
engineering papers [13]-[15], where we may remark that stronger conditions were
imposed than in the present paper. However, to provide some perspective for the
present paper, we shall summarize some of those earlier discussions. Briefly, we
first observe that the LR can always, roughly speaking, be written down as a ratio
of probability densities, which can with sufficient eflort be numerically evaluated in
any problem; this would seem to be the end of the matter! However, in many
instances, such brute-force evaluation misses the point. For one thing, all mathe-
matical models are only idealizations, to varying degrees, of the real physical
problems. Furthermore, even if the models are good, our knowledge of the para-
meters in them (e.g., the covariance functions of the processes) may not be good
enough to justify a direct numerical evaluation of formulas derived from the
mathematical models. Finally, even if the evaluation can be performed, it may
involve an undue amount of work and simpler, “suboptimum,’” schemes must be
sought. Therefore, the chief aim of most mathematical analyses of engineering
problems is to gain insight into the structure of the solution, insight that can then
be used to intelligently modify and adapt the mathematical solution to a particular
physical problem. We shall try to present below such an examination and interpre-
tation of our major mathematical results.

Mathematical assumptions. For the presentation of the mathematical results,
we start with a probability space (Q, 4, P) and three families of random variables
w(t, w), z(t, w), x(t, w), weQ, te[0,T), T < co. We assume that

(1) the {w(#, w)} constitute a Wiener process with

(D Elw(t)] = 0, E[w(t)w(s)] = min (¢, 5) = ¢ A s,

(i1) the {z(t, w)} form a, not necessarily Gaussian, process obeying

2 E [§|z(t, w)| dt < o0
and
3) [ 2%(1, w) dt < o0 as.,

(iii) “future” increments {1w(, w) —w(s, w)}, are independent of the Borel fields
Bs = o{w(1, w), (1, W), T < 5}

generated by “past” z(-) and w(-), and augmented by all the null sets. Following
K. Itd, such independence conditions will often be compactly written

4 w(t, w)—w(s, w) 1L A, 0Ss<t<T
Next, let

®) F,=o0{x(t,w), T < t}.
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We shall assume that the {&,} are each augmented by all null sets. Then on
(Q, # 1, P) we shall define two measures P, and P, by the relations

(6) PO{w:x(tb w) = X1 "‘,X(t,,, (,0) = xn}

= P{w:‘v(tl? CL)) é Xl) ttt M'y(tn9 CD) § -xn}
and

(7) Pl{w:x(tb CL)) é RITIAN X)(tm CU) é Xn}
= P{CL) 61 Z(S, CL)) dS+W(f1) é X15 .“’jf)n Z(Sa CU) ds+w(tn) = xn}

for all finite collections {¢;} in [0, 7] and for arbitrary real numbers {x;}.

The problem of deciding whether an observed sample function of the process
x(+) is governed by measure P, or P, is the statistical hypothesis testing problem
or, in the language of communication engineering, the signal detection problem,
where the random process z(-) is the signal. Such signal detection problems arise,
for example, in radio-astronomy, molecular spectroscopy, and in multipath
communication channels subject to fading and scatter propagation.

As noted earlier, the basic procedure in our discrimination problem is to compute
the RND (or likelihood ratio (LR)). Our most important result is the following.

THEOREM 2. Under the assumptions (i) to (iii), the measure P, is absolutely
continuous with respect to the measure Po(P; < P,), and the Radon-Nikodym
derivative can be expressed as

(8a) g—;—: = exp { LT 2.(t)dx (t)—;—LT 2,2(1) dt} on A
(8b) f_l;%, =0 on A
where
© 2,(t) = Ep,[2(1) | Z ]
and

dpP,
(10) = {w: CE > 0}.

We note that P;(4) = 1. The stochastic integral is taken in the Itd sense (cf.,
Doob [3], Chapter 9).

