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A SEQUENTIAL STUDENT TEST
By GIDEON SCHWARZ

The Hebrew University

1. Introduction. Wald has suggested a sequential test [6] for testing the mean of a
normal variable with unknown variance. Like his other sequential tests of composite
hypotheses, this test has optimality properties only when the indifference region
separating the hypotheses is removed altogether from the sample space. In reality
this is rarely feasible, and those tests lead to considerable oversampling whenever
the true parameter value lies in the indifference region (see Bechofer [1]). Here the
problem is treated by the Asymptotic Shapes Method, which still requires the
hypotheses to be separated, but admits the points between them as possible
parameter points.

The Asymptotic Shapes Method for large-sample sequential testing of composite
hypotheses was first developed in our previous paper ([3], 1962). In a later paper
([4], 1969) we extended the result to higher dimensional exponential families and
to truncation parameters. The Student Problem had actually been treated in the
unpublished version of our dissertation (Columbia University, 1960), but since
convergence to the asymptotic shape was very slow (Fushimi [2]), the practical
applicability of special cases was rather limited, and therefore only the general
theory was included in [4]. A second-order correction, found by Fushimi (loc. cit.)
for special distributions and loss functions and extended by us to one-dimensional
exponential families ([5], 1969), made the method applicable to ‘‘real’” problems.
In this paper we extend the correction term to higher dimensions, show how it
applies to the general problem of large-sample sequential testing, and finally
implement the general result to testing the mean of a normal variable with unknown
variance.

2. The correction term in s dimensions. The evaluation of the correction term
involves essentially the behavior of L -norms for large p. We begin by studying a
special case:

LEMMA 1. Let wy, ---, w, be independent linear functionals on E* 0 < k < s,
and denote by V the set where all the w; are nonnegative. Let g be a linear functional
which is nonnegative on V, and q a positive quadratic form. By w, denote one of the
w;, and by p a real number > — 1, or, if k = 0, putw = 1 and p = 0.

Then, as n - o

log [y w” exp (—(g+g)n) dt = (p/(i+1)+s—j/2) log n+ O(1),
where dt is the volume element in E*, j = dim Vn{g = 0}, and i = 0 if w = 0 on

Vn{g = 0} and i = 1 otherwise.
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Proor. (1) Since g = 0 on V, {g = 0} is a supporting hyperplane of V" at the
origin, and g is a nonnegative linear combination of the w;, the dimension j of the
set of contact is simply the number of w; missing in the combination.

(2) For g, it suffices to consider the spherical case ¢ = g, ), S_,w;%, where
Wy, -+, wy is some completion of wy, ---, w, to a basis. Any other positive quadratic
form is bounded above and below by such spherical forms.

(3) The volume element dt may be replaced by dw, x --- x dw,. This can only
change the integral by a constant factor.

(4) According to whether i = 0 or 1, w is one of the w; occurring or missing in
g=Zgw;

(5) The integral now factors into s one-dimensional integrals. Of these j—i are
of the form

[ exp (—qow’n) dw
over the whole line or the positive half line, and in either case the logarithm of the
integral is — 2 log n+ O(1). There are also s—j+i—1 factors of the form
[5 exp [~ (gav+qow?)n] dw,
and one more factor, which is of the form
[& wrexp [—(gw+qow?)n] dw
when i = 0, and of the form
{5 W exp (—qow?n) d,
when i = 1. The logarithms of the last three integrals are —logn+O(1),
—(p+Dlogn+0(1) and —4(p+1)logn+O(1), which can be seen by applying
Lemmas 2 and 3 of [5], or by direct evaluation.

(6) Collecting the terms, the statement of the lemma follows.

