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CONTINUOUSLY DISCOUNTED MARKOV DECISION MODEL
WITH COUNTABLE STATE AND ACTION SPACE!
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1. Introduction. We are concerned with a continuous time Markov decision
process in which both the state space S and the action space A are countable. The
process is continuously observed and found in one of a possible state i € S, then
an action a € A is taken. As a result a return r(i, @) is obtained and the process
moves to a new state je S, which is governed by the transition probability rates
q(j] i, a). Let r(a) be the return vector whose ith element is r(i, @), i € S. And let
O(a) be the transition probability rate matrix whose (i,/)th element is g;;(a) =
q(jli,a);i,jeS.

A deterministic memoryless policy 7 is a mapping from SX(0, c0) into A. At
any epoch ¢, if the current state is S, = i, our action is 4, = n(i, t). We consider
only deterministic memoryless policies. In addition, we assume that for every
ieS, n(i, -) is Lebesgue measurable. Such a Lebesgue measurable, memoryless,
deterministic policy we call a Markov policy. A Markov policy is called stationary if
n(i, t) = n(i), that is the action taken depends only on the current state S, = i, and
not on time t. Let q,;(t, n) = q(j] i, (i, t)); i,j €S be the transition probability
rates from the state i to the state j when the policy n is used. And let Q(¢, n) =
{g:(t, m); 1, j€ S} be the transition probability rate matrix which we call the
infinitesimal generator of the Markov decision process, when the policy 7 is used.
When 7 is stationary we write Q(n) instead of Q(¢, ). Throughout the paper we
assume that for allie S, t € [0, 00) and for any given n:

ASSUMPTION 1. q;(t, 1) 2 0 i #j,Y ;¢;(t, m) = 0, and
ASSUMPTION 2. |q,(t, m)| £ M, for some positive number M < oo.

Under these assumptions the author in [7], has shown the existence of a unique
stochastic transition probability matrix function F(s, t, m) = {f;(s, 1, m); i, j€ S},
for any given Markov policy =, and that it, satisfies the Kolmogorov forward
differential equations:

OF(s, t, )

(1.1) —

= F(s, t,m) Q(t, m) with F(s,s, n) = 1
for almost all t = 5 = 0.

For any two vectors X, and X,, we write X; = X, if the inequality holds for all
corresponding coordinates. We call any vector X is bounded if || X|| = sup, |x,| is
bounded. Let e be the infinite column vector with all coordinates unity.
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Let r(i, t, ®) = r(i, n(i, t)), be the return when the state of the system is i €S
and the policy n is used. And let r(#, ©) be the return vector. If 7 is stationary we
write r(r) instead of r(z, m). The return vector r(-, -), which we assume bounded is a
rate and the total return over a time interval [s, ) is ﬁ r(u, ) du. The ith element
of the total discounted return vector W(n) to the system with the discount factor
o > 0 is defined to be:

(1.2) Wi, m) = [¢ e Y, £,,40, t, m) r(j, 1, ) dt, ieS.

For any Markov policy 7 and « > 0, |W(n)| is bounded. For any ¢ > 0, n* is
called e-optimal if for any measurable policy n, W(n*) = W(n)—ee, and will be
called optimal if it is e-optimal for every ¢ > 0 or equivalently, if ¥(n*) = Y¥(n).

The problem is to find an optimal stationary policy 7* among the class of Markov
policies, and how to obtain such a policy.

Howard [6], Martin-Lo6f [8], Miller [9], Rykov [11] and Veinott [13] and G. de
Leve [3], [4] have studied the continuous time Markov sequential decision process
under various conditions.

In this paper we show that sup, W(n) is the unique bounded solution g to the

“dynamic programming optimality equation”
(1.3) ag = sup,{r(n)+ Q(m)g}.

From this we then show the existence of g-optimal stationary policies for ¢ > 0
when A is countable, and optimal stationary policies when A is finite. We also give
a procedure which will yield an optimal stationary policy n* and the corresponding
optimal return W(z*).