ReMark 1. If Py = Py, i.e., P; € Py and P, < Py, then the set 4 will have
measure one under both P, and P,. In that case (8b) and (10) can be ignored.
Sufficient conditions for P; = P, are that (cf., [12], [16]) z(-) be a.s. uniformly
bounded in amplitude or energy or that z(-) be completely independent of w(-)
and of a.s. finite energy, i.e., that z(-) be a.s. square integrable.
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REMARK 2. The formula (8) is very general and all known explicit RND formulas
relative to Wiener measure can, with the added help of Theorem 1 below, be
shown to be equivalent to it. Several examples are worked out in references
[13]-[15], so we shall not add any here.

The special case of (8) where z(+) is deterministic, so that

(1D z(+) = its mean value, say m(-)
and
T l T
(12) ::—;)i— = exp { Jo m(t) dx(t)—z—JO m*(t) dt}

is well known and was perhaps first studied by Cameron and Martin and in
greater generality by Maruyama (see the references in Cameron and Graves [1]).
The engineering meaning and practical implementation of devices, known as
matched filters and correlation detectors, computing (12) have been studied in
considerable detail in the engineering literature (see, e.g., [9], [28] and [29]). It
turns out that there is an intuitively pleasing relationship between (8) and (12)
that derives from the well-known fact that the conditional mean 2,(-) of (8) can
be described as

(13)  2,(t) = the minimum mean-square error estimate of the signal process z(z),
given past observations {x(s), 0 < s < ¢} and assuming that measure
P, is operative.

This fact leads to the following nice interpretation of (8). When the signal z(+)

is known (deterministic), we have the formula (12); when z(+) is unknown (random),

we obviously cannot use (12) directly, but we should first estimate the signal and

then behave as if the estimate were perfect, i.e., as if the signal is now completely

known!

But what is the engineering significance of the formula (8) and of the interpreta-
tion we have just described? In the first place, when the estimate Z,(-) can be
directly computed, the interpretation enables us to extend to the general random-
signal problem a lot of the engineering insight and experience that has been gained
for the deterministic-signal problem. Other ways of describing the LR will, to
varying degrees, deprive us of this benefit. Secondly, a lot of effort has gone into
the problem of determining Z,(-), especially in control theory where such calcula-
tions have become important for trajectory determination. But despite this, in many
problems, 2,(-) is difficult to obtain, either because the formula for it is very
complicated and/or because we may have too gross a knowledge of the parameters
of our mathematical model to justify too great an effort on the exact calculation
of 2,(+). But we feel that the very general result (8) suggests a “reasonable” pro-
cedure in many such instances, viz., that we try to use the “best available’’ estimate.
Thus we might use a suboptimum, but simpler estimate; or we may fix the com-
plexity of the estimator to allow say three variable parameters, whose values can
then be optimized to give the best (constrained) estimate or whose values could
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even be set by Monte-Carlo trials, or by field experiments. We should point out
that such a philosophy has already been successfully demonstrated in some
engineering solutions (cf., [2], [24], [25]), though not with as much theoretical
backing as for the structure we have proposed here.

After this long discussion of Theorem 2, we turn to Theorem 1, which plays an
important part in the proof of Theorem 2, and also in certain extensions of it.
Moreover, Theorem 1 also shows that the type of “‘signal” plus “noise” structure
that we used to define the measure P, in Theorem 2 is, in a sense, quite general.

THEOREM 1. A stochastic process {x(t, w), F,, Q} will be absolutely continuous

with respect to Wiener process {x(t, w), F,, Py} if and only if we can write x(*) in
the form

(14) x(t, w) = [§ P(s, w) ds+ p(t, w), 0<t£Tas Q

where {u(t, w), #,, Q} is a Wiener process and ¢(-, *) is a unique [a.e. (1, w)]
Sfunction that is (i) (¢, ®) measurable, (ii) F -measurable for each t € [0, T], and (iii)
such that [§ ¢*(t, w) dt < oo a.s. Q. Moreover, when Q < P, (i.e. Q is absolutely
continuous with respect to P ), we can write RND as

