The Annals of Mathematical Statistics
1971, Vol. 42, No. 3, 952-960

OPTIMAL DESIGNS WITH A POLYNOMIAL
SPLINE REGRESSION WITH A SINGLE
MULTIPLE KNOT AT THE CENTER
By V. N. MURTY
Pennsylvania State University, Capitol Campus
0. Summary. In this paper it is shown that the optimal design for estimating
any specific parameter in a polynomial spline regression with a single multiple

knot at the center is supported by one of two sets of points. Familiarity with the
notation and terminology used in the paper by Studden (1968) is assumed.

1. Introduction. As regression functions we consider the (2n—k+2) linearly
independent and continuous functions {f;}," U{g;}} =, where

fi = x4 i=0 1,2,---,n
g; = x7; j=kk+1,-,n
defined on [—1, 1] and
x,i=x  ifx=0;
=0 if x <O.

The regression coefficient associated with f; is denoted by 6;; i = 0, 1, ---, n and
that associated with g; is denoted by 6,';j = k, k+1, ---, n.

A “polynomial” is a linear combination of these (2n—k+2) functions. We
now show the existence and uniqueness of two polynomials W(x), and W,(x) and
state some of their properties.

2. Polynomials W and W,.

THEOREM 1. There exists a unique polynomial W(x) unique up to + satisfying

(i) odd if k is even and even if k is odd.

(i) [W(x)| = 1.

(iii) The set E = {x: |W(x)| = 1} contains precisely 2n—k+2) points. These
points include —1, 0, and 1 and the remaining (2n—k — 1) points are symmetrically

located about 0 if k is odd. If k.is even these points include — 1 and 1 and the remaining
2n—k points are symmetrically located about 0.

(iv) W(x) attains its supremum at each of the points of the set E with alternating
signs and is of the form

1 2j+6 [(n=k)/2 k+2j _~. k+2j
Zj=0a2j+éx +Zj:0 lay 4550 x —2x, ]
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=[§J if5 =0,
|:n—2:| 6= 1;
0
1

where

=

I

>
Il
&}

if k is odd,

if k is even;

Il

and the coefficients a; are # 0.

ProoF. We prove the theorem for the case where both n and k are odd. The proof
for other cases is virtually the same. Consider the function f(x) = 2x,*—x*;
clearly f(x)is an even function. Let V" be the linear space spanned by {f;}o"U{g;}i+1-
Then g(x) € V implies g(—x) e V. Hence there exists a best approximation of f(x),
say h(x) with respect to ¥ which is also even (see Meinardus (1967) pages 26-27).
Thus A(x) has the form

H0) = T30 Do e 4 D40 0 (2,42 b )
We may thus consider only the space V; spanned by

{x2j}0%(n— 1)[JT{2X+k+2j—Xk+2j}1%("_k).

Each function in V; is even and f is even. Therefore a best approximation of f
with respect to ¥, is also a best approximation of x* with respect to the space
V, spanned by {x*/},!/2("=D y{xk*+2/y 1/2=k) on the interval [0, 1] and the
dimension of V', is n—4(k—1). But on [0, 1] the spanning set of functions of the
space V', is a T-system with a unit element and hence best approximation of f(x)
with respect to V, is unique; i.e. h(x) is unique and f—h possesses precisely
n—%(k—3) extremal points including the end points 0 and 1 and f—# attains its
norm at these points with alternating signs (see Meinardus (1967) page 29). Thus
best approximation of f with respect to ¥, on [—1, 1] is unique and has precisely
(2n—k+2) extremal points including —1, 0, and 1 at each of which f(x)—h(x)
attaing its norm with alternating signs.