The application of this lemma to the evaluation of the correction term depends
on the fact, rigorously stated and proved in Lemma 1 of [5], that the asymptotic
behavior of the L,-norm of a function depends only on the behavior of the function
in a neighborhood of its maximum. An accordingly strengthened version of our
Lemma 1 is the following:

LEMMA 2. Let u be a sphere around the origin of E°. A set W is given such that
Wanu = Vou with V defined as in Lemma 1. Also, let [ be a strictly convex and
twice-differentiable function whose maximum in W is attained at the origin. Define
i, j, wand p as in Lemma 1, with the dlﬁ‘erennal of —f at the origin playing the role
of g. Then as n —

log [y wPe"dr = f(O)n—(p/(i+1)+s—j/2) log n+O(1).

Proor. The Taylor expansion of f begins with f(0)—g—gq, where g is a positive
quadratic form. In Wnu we must have g = 0, or f'would not attain the'maximum
in W at the origin. So the conditions of Lemma 1 are fulfilled by V, g, ¢, w and p,
and its conclusion holds. By Lemma 1 of [5], we may replace the domain of inte-
gration V' by W. Since f—/(0) is bounded in a sufficiently small sphere around 0
between two positive multiples of —g—g¢, the conclusion of the lemma follows.
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We are now given a sequence of independent observations w; whose common
distribution forms an s-dimensional exponential family. With respect to some fixed
measure, this distribution has a density of the form exp (6-x(w)—5(0)). Here
0 =(,,--,0,) is a vector parameter, and x = (x, ---, x;) a vector statistic. The
dot denotes scalar product, and 5(0) a scalar function. The parameter 6 ranges
over the parameter space Q < E°. Two nonnegative loss functions /,(6) and
1,(0) are also given on Q. They describe the ““loss incurred when rejecting H;”,
i =0, 1. The closure in Q of the set where /; is positive is denoted by H;, and the
H,; are assumed to be d-testable (see [4]). We restrict our attention for the time
being to H, and /,.

To facilitate the treatment we now put some restrictions on Q, H, and /,.

The “‘natural parameter space” is the set of all @ in E* where exp (0-x) has a
finite integral. We assume that Q is the intersection of the natural parameter space
with a polyhedron that has only s faces intersecting at each vertex. The polyhedron
may be unbounded, and may even be all of £*. The loss function /; is assumed to
be of the form /,(0) = d(@)((w(0)—w,)T)”, with d(#) locally bounded away from
0 and oo, w(0) a linear functional,and p > —1. Thus H, = {#Q ] w(@) = wgy}.
Finally, assume that no vertex of Q lies on the loss boundary {0 l W= Wy}

These assumptions are fulfilled in many practical cases, and they could be some-
what relaxed, at the expense of brevity, to include other cases. We also assume an
a priori distribution dF on €, and restrict ourselves to the case where it has, with
respect to Lebesgue measure, a density locally bounded away from 0 and oo.
Many other prior distributions could be handled after the model of [5], and we shall
not carry out this generalization.

The a posteriori risk of rejecting H, after having observed w, ---, w, such that
(1/n)Zx(w;) = k is

Ro(n, K) = [, 15(0) exp (0-k—b(0))dF] [, exp (0-k — b(0))dF.

Denote by (k) the unique 0 in E° where grad b(0) = E,(x) = k, and by 0*(k)
and 0°(k) the maximum likelihood estimates of @ in Q and H, respectively. Clearly
if 6(k) € Q, 0*%(k) = 0(k).

THEOREM. Under the above conditions, when n — oo for a fixed k such that
0k) ¢ Hy, we hare log Ry = —nlog Ay(k)—(p/(i+1)+(—jo)/2) log log n+ O(1),
where Ay is the maximum likelihood statistic (maxg/max, ) exp (0-k—b(0)),
j = J(K) is the dimension of contact between Q and the hyperplane orthogonal to
Ep(x) that supports it at 0%(k), and j, = jo(K) is similarly defined with 0* and Q
replaced by 0° and H,. If Ey(X) is orthogonal to the loss boundary, i = 1; otherwise
i=0.