15 @9 _ ' d L 520, @) a %
(15a) P =P , (1, ) dx (1, 60)—5 . (1, w) dt g, on
dg _ 1
(15b) 5’7’; =0 on A
where
_ ). .40
(15¢) A= {w b, 0}'

This theorem is more general than Theorem 2 because it holds for any process
absolutely continuous with respect to (w.r.t.) a Wiener process, not just for signal
plus noise processes of the form {x(#, w), #,, P,} used in Theorem 2. However,
from an engineering point of view, the value of Theorem 1 is limited because,
unlike the function 2,(+) of Theorem 2, we have no physical idea what the function
¢(+) represents and therefore we have no guidance in approximating ¢() in a
physical problem. This is why we have given more importance to Theorem 2.

However, the greater generality of Theorem 1 enables us to show that our
assumptions in the more special Theorem 2, though quite weak, are not the best
possible. Thus, we assumed that the signal process z(+) obeyed the condition

(16) E [T |z(t, w] dt < o0
which implies in particular that

(17) E|z(t, w)| < o0 ae. 1.
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However even the constraint (17) on z(-) is not necessary, despite the fact that
such a constraint is usually imposed when conditional expectations, like our
2,(+), are to be considered. For an example, suggested in a conversation by L. A.
Shepp of the Bell Telephone Laboratories, let us take

(18) z(+) = n, aCauchy distributed random variable, independent of w(r),

0=sr=sT.

In this case, though

(19) Elz(1)] = Eln| = oo, 0<I<T

the conditional expectation Z,(+) can still be defined; in fact, it is easily verified that
Jo nA(, mp(n) dn 1

20 2.(t) = —————, A(t,n) = exp| yw(t)—n~ z |.

@) ' To A, mp(n) dn 2

It is not hard to see that this 2,(-) satisfies the requirements on the function ¢(-)
of Theorem 1 and therefore that the RND will still be given by (8) of Theorem 2,
even though one of the hypotheses of that theorem is not met.

Similarly with the help of Theorem 1, we can show that the hypothesis in
Theorem 2 that, for all 0 < s <t £ T, {w(t)—w(s)} be independent of F#, =
a{x(1), T £ s} is not necessary. For let us take

21) z(+) = w(T), the value of the Wiener process at t = T.

In this case, if we take

x(1), 0tsT

22 2.(t) =
22) () = =
and it is not hard to verify that 2 () satisfies the conditions on ¢(-) of Theorem 1.
Therefore again, though a hypothesis of the theorem is violated, the RND continues
to be given by (8) of Theorem 2.

We conjecture that the minimum requirements for Theorem 2 to be valid are

that z(+) be such that
(23) P, < P, and 2,(-) existsand issquare-integrable a.s. P;.

However, as yet no simpler conditions on z(-) than (2)-(4) have been found that
will ensure that the conditions (23) are met. Actually, it seems likely that it suffices
for P, to be absolutely continuous with respect to P,. In our proof the only role of
(3)-(4) is to ensure such absolute continuity. The other difficulty, at least with our
present line of proof, arises in a certain key lemma, Lemma 4. At present, we need
the assumption (2) for a proof of this lemma, though again the example already
presented in (18)-(20) shows that this assumption is not necessary. The lemma in

question is:



1060 THOMAS KAILATH

LemMA 4. Let dx(t, w) = z(t, ) dt+dw(t, w), where w(:) and z(-) satisfy
conditions (1), (2) and (4). Then the process {¥(t, w), #, P, }, where

(24) dv(t) = dx(t)—2,(1) dt, ie., w(t) = x(t)—[f2,(s)ds

is a Wiener process with variance t.