Set W(x) = [f(x)=h(x))/|/—h|
where

”f_h” = SUP-j1<x<1 If(x)_h(x)l-
Now it is easily seen that W(x) satisfies all the conditions of Theorem 1. Note that
the (2n—k+2) extreme points of W(x) are symmetric about 0 and n—1(k—1) are
in [—1,0) and n—%(k—1) are in (0, 1]. To show that the W(x) constructed above
is the only polynomial satisfying (i) to (iv) we assume that there exists another

polynomial R(x) having all the properties (i) to (iv). Consider the case where k
is odd, and » is odd. Then R(x) must be an even function and hence is of the form

R(x) = ZJ%'(JO_U szXZj"‘z,%(:"(;R) bk+2j(xk+2j_2x+k+2j)~
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Since R(x) satisfies (iii) it has n—4(k+1) extreme points in (0, 1) and an equal
number in (—1, 0), together with —1, 0 and 1. Hence it has n—%(k—1) distinct
zeros in (0 1]. From Descartes’ rule it is seen that none of the 5’s can be zero. Since
R(x) satisfies (iv)

_[Z‘}:(n l)b X _Z%(n K p 2jxk+2j]

is a best approximation of x* with respect to the linear space spanned by
{x?730s DU{x** 27330 on the interval [0, 1]. This is a contradiction since
there is one and only one best approximation of x* with respect to this space as
the spanning set of functions is a 7- system. This establishes the uniqueness of W.

THEOREM 2. There exists a unique polynomial W(x) unique up to + satisfying
(i) Wi(x) is odd or even according as k is odd or even.
(i) [W,(x)| = 1

(iii) The set Ey = {x:|W,(x)| = 1} contains precisely (2n—k+1) points. These
points include —1 and 1 and the remaining 2n—k—1) points are symmetrically
located about 0 if k is odd. If k is even these points include —1, 0 and 1 and the
remaining (2n—k —2) points are symmetrically located about 0.

(iv) W(x) attains its supremum with alternating signs at each of the points of the
set E| and is of the form

m 2j+35 [n—k—21/2 k+2j+1 k+2j+1
D Fe0byjps X2 T L YIS brsojra(x —2x, )

n—2 .
m = I:T:' ljp 51 = 1,

[g:l if 6,=0;

4, =1 if kisodd,

where

[

=0 if kiseven;

and the coefficients b; are # 0.
If k = n, the terms (xk*+2i*t1_2x "”’“) are omitted. The polynomial W, in
this case is T,(x), the Tchebycheff polynomial of the first kind and of degree n.

Proor. The construction of W, for k < n—1 is exactly similar to that of W(x),
except we start with f;(x) = 2x,*"'—x*** and consider its best approximation
w1th respect to ¥y, spanned by {x'}o"U{x.}} ixx+1 and set W, (x) = [f,(x)—

hy(x))/|| /i —hy| where hy is the unique best approximation of f; with respect to

Vi.If k = n, then clearly T,(x) satisfies all the conditions of the Theorem 2.
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3. Zeros of a polynomial.

THEOREM 3. Let S(n, k; x) = Yi_odx'+ - d/x," with at least one of the
d/'s = 0 for some i = k—1; then S(n, k; x) cannot have more than (2n—k) distinct
zeros unless it vanishes identically between some two of them.

ProoF. We first prove the theorem for & = 1. Since d; = 0 for some i > 0 we
consider two cases. (i) d, = 0. Then S can have at most (n—1) distinct zeros in
[—1, 0), and at most (n— 1) distinct zeros in (0, 1]. Thus it can have at most (2n—1)
distinct zeros, including 0. Hence if it has 2n distinct zeros it is clearly = 0. (ii) If
dy # 0 and d; = 0 for some i = | then S can have at most (n—1) distinct zeros
in [—1,0)and at most # in (0, 1] and thus can have at most (2n—1). Hence S = 0if
it has 2n distinct zeros. Thus the theorem is true for k = 1. Let k > 1. If S has
(2n—k+1) distinct zeros and does not vanish identically in any interval containing
two of these zeros, then we claim that its derivative S’, by Rolle’s theorem has
(2n—k) distinct zeros which are separated by the zeros of Sand S” and cannot vanish
identically in between any two of these zeros. For suppose S’ vanishes identically
between two such zeros z; and z,. Then S is a constant on [z, z,] and has one
of its distinct zeros in its interior and as such is = 0, on [z,, z,], a contradiction.
Differentiating S, (k—1) times we have

S(k—l) :d;—1+dk*x+ e +dn*xn*k+1+2?;ic+l di*xi.'_

and since d; = 0 for some 7/ = k—1, we have d;* = 0 for some j = k—1 and
Sk~ = S(N, 1; x) where N = n—k+1 and has by Rolle’s theorem (2n—k +1)—
(k—1) = 2N distinct zeros and does not vanish identically in any interval contain-
ing two of these zeros. This contradicts the theorem already proved for k = 1.
Therefore if S(n, k; x) has 2n—k +1 zeros it must vanish identically between two
of them.