ProoF. The function 8-k —5(0) is strictly convex, since its second derivatives
are given by the covariance matrix of the vector x. Both integrals occurring in R,
have the form appearing in Lemma 2, provided we shift the origin, separately in
the numerator and the denominator, to the point where 0-k—b(0) attains its
maximum in H, and in Q respectively, and ignore d(6) and the a priori density



1006 GIDEON SCHWARZ

(the latter are bounded, and so do not affect the result). The domains of integration
also have the required shape; hence, the conclusion of Lemma 2 applies to each
of the integrals, and the statement of the theorem follows.

3. The test procedure. An analogous expansion holds for R, the risk of stopping
and rejecting H,. The stopping risk R = min (R,, R;) is the risk of stopping and
deciding optimally, having observed w,, ---, w, with given k. The sample size that
yields, for given k, stopping risk r, is found by solving log R(n, k) = log r for
n. Using the theorem, and defining A = max (4, 4;), the two-sided maximum
likelihood statistic, we obtain after some manipulation

n = (log A(K))~" (log r =" —(p/(i+1)+(j—j"/2) log log r~1)+ O(1).

Here /' is the one among j, and j; whose index agrees with that of the larger among
Jo and ;. According to Lemma 2 of [4] sampling should continue if the stopping
risk is greater than C clog ¢™"', where c is the cost of an observation, and C a
constant depending on the problem, but not on c.

On the other hand, if the stopping risk is less than ¢, even one more observation
would be a waste. Therefore optimal stopping occurs for given k, somewhere
between the two values obtained if the above formula for n is applied once to
r=c and once to r = Cclogc™'. In the first case, logr™"' =logc™" and
loglogr~! = loglog ¢™'; in the second case logr~" =logc™'—loglogc™ '+
O(1) and log log r~* = log log ¢~ "'+ O(1). The two expressions for n will therefore
differ by (logA)~'loglogc™ '+ 0(1). A bounded difference would have been
preferable, but this cannot be achieved unless Lemma 2 of [4] is improved, to push
up the lower n, or stopping is shown to be called for at stopping risks larger than c,
which would push down the upper n. We have not succeeded in doing either.
However, some computations performed by Fushimi [2], as well as some heuristic
considerations seem to indicate that the lower bound yields better approximations.
We therefore substitute r = ¢ log ¢! in the formula for n, and obtain the procedure

“continue sampling as long as
n < (log A(k))™'(log ¢~ = (1+p/(i + )+ (j—j")/2) log log ¢~ ")+ O(1).”

In accordance with the term “asymptotic shape”, we call (logA(k))™" the
shape factor and the expression in the following parentheses the size factor. The
first depends only on k. The second depends on ¢, and for fixed c its log ¢! part
is fixed, and its loglog ¢c~! part can change with k only when the point where
exp (0-k—h(0)) attains its maximum on Q, H, or H, passes to a different face.

1

4. The Student case. Now consider the problem of testing the hypothesis Hy:
u £ po sequentialty against Hy: u = u; > po on the basis of observations norm-
ally distributed with expectation u and unknown variance 6. To ensure d-
testability of the hypotheses, the parameter space is restricted by putting an upper
bound, say K, on the variance. The family of distributions takes on the required
exponential form if we define X() = (0, ®?), 8 = (u/o*,—1/26%) and b(0) =
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—0,%/40,— % log (—0,). We then have Q = {§| —o0 < 6, < 00, —00 < 0, <
—1/2K}and Hy = {0 —o0 < 0, £ =205, —0 < 0, < —1/2K}.

So Q is a half-plane, and H, is the intersection of Q with another half-plane.
The loss function /, is assumed to have the form (u, — u)’(6%)*d where d is bounded
away from 0 and oo, 7 is arbitiary, and p > —1. In terms of 6, this becomes
(0, +20,110)’[(—20,)” "~ "d], with the factor in brackets locally bounded away from
0 and infinity throughout Q. If we assume a locally bounded a priori joint density
for 1 and @2, this ensures such a density also for 6, and 0,, since the Jacobian
of the transformation is 2¢°. Thus all the conditions for the validity of the theorem
are fulfilled, and we may return to regard the problem in terms of the more con-
ventional parameters u and o?.