We have called [13] the process v(+) the innovations process of x(-) because
dv(t) may be regarded, keeping in mind the interpretation (13) of Z,(+) as an
estimate of z(+), as the part of dx(¢) that cannot be estimated from the past
{x(s),0 < s < t}; in other words, dv(¢) may be regarded as the “new information”
or the “innovation” in x(+) at time ¢. The term innovations process is due to Wiener
and Masani [20]. The result of Lemma 4 under the stronger assumptions (1), (4)
and the integrability of E’:z(-)’2 was obtained independently by Frost [5], Shiryaev
[27], Kallianpur [personal communication] and the author [13]. The role of
Lemma 4 is in helping to identify ¢(-) of Theorem 1 with 2,(-), though it takes
some more work to establish this. However, heuristically we can briefly argue as
follows: by Lemma 4 we can write

x(t, w) = 5 2,(s, ) ds+v(t, w) as. Py

In this representation, v(+) is Wiener and 2,(-), though random, is conditionally
known given x(-). If 2,(+) were completely known, the RND would have the
Cameron-Martin-Maruyama form (12); it seems plausible that this form should
continue to hold so long as 2,(+) is at least conditionally known. Theorem 2
establishes this fact rigorously.

We should note here that Lemma 4 can also be shown to be valid [18] when the
process w(-) is replaced by a square-integrable martingale of Brownian motion.
Theorems 1 and 2 have certain corresponding generalizations which we shall
examine in Section 3. Finally, in Section 4 we shall note that slightly stronger
results can be obtained when all the processes are Gaussian. In this connection
we note that Duncan [4], following Itd and Watanabe [11], has stated a more
general version of formula (15) in which P is not necessarily Wiener measure.
Under the assumptions that the fields {,} are continuous and that the only
martingales on {Q, #,, P,} are continuous, he states that (15) is true with the
stochastic integral replaced by a continuous martingale and the second integral
replaced by twice the natural increasing process associated with this martingale.

2. Proofs of Theorems 1 and 2. The proofs will be developed in a series of lemmas.
The reader will note that a surprising variety of martingale results is used in the
proof. The basic notations have been presented in Section 1, especially (1)~(6), and
it may be helpful to review them now.

LEMMA 1. A sufficient condition for absolute continuity. The process {x(t, w),
F,, P} will be absolutely continuous with respect to the Wiener process {x(t, »),
‘g:ra PO} lf

(25) [§2%(t, w) dt < o0 as.
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ProoF. This result has been proved by Kadota and Shepp [12] and by Kailath and
Zakai [16]. The proof in [16] is based on some results of Girsanov [7] combined
with certain random time-change (McKean [21] page 29) and random stopping-
time arguments.

LEMMA 2. If a stochastic process {x(t, w), #,, Q} is absolutely continuous with
respect to a Wiener process {x(t, w), F ,, Py}, which we may denote as Q < P, then
there exists a unique (a.e. (t, w)) function ¢(t, ) that is (t, w)-measurable and
F ~-measurable for each t, obeying

(26) [§*(t, w)dt < 0 as. Q
and such that the RND can be written
do T 1T,
(27a) — = L; = exp o(t, w)dx (1, w)— —| (1, 0) dt ¢, on A
dP, o 2 1o
do _
where
(27¢) A = {w:L(w) > 0}.

Proor. Our proof will follow one given by Hitsuda [10] and Kunita and
Watanabe ([19] Section 6) for the case where Q and P, are equivalent, i.e.,
Q < Pyand P, < Q. The case where only Q < P, will require some preliminary
refinements.

To begin, let
(28) L(w) = Ep[Ly(0) | #,].

If Q and P, are equivalent, Ly and L, will be strictly positive a.e. Q and P,, a fact
that is essential in the proofs of [10] and [19]. When only Q < P,, there may be
sets whose P,-measure is nonzero, but whose Q-measure is zero and on such sets
the RND, L;, must be zero a.s. Py. With this in mind, let us define a stopping

time.
(29) (w) = inf {t 2 0:L(w) = 0}.

We note that since L, is a nonnegative supermartingale, by a theorem of Meyer
([22] page 99) we will have

v

L,(w) =0, t =2 t(w).
We shall prove that L, has the form
(30) L(w) = exp {[o (s, ®) dx (s, )=} [ $*(s, w) ds}, t < t(w).

