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ON THE UNIMODALITY OF L FUNCTIONS'

By STEPHEN JAMES WOLFE

University of California, Riverside
and University of Delaware

1t is shown that an L function is unimodal if its Lévy spectral function
has support on (— 00, 0]or on [0, c0), and that this implies that every L
function is the convolution of at most two unimodal L functions. Other
-results concerning the unimodality of L functions and other infinitely
divisible distribution functions are also obtained.

1. Introduction and summary. A distribution function F(x) is said to be an L
function if there exists a sequence of independent random variables X, -+, X, -
such that for suitable constants 4, and B, > 0 the random variables

Yn = (X1++/Yn)/Bn_An
have the property that Fy — . Fand in addition the random variables
Xn,j = Xj/Bn (1 é] g }’I)

are an infinitesimal system. A discussion of some properties of L functions can be
found in ([5] Chapter 6). In the Russian edition of this book, published in 1949,
there appeared a theorem due to Gnedenko, stating that every L function is uni-
modal. (A distribution function F'is said to be unimodal if there exists an x, such
that F is convex at all x < x, and concave at all x > x,.) However, Gnedenko’s
proof, although correct, made use of an incorrect theorem due to A. L. Lapin
which states that the convolution of two unimodal distribution functions is also
unimodal. A counter-example of Lapin’s theorem, constructed by K. L. Chung,
appeared in [2] and [5].

Since the proof of Gnedenko’s theorem depended upon Lapin’s theorem, the
validity of Gnedenko’s theorem was now in doubt. A. Wintner had shown by
1938 ([12] Theorem 11.4, page 30) that the convolution of two symmetric unimodal
distribution functions is unimodal. In 1956 he used this theorem to show that every
symmetric L function is unimodal (see [13] Appendix II, pages 840-842]). In 1957
I. A. Ibragimov published a paper [7] in which he gave examples of L functions
that were not unimodal. However, in 1967 T. C. Sun [9] showed that the L functions
that Ibragimov had constructed were indeed unimodal. Thus the question as to
whether or not every L function is unimodal was again open.

In this paper it is shown that an L function F(x) is unimodal if its Lévy spectral
function M(u) has support on (—o0, 0] or on [0, 00), and that this implies that every
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L function is the convolution of at most two unimodal L functions. Other results
concerning the unimodality of L functions and other infinitely divisible distribution
functions are also obtained.

2. Alemma. Let 0 = py, < p; < -+ < p, < 0. Let 4y, -+, 4, be positive con-
stants. For 1 <7 < k let Zo(x) = Y5_;4; if p;y < x £ p; and let Ao(x) = 0 if
x > pp. Let Mo(u) = — [ Ao(x)/x dx if u > 0 and let Mo(u) = 0 if u < 0. Let y
be a constant and let

So(t) = exp {ipt+ ]I (™ —1—iut(1+u®)"")dMy(u)}.

It can easily be shown that M y(u) is a Lévy spectral function and that fo(¢) is the
characteristic function of an L function Fy(x). It will now be shown that Fy(x) is
unimodal.

LemMA 1. The L function Fy(x) is a unimodal distribution function.
Proor. Without loss of generality, y can be chosen so that
Fol) = exp {] 6 (™= 1) dMo(u)}.
Let 2 = Y¥_, /;and let /(1) = exp {2, [§ (¢™—)judu} for 1 < i < k. Since
| £0(0)| = exp {4; [o (cos u— 1)/udu+2 i (cos u)fu du—2; i (1/u) du}
and fy(t) = [T f.(pit) it follows that
m 01 =0l s - co.

Every nondegenerate L function is absolutely continuous (see [4] page 338).
Thus Fy(x) is absolutely continuous. Let f{(x) denote the density function of
Fy(x). It follows from (1) that

2) F(x)— F(0) = (2m)™ " [£., (7~ 1)/ = in)fy(0) .
For x > Olets = tx. Then (2) is equivalent to
(3)  F(x)—F(0)=2n) [z ((e""—1)/—is)exp{Yi= 4 A 5" (e™—1)/udu} ds.
Both sides of (3) can be differentiated yielding
@) fx) =) 7, (e =1) —is)fo(s/x)[D ko s (Afx)(1—eP*)] ds
= Zf: 1 (Al x){[Fo(x)—=Fo(x—p;)]—[Fo(0) = Fo( = p:)]}-

The same formula can be obtained for x < 0. Since f(x) = 0 for all x, it follows
that Fo(0)—Fo(—p;) =0 for 1 £i =< k and f(x) = 0 for x < 0. Thusif x > 0,

&) xf(x) = Ayt A+ 4= 1) () =4 fx=py) = =4S (x—py).

From this it follows that f(x) is continuous at all x # 0, and f'(x) is continuous at

all x except x = 0, py, =+, Py
If 2 < 1 then f(x) < 0 for x > 0. Thus F"(x) = 0 for x < 0 and F,"(x) < 0

for x > 0. It follows that F,(x) is unimodal with a mode at 0.
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If 1 > 1thenxf'(x) = (A—1) f(x)for0 < x < p,. It follows thatif 0 < x < p,
then
©) f(x) = ex*! where ¢ > 0.