Throughout our discussion the Markov decision process starts from the origin.
In view of this we write F(z, n) instead of F(O, t, m). If 7 is stationary the cor-
responding F (¢, ) is a time-homogeneous transition probability matrix function.

2. Existence of stationary optimal policies. We begin by considering equations
similar to (1.3) and relate their solution to the expected discounted return ¥(n) as
defined in (1.2).

THEOREM 2.1. Let ¢ = 0 and g a bounded vector be given. For a given stationary
policy m,

(@) if ag = r(n)+ Q(n) g—ee then g = Y(n)—o " 'ee, and

(b) ifag < r(n)+ Q(n) g+ee then g < W(n)+a™ 'ec.

PRrOOF. Let n be a given stationary policy, since 7 is a stationary policy the corre-
sponding transition matrix F(¢, 7) is time-homogeneous. In post multiplying the
forward Kolmogorov equations (1.1) corresponding to given m by g we obtain
after rearranging:

@.1) 2 Flt, Mg = F 0[0(g).
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We have from (a)
(2.2) O(n)g < ag—r(m) +es.

Substituting the value of Q(n)g in (2.1) after some simplification we arrive at
0
~% [e™*F(t,n)]g = e”™F(t, m)r(t, 1) —e *ee.
By integrating on both sides with respect to e [0, o0) we obtain g = W(n)—
a~ 'ee, which proves (a). (b) may be proved similarly. []

The hypothesis in the above theorem is stated for a given stationary n and the
conclusion is about that m alone. The hypothesis in the following theorem is
assumed for all actions a € A, and the conclusions concern all Markov 7.

THEOREM. 2.2 If g is a bounded vector on' S which, for some ¢ = 0 satisfies
(2.3) ag = r(a)+ Q(a)g —ee ac A,
then g = Y(n)—a ™ 'ee for all Markov .

PRrOOF. Since (2.3) is true for all a € A, in particular it is true for a = n(i, 1), the
ith component of 7, we have

2.4) ag = r(t, 1)+ Q(t, m)g — ee.

Substituting for Q(z, n)g in the forward Kolmogorov equations corresponding
to Markov n. As in Theorem 2.1 after some simplification we arrive at g >
W (n)—a~ 'ee. Since 7 is arbitrary, the theorem is proved. []

Using Theorem 2.2, it is easy to show that, if

2.5 ag = sup,{r(a)+ Q(a)g},

then g = W(n) for all Markov 7. This leads to the simple but often useful result
which we state as:

COROLLARY 2.3. If the expected return ¥(n*) of a Markov policy n* satisfies
a¥(n*) = r(a)+ Q(a)¥Y(n*) for all a € A, then n* is optimal.

THEOREM 2.4. Let 7 be a stationary policy. Then g = W(rn) is the unique bounded
solution to ‘

(2.6) ag = r(n)+ Q(n)g.

PrOOF. Using Theorem 2.1 it is easy to show that any solution g to (2.5) must be
equal to (). We will now show that ¥(r) is a solution to (2.6). For any stationary
policy mand ¢t > 0

Y(n) = [§ e F(s, m)r(n) ds+e ™ F(t, ©)¥(n).
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Differentiating with respect to 7 and taking limits as # — 0%, in open form we have:
]irnt—>0+ Zjﬁj(ty Tf)r(j, 7T)
2.7) +1im, o+ Y fi,(t, DY, T)
+1im, o+ Y; (0/00)fi(t, m)¥(j, 7) = O.

From the definition of F(z, ) we have for all i,j €S, lim,o+f;;(t, 1) = J;; and
lim,_ o+ (8/00)f;(t, ®) = q;;(n), and since r(n) and ¥(r) are bounded vectors we
obtain from (2.7):

r(i, m)—a¥(i, 1)+ q;;(m¥Y(j, m) = 0, ieS.

which proves the theorem. []

The preceding theorems serve to bound and evaluate expected returns in terms
of solutions of functional equations. The following theorem in some sense sum-
marizes these results and more closely focuses our attention on the particular
functional (2.5), whose solution has not yet been shown to exist.