Similarly, we pass from the sufficient statistics Zw; and Zw;* to an equivalent
pair, the sample mean @ and the sample variance S2. The logarithm of the joint
density of the observations now takes on the form

2
A g ),

Maximizing this expression over all (, 6?) with ¢* < K, we find:

(1) If $? £ K, the maximum is attained at pu = @, ¢*> = S?, and equals
—1n(1+1log S?);

(2) If S? = K, the maximum is attained at u = @, o> = K, and equals
—4n(S?/K +log K).
Maximizing the expression with the additional constraint that u < p,, we find for
W > o

B) If (@ — o)? +S? < K, the maximum is attained at u = pg, 62 = (@— lo)* +
S?, and equals —3n(1 +log (@ — 1y)* +S?));

@) If (@ — py)? +S* = K, the maximum is attained at

— 2 SZ
L= lig, 0> = K, and equals _g((w_,u_;()i_ + log K).

Combining conditions (1) through (4) yields the following expressions for
log Ao(wy, -+, w,), valid for @ > pg:

(D) If (3~ po)* +8? = K, log g = ¥ log (1 + (&~ 10)/S)*);

_ (B — po)* + 52 S?
2 < < PRY 2 - _ .
Q) IfS? = K= (0—pp) +S% logiy = 2<_K 1—log < )
(3) If S? = K, log Ay = (@—py)*/2K for @ < p,, we have 0(k)e H, and

Ao = 0.

For 1,, three similar formulae, with y, replaced by yu, are valid when @ < u;,;
when @ = u;, we have (k) € H, and log 4, = 0.

The formulae for the two-sided maximum likelihood statistic A = max (/10, A1)
are best expressed in terms of S? and the statistic z = S?+max (@— uo)?,
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(@— p;)?). This is simply the larger among the second sample moments around
Io and g, and has the advantage that the level lines of A in the (z, S?)-plane are
explicitly describable.

(a) If z=£K logA = %log‘S%_
(b) If S?<K<=sz logA=l _Z_l_log‘s_z'
. 2\K K

. _SZ

© If $*=K logA:ZK _

The following diagram shows the respective domains of (a), (b) and (c¢), and a
typical level-line of A.

K ¢—— ¥ 1

>

Wi —ko) K z
4

In domain a the level-lines are straight lines emanating from the origin, given by
S? =A%z

In domain c they are parallel lines given by S = KlogA ™' +z.

In the middle domain they are the exponential curves S = KA~ ! exp (z— K)/K),
and are horizontal translates of each other.

As is easily seen, where the domains meet, the tangents match.

Above the line S? = z— (i, — 1y)* no point corresponds to a possible sample.
Samples with @ = 4(uo + ;) yield (z— S?)-points on this line, and all other samples
yield points below the line. )

The diagram can be used to find log A, and hence the shape factor (logA)~ !,
for a given sample. We plot the point (z, S?), and follow the level line until it hits
the line S? = K. At that point, z = K(1 +logA).

For the evaluation of the size factor, we return to the (6,, 6,)-plane, and find

for z £ K, j=2,j=1 and i=0;
for z>K=S8? j=2,;=0 and i=0;
for S?>K, j=1,77=0 and i=0.
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(This time the three regions appear with their boundaries definitely assigned to
one or the other region, since, unlike the shape factor, the size factor is not con-
tinuous at the boundaries.)

Thus the size factor is equal to log ¢ ™' —(p +2) log log ¢~ in the ““middle zone”
z> K= S? and log ¢ '—(p+3/2) loglog ¢~ ! in the rest of the sample space.

The test is now performed as follows: at each stage of sampling, the shape
factor is multiplied by the size factor (where the former is determined by the
diagram, and the latter is one of two possible values, that are computed in advance),
and if their products exceed the present sample size, another observation is taken.
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