From (5) and (6) it follows that f(x) is continuous at 0 and f'(x) is continuous for
x > 0. Also f'(x) > 0 for 0 < x < p;. From (4) it follows that f(x) - 0 as
x — oo. Thus f(x) has at least one relative maximum in the interval (p,, o). Let
A = {x: f(x) has arelative maximum and x > 0} and let x, = inf 4. Two cases
must be considered.

Case 1. Suppose x, is an isolated point of 4 or x, = min 4.

In this case let x; = x,. It will be shown by contradiction that f(x) is non-
increasing on the interval (x,, o0). Assume to the contrary that f(x) is not non-
increasing on the interval (x;, o0). Then f(x) has at least one relative minimum in
the interval (x;, o). Let x, = inf {x: f(x) has a relative minimum and x > x,}.
Then x, > x; > p, and f'(x,) = 0 by the continuity of /'(x). Also

@) f(x) is strictly increasing on (0, x,),

®) At +h=Df () =4 x—p) = = AS(x1—p) = 0,
) f(x) is strictly decreasing on (x,, Xx,),

(10) it +h=Df(x2) =4S, —p) = =4 flx,—p) = 0.

If x, —py = x{ then x, —p; = x, for 1 < i < k and this fact along with (9) and
(10) will give a contradiction. If x,—p; =2 x; for 1 £i < m and x,—p; < x,
form+1 < i < k, where m < k, then (9) and (10) imply that

(11) I+ 1S =Py )+ F (X2 =) < Uy +o+ 4= 1) f(x2).

Since x, —p; < x,—p; < x; for m+1 < i < k, (7) implies that

(12) Sy —p) < f(x,—py) form+1 =ik
It also follows from (7) that

(13) Sf(x1—p) < f(x)) forl =i < m.
Combining (9), (11), (12), and (13) yields

(14) Afei=p) 4+ 4 Gy —p) < g+ + 24— 1D f(xy)

and this statement contradicts (8). Thus f(x) is non-increasing on the interval
(xls OO)
Case 2. Suppose x, is a limit point of 4.
In this case it is possible to choose x; and x, such that
(15)  f(x) has arelative maximum at x; and f(x) has a relative minimum
at  x,,

(16) S(xp) 2 f(x,),

amn Xy > x> Xo and Xx,—p; < Xo.
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Since f(x) is strictly increasing on (0, x,),
(18) S(xy—p) < Sf(x2—p) forl £i k.

It follows from (15) that (8) and (10) hold in this case, and the statements (8), (10),
(16) and (18) yield a contradiction. Thus f(x) has a unique relative maximum at
Xxo and Fy(x)is unimodal with a mode at x,. (]

3. Main results. The main theorem of this paper can now be proved.

THEOREM 1. If F(x) is an L function with a Lévy spectral function M(u) such that
M) = 0 foru < 0or M(u) = 0 for u > 0, then F(x) is unimodal.

Proor. It will be assumed that M(u) = 0 for u < 0. The proof is similar if
M(u) = Oforu > 0. By ([3] Lemma 3, page 188), M(u) is absolutely continuous on
(0, 00). Thus it follows from ([5] Theorem 1, page 149) that the characteristic
function £(¢) of F(x) can be written in the form

F(t) = exp {iyt =212+ 7o (e™ — 1 — iut(1 +u?) ™) (A(u)/u) du}
where A(u) = uM’(u) is non-increasing on (0, c0). Two cases must be considered.

Case 1. ¢* = 0. It can be assumed without loss of generality that y = 0. It is
possible to construct a sequence of non-increasing step functions {4,(#)} such that
02w 22w £ - and A,(u) > A(u) as n > oo for u > 0. For each
value of n let F,(x) denote the L function with characteristic function

Ft) = exp {[ 7o (e —1—iut(1+u?) ") (A,(u)/u) du}.

Let G,(u) and G(u) denote the Lévy-Khintchine functions of F,(x) and F(x)
respectively. It is easy to see that G,(u) - G(u) as n — oo for all values of u,
From ([11] Theorem 1, pages 101-102) it follows that F, -, F. By Lemma 1,
F,(x) is unimodal for each value of n. By a theorem of A. L. Lapin ([5] Theorem 4,
page 160), if a sequence of unimodal distribution functions converges completely
to a distribution function, then the limit function is unimodal. Thus F(x) is uni-
modal and the theorem is proved in the case when % = 0.

Case 2. * > 0. In this case F(x) is the convolution of a normal distribution and
an L function without a normal component. By a theorem of I. A. Ibragimov ([6]
page 255), the convolution of a normal distribution function and any unimodal
distribution function is unimodal. Thus, the fact that F(x) is unimodal follows
from Ibragimov’s theorem and the above proof. []

COROLLARY 1. Every L function is the convolution of two unimodal L functions.