THEOREM 2.5. If there exists a bounded vector g which satisfies (2.5), ag =
sup,[r(a)+ Q(a)g] then g = sup,¥(n); and for every & > 0 there exists e-optimal
policies which are stationary. If A is finite. there exist optimal stationary policies.

ProoF. By Corollary 2.3 g = W(rn) for every policy n. Now let ¢ > 0 be given.
We define the stationary policy 7, by taking for the action at state 7, any action
n(i) for which

agi_s é r(iﬂ ne(l))—l— z_] qij(ns)gja ie S
By Theorem 2.1 (b) it follows '
Y(r,) = g—ee = sup, ¥(m)—ee.

Thus e-optimal stationary policies exist and by letting ¢ — 0%, we have g =
sup, W(n). To prove the last statement we note that when A is finite we may take
e=0.0

Thus we see, that a key to the existence of optimal stationary policies is the
existence of a solution g to (2.5), ag = sup, {r(a)+ Q(a)g}. We first show that this
solution exists when A is finite and then extend to the case when A is countable.

3. Policy improvement and convergence. In this section we give a “policy space
iterative” procedure which yields a sequence of stationary policies 7°, 7', 72, -,
such that W(n") converges to some bounded vector g.

Suppose A is finite. Let 7° be any stationary policy with return ¥(z°). For each
state i € S we define 7' (i) to be any action for which

r(i, m' (D) + Y g ()G, 1°3)
= max, [r(i, a)+ Zj q:{(a)¥Y(, ”O(i))]~
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Then
r@")+ Q@)W (n°) = r(n°)+ Q(x°)¥(n°).

But for any stationary policy = we have from Theorem 2.4
a¥(n) = r(n)+ O(n)¥(n).
Using this relation for n° and n! the above equation may be written as
[a— Q(x)](¥(n')—¥(n®)) = 0.

Taking g = WY(n')—¥(n°) it follows from Corollary 2.3 that ¥(n!) = ¥(n°).
We continue this process, defining a sequence of stationary policies n°, n!, n?, ---,
for which W(n"*') = W(n"),n = 0, 1,2, --- . Let,g = lim, ¥(n") < o™ || < 0.

LEMMA 3.1. When A is finite there exists a bounded solution g to
ag = max, [r(a)+ Q(a)g].

Proor. Let {n"} be a sequence of policies obtained by “policy space iterative”

procedure described above. Then we have at each stage:
a¥(n""1) = max, [r(a)+ O(a)¥(n")]—e(n"),

where
(3.1 gn") = r(@"" )+ Q" )Y (") — r(n") = O(n") ¥(n").
If &(n") — 0, (the proof of which appears in the following lemma) then using the
monotone convergence theorem we get,
(3.2) ag 2 max,[r(a)+ Q(a)g)-

We also have for each n from Theorem 2.4 «'¥(n") = r(z")+ Q(=")¥(xn"). Since the
set of stationary policies is a compact space of all functions from S to A, there
exists a subsequence {n"} of {n"} such that " converges to some stationary policy
7*. Since A is a finite set, 7" — n* means that for every pair (i, j); ¢, (=) = ¢;;(n*)
for sufficiently large values of »’. Hence we have by taking limits as n’ — o0, ag =
r(n*)+ Q(n*)g. This may be written as,

(3.3) ag < max, [r(a)+ Q(a)g].
The theorem follows from (3.2) and (3.3). []

LEMMA 3.2. When A is finite {n"} is a sequence of policies obtained by the ““policy
space iterative” procedure then, lim g(n") = 0.

n— oo

ProOF. We have o«{¥(n""H)—¥ (")} = r(z""H)+0x""H¥ (" ) —r(n")—
O(z")¥(n"). Adding and subtracting Q(z"*')¥(z") on the right-hand side and
rearranging term, we obtain

o W@ ) =W (")} = e(n")+ Q" H{P (")~ P(n")},
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where &(n") = 0 and given by (3.1). Now applying Theorem 2.4 with g in that
theorem being the vector ¥(n""')— W(n") and r(r) in that theorem being the vector
g(n") we can conclude,

("t )= W(n") = [§ e F(t, 7"t De(n") dt.