4. Minimizing property of the polynomials /¥ and WW,. Let # denote the class of
all “Polynomials” u(x) with coefficients of x? equal to unity where 1 < p £ k—1;
k = 1, 2, denote the class of all “Polynomials’ u(x) with coefficient of x? equal
to unity p = k; k = 1 and 25 be the class of all “Polynomials” u(x) with co-
efficient of x.” equal to unity p > k.

THEOREM 4.
inf SUP,cy,—1<xs1 |U(x)] = sup_lléx§1 |W(x)/a,| if k—p is odd,
=SUp_<x<1 |Wi(x)/b,| if k—p is even;
inf SUP,cp,—1<xcr |U(X)] =SUP_ycrcy [W(X)/a,];
inf SUp,ca,—1<xst [U(X)| =sUp_ <ceeq |W(X)/a,| if p—k is even,

=sup_q<.c1 |Wi(x)/b,| if p—k is odd.
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PrROOF. Let p be even; p # 90, p £ k—1 and k be odd so that k—p is odd.
Consider the space ¥, spanned by {x'}/_, ;.,U{x,'},". If g(x) € V, then so does
g(—x). Let f(x) = xP; xe[—1,1]. f(x) is even, and hence there exists a best
approximation P(x) of f with respect to ¥ which is also even.

SUP-1<x21 ,xp“‘P(x)‘ S SUP-jgxs21 |XP—Q(?C)‘

where Q(x) is any linear combination of {x'}/_o ;,U{x.}i=,. If we consider
W(x)/a, (a, # O from (iv) of Theorem 1) it is readily seen that it is of the form
x?— O(x)

SUP-j<x<1

xp“P(x)! S SUP_ <zt ‘W(x)/apl = “ W(x)/ap“'

Hence the difference W(x)/a,— [x”— P(x)] must either vanish at one of the extreme
points of W(x) or it has (2n—k+ 1) distinct zeros in [—1, 1] since the graph of
xP—P(x) must stay within || W(x)/ap!, and does not vanish identically in any
interval containing two of these zeros. In the first case

[Wia| = sup-iceer [W(a,| = [x7=P)| < |x"—P(x)|

I\

IWia|.
Hence | W/a,|| = ||x"—P(x)].
This implies
inf SUP ey, —12xx1 \u(x)| = SUP_j<xgi |W(x)/ap‘.
In the second case the difference is easily seen to be of the form
Bo+Bax?+ - A By yXP TR B ax? T e B, x" T
P =2x )+ o B ("= 2x,7)

and vanishes at n—2%(k—1) points in [—1, 0) and »—1(k—1) points in (0 1]. But
from Descartes’ rule of signs, it can have at most n—4(k +1) zeros in (0, 1]. Hence
the difference vanishes identically. This completes the proof for this case. The proof
of the other cases is treated similarly. In the case where p = k the difference
W(x)/a,—[x?—P(x)] is of the form ) § ;»,d:x'+ Y /-, d/x". and will either vanish
at one of the extreme points of W or has (2n—k+ 1) distinct zeros and does not
vanish identically between any two of these. Hence from Theorem 3 it must be
identically equal to zero. This completes the proof.

We now recall some of the definitions given in Studden’s paper (1968), so as to
facilitate ready reference. Let f,f], -, f, be (n+1) regression functions and
V(x) be the unique polynomial Y 7_, a;* f; which attains its supremum | with
alternating signs at (n + 1) distinct points g, Sy, -+, §, where s = —1 and s, = 1,
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and sy < §; -+ < s,. For any vector ¢ with (n+ 1) components different from the
null vector

Jo(s0) Jo(s1) =+ fo(sy-1) Jo(Sy+1) - folsal Co
D(c) = J1(50) S1(51) -+ fi(sy-1) fiGsyr)  fi(s) ¢1

J4(S0) S fulsy-1) /X ) By A €8 Cn .