By using the just-quoted theorem of Meyer, (27a) will follow immediately.
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To prove (30), for 1 < t(w), we can now proceed as in Hitsuda [10]. Briefly, by
first proving the a.s. continuity of L(7, w), itis shown that L(z, @) is a local martingale
of Brownian motion, in the sense of Kunita~Watanabe [19]. Then by using a
result in ([19] page 312), it noted that L, can be written as a stochastic integral,

31 L(t, w) = 1+[§ g(s, w) dx (s, w)

where g(-, ) satisfies the conditions described for ¢(-, -) in the statement of this
lemma. We may note that the Kunita-Watanabe result only shows that g(-, )
is square-integrable a.s. P,. However, since Q < P,, we can make the same
assertion for g(+, +) a.s. Q. The uniqueness of g(-, *) also needs a separate proof,
but this is easy. One proof can be given as in ([15] Lemma 4), by using Meyer’s
theorem on the unique Doob decomposition of certain continuous martingales.
For variety, we shall give here an alternative proof.

If L(t, 0) = 1+[5 gi(s, w) dx (s, w), i = 1,2 let h(t, ®) = g,(1, ®)—g,(1, w) and
J(t, w) = [§ h(s, w) dx (s, ).

By hypothesis, J(t, ) = 0 a.e. (f, w), and we have to show the same for A(-, -).
By the Itd differential rule (see, e.g., [19], Theorem 2.2),

JAt, ) = 4 2J(s, wh(s, ) dx (s, w)+[o h*(s, w) ds

which leads to
[6 1*(s, w)ds = Oa.e. (t, w)
and thence to
h(t, ) = 0 a.e. (¢, w).

Returning to the main proof, we note that by applying the Ito differential rule to
(30), L(t, w)can be rewritten as

3 “ g(s, w) 1 (" g%(s, w)
L(t, w) = exp {L»L(Tw) dx (s, w)—zjom dx}, t < t(w).

But we can now obtain (30) by letting ¢(z, ) = g(t, w)/L(t, w), t < ().
LEMMA 3. Let ¢(t, w) be the function in Lemma 2 and let

(32) u(t, o) = x(t, w)— {4 ¢(s, w) ds.
Then, {u(t, w), F,, Q} is a Wiener process.
Prook. This follows by a direct application of the main theorem of Girsanov [7].

PRrROOF OF THEOREM 1. The statement is given in Section 1. The sufficiency part of
the representation (14) follows from Lemma 1; the necessity from Lemma 3. The
RND formula follows from Lemma 2.

LeEMMA 4. The innovations process. Let x(+), z(+), Py, and 2,(*) be as in (1), (2),
4), (7), and (9), and let

v(t, w) = x(t, )= [§ 2,(s, w) ds.
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Then {v(t, ), F,, P,} is a Wiener process, which we have called the innovations
process of {x(t, w), #,, P,}.

Proor. We have to verify that v(+) is a continuous locally square-integrable
martingale with quadratic variation equal to ¢, for then v(-) is Wiener by a famous
theorem of Lévy and Doob ([3] page 384), as extended by Kunita and Watanabe
([19] page 217). The details of the calculation, and some extensions, are given in
[18]; a proof under stronger conditions can also be found in ([4] Appendix I),
[16], [17].

ProoF ofF THEOREM 2. The statement is given in Section 1. The result follows by
setting Q = P, in Theorem 1 and then using Lemmas 3 and 4, and the uniqueness
of ¢(-, -), to identify ¢(-, -) as 2,(+, ) (see also the proof in [15], Lemma 4).

3. Other reference measures. In Theorem 2, the process x(-) was required to be a
Wiener process under the reference measure P. In this section, we shall show how
to relax this restriction. In the first place, instead of a Wiener process we can, of
course, have any process equivalent (mutually absolutely continuous with respect)
to a Wiener process—ijust use the chain rule for Radon-Nikodym derivatives. More
interesting generalizations can be obtained by replacing the Wiener process by an
a.s. continuous square-integrable martingale, say M(-), of a Wiener process or,
more generally, by what is sometimes called (see, e.g., [7]) an Itd process, viz., the
sum of an a.s. differentiable process and a martingale of the above type.