But W(n") converges and f;(t, n"*') = e"™* and f;(#, n"*") = 0 for all i, j, e S.
Hence &(n") - 0. []

We are now prepared to state and prove our main theorem.

THEOREM 3.3. (1) g = sup, W(n) is the unique bounded solution to (2.5). ag =
sup, {r(@)+ Q(a)g}; (ii) If ¢ > O there exist e-optimal policies which are stationary
and if A is finite there exist stationary optimal policies.

Proor. Under the hypothesis that g is a bounded solution to (2.5). Theorem 2.5
states both thatg = sup, W(n), hence is unique, and part (ii) of the present theorem.
Thus we need only show the existence of a bounded g satisfying ag = sup, {r(a)+
O(a)gi. Let A, be the set of actions {1, 2, ---, n}. Let g(n) be a solution to ag(n) =
max,a,{r(a)+ Q(a)g(n)}. We have for n = m, ag(n) = max,,,, {r(@)+ Q(a)g(n)}.
Clearly g(n) < g(n+1) = «™'|r|, and letting g = lim, g(n), by the dominated
convergence theorem, we obtain

ag = MaXgy, [r(a)+ Q(a)g]

form = 1,2, --- . Letting m — oo we get

(3.4) ag = sup, [r(a)+ O(a)g].

From Lemma 3.1 there exists a, € A, such that

(3.5) gin) = r(i, a,)+ 3 ; q;(a,)g (), i€S.

Since r and ¢;; are bounded and the argument is countable there exists a subse-
quence {a, } of {a,} such that r(i, a,) - r*(i) and q;/(a,) - g for all i,j¢ S.
Hence from (3.5) we obtain by taking the limit on both sides as n’ — oo
(3.6) gi = r*(i)+ 3 ; 4539,
forallieS. For any given ¢ > 0, we can find n* such that

|r(i, @) —r*(@i)| < ¢/2
and

lqij(an")_q;;l = 0"3/(2””“ “‘Iu()”)
Using this n* from (3.6) we obtain,

gi S r(i, a)+ Y qi(am)g;+e forallieS.
Since ¢ > 0 is arbitrary we have
(3.7) g = sup, [r(a)+ Q(a)g].

From (3.4) and (3.7) the theorem follows. []
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Combining Theorem 3.1, Theorem 2.2 and Corollary 2.3 we obtain, if a
stationary policy * is e-optimal among stationary policies then it is e&-optimal over
all Markov policies. When A is finite and n* is optimal among stationary policies
then it is optimal over all Markov policies.

4. Some further results. In this section we state some simple but important
results concerning the total discounted return ¥(x).

LemMA 4.1. If WT(n) = [§ e™™ F(t, m)r(t, m) dt then |¥(m)—¥T(n)| -0 as
T — oo for any given Markov policy =.

LeMMA 4.2. If n(t) and 7' (t) are such that n(t) = n'(t) for t < T, then
[Y(m)— W) < 2|r]a e

Let = and =" be two policies, such that for ¢ sufficiently large, it is better to use
7 up to time ¢ and then switch to n’ than to use n’ from the beginning. Then it is
better to use 7 forever than to use n’ forever. Let W(n"n’) be the return obtained
by using the policy 7 up to time 7 and then using 7. Then we have the following:

THEOREM 4.3. If 7t and ©" are policies for which there exists a T such that
YY" ') = W(z') for t = T, then ¥(n) = ¥Y(n').
ProOOF. We have from Lemma 4.2
[Y(m)— W', o) < 2)rfa™"e™™.
By using the hypothesis this may be wriiten as,
Y(n) = W(n)=2|rfe" e, fort = T.

Now taking the limit as - oo we obtain the required result. []
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