If D,(c¢) = 0, the sign of D, (c) may be definedas —1 or +1.
¢, is an (n+1) component vector with a one only in the (p+1) s¢ component
and the rest being zeros. p = 0, 1, 2, --- n.

R denotes the class of vectors ¢ = (¢, ¢y, '+, ¢,) such that eD (¢) = 0 for v =
0, 1, ---, n where ¢ is fixed to be +1 or —1 for a given vector c. i.e. the D (c), v =
0, 1, ---, n all have the same sign in a weak sense.

In our case we have (2n—k +2) regression functions and any vector ¢ will be a
(2n—k+2) component vector. ¢, will have a one in the (p+1) st component and
zeros elsewhere for p = 0, 1, .-+, n ¢,” will have a one in the (p+ 1) st component
and zeros elsewhere for p = n+1, n+2, .-, 2n—k+1). So that if 0 denotes the
(2n—k+2) component vector (0, 0y, =+, 0,, 0, Opy 1, -+, 0,") then (c,, 0) =0,
forp=0,1,-,nand (c,, 0) = Opry_(nse1)forp =n+1,n+2, -, 2n—k+1).

5. Optimal designs of individual regression coefficients.

THEOREM 5. For p = 0 the unique c,-optimum design concentrates mass one at
x=0.Forp#0;p<k, k=1

(a) If k—p is odd then c, € R, i.e. the unique optimal design is supported by the full
set of the points of the set E.

(b) If k—p is even the unique c,-optimum design is supported by the full set of
points of the set E;.

(© If p 2 k; k 2 2, then the unique c,-optimum design is supported by the full
set of points of the set E. When k = 1, the support is the set En[—1, 0].

(d) If p = k, p—k is even, the unique c,'-optimum design is supported by the full
set E, and if p—k is odd the c,'-optimum design is supported by the full set E;.

Theorem 4 is analogous to Studden’s Theorem 4.2 ((1968) page 1443) and now using
the same arguments as given in Lemma 4.1 (Studden (1968) page 1443) we obtain
the supports of the optimal designs for estimating 0,(p = 0,1, ---,n), and
0,/(p = k,k+1,--,n), ie. the ¢, and ¢,” optimal designs stated in Theorem 5.
We also note that any linear combination of the (2n—k+2) regression functions
{x'Vi_o U{x,’}"_, can have at most (2n—k+1) distinct zeros; such that the
linear combination does not vanish identically on any interval containing two
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of these zeros. (Lemma 2.2, Schumaker (1967)). Hence these regression functions
satisfy Assumption (v) stated on page 1442 of Studden’s paper (1968). Hence if we
show that the supports are full, then the Kiefer and Wolfowitz (1965) character-
ization of optimal designs described in Section 3 of Studden’s paper (1968)
guarantees that ¢, € R. Thus we show in the next section that the supports are
full.

6. Supports of the optimal designs. Let » and k be odd. Consider 0, j < k—1;
J # 0 and j even. From Theorem 5 we know that the optimal design for 0; in this
case has for its support the set E consisting of (2n—k +2) points. Let {x;},2""¥*?
be these points with xq = —1, X3,_44+1 =1, X,—4x-1) =0, and the remaining are
symmetric about zero. Moreover X, < X; -+ < Xpn_x+1. Let {p;}o>" **! be the
probabilities associated with these points by the optimal design. Then there exists a
solution {g,p,}, by Elfving’s Theorem (see Studden (1968) page 1437), to the system
of equations

:Bcj \%,1 et vpvf(xv) where

B~ = coefficient of x’ in W(x), in absolute value.