To begin, we recall that by a result of Kunita and Watanabe ([19] page 227),
we can write M(-) as a stochastic integral

(33a) M(t, w) = G g(s, w)dw (s, w),  [69°(s, w)ds < o0 as.
The increasing function associated with the martingale M(-) is
(33b) (M(t, @) = b g%(s, ) ds.

We shall replace the measures P, and P, by two other measures P,, and P,
defined on the fields {#,} = {a(x(s, w), s < t)} by the formulas

(34a) Pyo{w:x(ty, w) < ay, -+, x(t,, ) < a,}
= Plo:M(t,, w) < ay, -+, M(t,, w) < a,}

(34b) P, {w:x(t;, w) < ay, -+, x(t,, ®) < a,}
Pl: M(t,, o)+ [} 2(s, w) ds < ay, )

where

(35a) E[§|z(s)| ds < o0, [§ 2%(s) ds < o0, as.
and M(-) obeys(33) and

(35b) M(t)—M(s) 1L a{z(z), M(z), t < 5}.

LeMMA 5. Consider a stochastic process x(+, *) with the representation

(36) dx (t, w) = z(t, w) dt +dM(t, ) = z(t, w) dt +g(t, w) dw (¢, w)
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where z(+) and M(+) satisfy (35). Then |g(t, w)l is measurable with respect to &, =
o{x(t,w), T £ t} foralmostall t [0, T].

ProOF. By direct calculation, and repeated use of Schwarz’s inequality, we can
prove that for a sequence of partitions {0 < ¢; < ¢, -+ < 1},

(37 p=lim Yy [x(114 1, @)= x(1;, )] = [ g*(s, w) ds
as max |t,-+ 11— t,-| — 0. Now the conclusion is obvious.

THEOREM 3. Consider the two processes {x(t, w), #,, P;;}, i = 1,0, when the
{P;;} are defined by (33)-(35). Assume that

(38)  E[N|z(t, w)g(t, )| dt < o0,  [§|2(t, w)/g(t, w)]* dt < o0 as.

Then P, < P, and

Py, { 21,(1, ) 1 [ 23, o) }
3%a @ dx (t, 0)—= | —— dt on A
(39) e @) = O et I

dP,, _
3 =0
(39b) dPyy (w) on A
where

dP
(39¢) 2(t,0) = Ep [2(t,0) | F], A={o:—= >0
11 dPOO

REMARK 1. If g(f, ) = 0 on any interval, then the measures P,; and P, will
be trivially singular unless z(¢, w) = 0 on the same interval; in order not to burden
the notation, we shall henceforth assume that lg(t, w), > 0a.e.te[0, 7]

RemMARK 2. Instead of |g(t, co)|2 in (39a) we can write d{ M(t, w))/dt.

PrOOF OF THEOREM 3. From the definition (34) of P,; and P, we can write
dx (t, ) = z(t, w) dt+g(t, ) dw (t, ) under Py,
dx (t, w) = g(t, w) dw (1, ) under Pyo.

On dividing by the % ,-measurable function ’g(t co)| we can write (whenever
lg(t, w)| > 0,cf., Remark 1),

(40a)* under P;;: E (1 )|d x (1, w) = lg((t w))| dt +dw(t, w)
: dx (1, w) = dw(t, w)

(40b) under Pgy: ,g(t—w)_|

2 We take {1/g(t, @)} = 1 on the t-set where g(¢, w) = 0.
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where
41 W(t, ) = [o [g(s, w)/|g(s, )|] dw (s, w).