Suppose p; = 0 where i > n—4(k—1). Then there exists a polynomial
P(x) = Yioodx'+Y 1oy dix
such that (i) £ d;*+X d,"* > 0, (ii) d; = 0, and (iii) P(x,) = 0 for v # i. Consider

Q(x) = P(x)+P(—x), and note that, x', —(—x)} = x"if i is odd and x +
(—x), = x'ifiiseven. Then

0(x) = P(x)+ P(=X) = 405 Vs 12 2+ TAOT 201
FYROS g Taxkt 2y kv
and for x < 0
o(x) = ég(()_,lv);ej/zzdzvxzv‘*'zm D2y g gy P!
YISO KDL gkt 2y,

Therefore Q(x) can at most have n—4(k+3) zeros in [—1, 0) unless Q(x) is =
0in [—1, 0). (Use Descartes’ rule of signs, and note also that d, = 0; as P(0) = 0.)
But actually it has (n—1)—%(k—1) zeros in [—1, 0), and since (n—1)—4(k—1) >
n—%(k+3) we have ‘

d,, =0; v=0,1,2,-,3(k-1)
2di 42y 1+ dis2y-1 =0; v=1,2,-,3(n—k)
diy2y =0; v=0,1, -, H(n—k).
But this implies that for x < 0
P(x) = Y300 4o xS YROS0 g kb2
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and hence can have at most n—k zeros in [—1, 0), but actually has n—4(k—1),
which implies that

dk+2v=0; V=O, 1,“',%("_16)
dk+2v—l=0; v=1,2,"',%(n_k)

i.e. P(x) = 0, a contradiction.
The proof that p; = 0 when j < n—4(k—1) is exactly similar. When j = n—43(k—
1), we proceed with P(x)—P(—x) and follow the same arguments. When k is even

these roles are reversed.

It may be noted that the above method is exactly similar to the one used by
Studden (1968). [See page 1444]. For those 6’s whose support is on the set E,

the proof of p; # 0 is reduced to the earlier situation, by dropping the component
corresponding to x* , in the system of equations

ﬁcj = 326k8vpvf(tv);
B~ is the coefficient of x/ in W, in absolute value and {,},2"* are the points
of the set £.
7. Illustrations.

ExampLE 1. Let n =2, k = 1 and the regression equation be denoted by
0o+ 0,x+0,x*+07x, +05x%; xe [—1,1]. Then the polynomials W(x)
and W (x) are

W(x) = 148x+8x>—16x.

Wi(x) = —gx—£;+2—2xi; c=24-1.
¢ e
The sets E and E, are
E = {—19 -450,% 1}
E ={-1,~-c¢c 1}

The optimal designs for 0,, 0,, and 0} are supported on the set E, with
respective weights

(% b % b % bl 0 bl 0 );
@, %, %, 0, 0); and
(s 4 T )
16> 6 69 16> 16/

The optimal design for 0 is supported on the set E; with weights

c 1 1 c
{2(1+c)’ 2(14+¢)’ 2(1+¢)’ 2(1+0)f"

ExaMPLE 2. Let n = 2, k = 2 and the regression equation be denoted by
0o+ 01x+0,x* +05x% 5 x e [—1, 1].
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The polynomial W(x) is the same as W,(x) of the previous example, and the set
E is the same as E; of the previous example. The optimal designs for 0,, 0, and
0; are supported on the full set £, = {—1, —c, ¢, 1} with respective weights

c? 1 1 c?
{2(14—62) T 2(14+c%)’ 2(1+c%)’ 231 +cz)}’

c2+¢) 1+2¢ 1 c?
{2(1 +¢)?7 2(1+0)? 2(1+0)%’ 231 +c)2}’

and

c 1 1 c
{2(1-!—0)’ 2(1+¢)° 2(1+¢)’ 2(1+c)}'

ExampLE 3. Let n = 3, k = 3 and the regression equation be denoted by
O+ 01 x+0,x* +0,x> +05x3 ; xe [—1, 1].
The polynomials W(x) and W,(x) are

W(x) = —1+27/2x*+27/2x%—27x3
W, (x) = —3x+4x3.
The sets £ and E; are
E= {_19 _%’ O’%’ 1}
El = {—1’ _%3 %9 1}'

The optimal designs for 6,, 03, and 03 are supported on the set E with respective
weights

{8/108, 27/108, 38/108, 27/108, 8/108}
(32/180,  63/180, 50/180, 27/180, 8/180} and
{4/36,  9/36,  10/36,  9/36,  4/36).

The optimal design for 6, is supported on E, with weights {1/18, 8/18, 8/18,
1/18}.
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