Now it is easy to prove by the Lévy-Doob theorem ([7] page 384) that
{"(1, w), #B,P} is again a Wiener process (see also Nisio [23] Lemma 1). But now
we have a problem to which our previous Theorem 2 can directly be applied.
Doing so immediately yields the statements of Theorem 3.

Having obtained a generalization to martingale reference measures, we can go
further and by the chain rule treat more general problems, e.g., those in which we
have

Py dx(t, w) = z(t, ) dt +a(t, w) dt +g(t, ) dw (t, ®)
Pooo: dx (1, w) = a(t, w) dt+g(t, w) dw (¢, w)

where g(-), a(+), and [a(+)+z(-)] obey the hypotheses of Theorem 3. In other
words, the reference measure P,,, now describes what has been called an It
process [7]. Theorem 3 is an extension of Theorem 2; Theorem 1 can be similarly
extended but we shall not give the details here. We turn instead to the much-
studied important special case in which the process {x(¢, w), #,} is Gaussian under
both measures P, and P,,.

4. Gaussian processes. When the measures P, and P, are Gaussian, and P, is
Wiener, then the results of Theorems 1 and 2 can be somewhat strengthened. In the
first place, for Gaussian processes it is by now well known that absolute continuity
implies mutual absolute continuity. Therefore, the set A in those theorems will
have probability one under both P; and P, and therefore the statements (8b)
and (15b) can be omitted. Secondly, in Theorem 2 we imposed conditions that are
in general stronger than necessary for absolute continuity. In the Gaussian case,
the necessary and sufficient conditions have been found by Shepp [26] (see also
Kailath[18]).

THEOREM 4. (Shepp). A Gaussian process {x(t, w), ¥F,, P,} is equivalent to a
Wiener process, say {x(t, w), #,, Py} if and only if

(42) (1) Ep[x(t, w)] issquare-integrableon [0, T]
(2) Covp, [x(t, w), x(s, w)] = t As+[§ [§ K(u, v) du dv

where [{ (& K*(u,v)dudv < oo and —1 is not an eigenvalue of K(-,-) on
[0, T] x [0, T].

For such a kernel K, we can define another Volterra kernel as the unique square-
integrable solution of the Wiener-Hopf type of integral equation

(43) (1, s)+ (6 h(z, ©)K(z, 5) dT = K(t, s), 0<s=<t

I\

T,

h(t, s) = 0, s>t
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Also let us define
(44) 2,(1, w) = [ h(1, 5) dx (s, w), 0

Then we have the following result.

IIA
IIA
N

THEOREM 5. The Radon-Nikodym derivative for the processes defined in Theorem 4
can be written

dp, T 1,
(45) 7 d_P:) = exp . 2.(t, w) dx (1, w)—z . 2,°(t, w) dt p.
PRrOOEF. One proof has been given by Hitsuda [10], who shows that the function
¢(-, -) of Theorem 1 can be written as a Wiener integral

(46) (1, w) = [§ h(t, 5) dx (s, w)

where A(-, -) can then be identified as the unique square-integrable solution of (43).
We may note that though the ¢(-) of Theorem 1 is readily seen to be Gaussian,
the fact that it can be written as in (46) is not immediate. For by a result of Nisio [23],
itis possible that the Gaussian process ¢(-) may have to be written with a stochastic
integrand, viz., as

(47) (1, w) = [ h(t, s, ) dx (s, w).

Another proof of the theorem has been given by Kailath [14] who used certain
Hilbert-space results of Gohberg and Krein [8] on the factorization of operators
and certain identities for Fredholm—Carlemandeterminants. We maynote that some
further discussion of the formula (45) is given in [14], including in particular the
reasons for adopting the notation 2,() for the integral in (44). We may also note
that, as will be described elsewhere, the Hilbert-space proof in [14] can be used,
along with the concept of a reproducing-kernel Hilbert space, to extend the formula
(45) to the case of any two mutually absolutely continuous Gaussian measures.
The Hilbert-space derivations of these extensions should have martingale analogs,
which suggests the possibility of some interesting generalizations of martingale
theory.
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