4. The general problem. It has been shown that every L function is the convolution
of two unimodal L functions. The question remains as to whether or not every L
function is unimodal. Let Fy(x) be an L function without a normal component and
with a Lévy spectral function M (u). Assume that 1,(x) = uM ' (u) is a step function
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with a finite number of jumps that occur at both positive and negative values of u.
If it could be shown that Fy(x) is unimodal, the proof of Theorem 1 could be
generalized and it could be shown that every L function is unimodal.

Let f(x) denote the density function of Fy(x). It can be shown that f(x) satisfies
the difference-differential equation (5) for all values of x # 0. However, in this
more general case, p; > 0 for some values of 7 and p; < O for other values of /.
The proof of Lemma 1 depends strongly on the fact that when My(u) = 0 for
u < 0, then (5) has only positive lags and f(x) = 0 for x < 0. Thus it is not
possible to generalize the proof of Lemma 1. However, it is possible to prove a
weaker result.

Without loss of generality, choose the centering constant of Fy(x) so that Fy(x)
has characteristic function

Jo(t) = exp {[=5 +[18 (e~ 1) dM(u)}.

If 2o(+0) £ 1 and [A(—0)| < 1, then Fo(x) = F,*F,(x) where Fy(x) and F,(x)
are unimodal L functions with modes at O such that F,(x) has support on the
positive axis and F,(x) has support on the negative axis. It follows easily that
Fo(x) is unimodal with a mode at 0. Thus it is possible to prove the following
theorem:

THEOREM 2. Let F(x) be an L function with a Lévy spectral function M(u). Let
Mu) = uM'(w). If A(+0) = 1 and |)(—0)| £ 1 then F(x) is unimodal.

5. Other unimodal infinitely divisible distribution functions. P. Medgyessy has
proved ([8] Theorem 2, page 444) that if F(x) is a symmetric infinitely divisible
distribution function with a Lévy spectral function M(u) such that M(u) is concave
on (0, o), then F(x) is unimodal. It follows that there exist symmetric unimodal
infinitely divisible distribution functions that are not L functions. It will now be
shown that there exist unimodal infinitely divisible distribution functions that have
Lévy spectral functions with support on the positive axis and are not L functions.

THEOREM 3. Let {Y, X, X,, -} be independent random variables. Let F(x) be an
exponential distribution function with density function f(x) =0 if x <0 and
f(x) = e™¥if x > 0. Assume that the X;’s have distribution function F(x) and that Y
has a Poisson distribution function with expectation A. Let Z, = X, +--+ Xy and
let H,(x) be the distribution function of Z,. The distribution function H,(x) is infinitely
divisible. If 0 < A < 2 then H,(x) is unimodal with a unique mode at 0. If A > 2
then H,(x) is not unimodal.

Proor. Let E(x) denote the distribution function degenerate at 0, and let / *"(x)
denote the convolution of f(x) with itself » times. By a lemma of H. G. Tucker
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([10] Lemma 3, page 1126), H,(x) is infinitely divisible with a jump at O and is
absolutely continuous elsewhere. By the same lemma

H,(x)=0 if x<0,

= e "E(x)+ s [X02 1 ((e7* 2" n)f*"(1))] dt
=e *E(x)+e *[sle” Yo (A" ni(n—1)1)]dt if x> 0.

If 0 < 2 <2, then H,"(x) < 0 for 0 < x < 0. Thus H,(x) is unimodal with a
unique mode at 0. If A > 2 then H,"(+0) = A(4/2—1) > 0. It follows that H,(x)
is not unimodal if A > 2. []

It should be pointed out that H3(x)is unimodal and H;(x) = H3*H3(x) but
H,(x) is not unimodal. Thus it has been shown that the convolution of two uni-
modal infinitely divisible distribution functions is not necessarily unimodal. Since
H,(x) has support on the positive axis for all values of 4, it follows from a theorem
of G. Baxter and J. M. Shapiro ([1] Theorem 2, page 254) that the Lévy spectral
function of H,(x) has support on the positive axis for all values of A. The following
corollary follows immediately from this previous statement and Theorems 1 and 3.

COROLLARY 2. The class of L functions with Lévy spectral functions that have
support on the positive axis is properly contained in the class of unimodal infinitely
divisible distribution functions with Lévy spectral functions that have support on the
positive axis. The latter class of distribution functions is not closed under the operation
of convolution.

Acknowledgments. 1 wish to express my gratitude to my dissertation advisor,
Professor Howard G. Tucker, of the University of California at Irvine. His
generous guidance and encouragement are greatly appreciated. Theorem 1 and
Theorem 2 have been proved independently and simultaneously by Benjamin F.
Logan of the Bell Telephone Laboratories, Inc., Murray Hill, New Jersey. I wish to
thank Lawrence A. Shepp, also of the Bell Telephone Laboratories, Inc., for
informing me of this fact.

REFERENCES

[1] BaxTER, G. and SHAPIRO, J. M. (1960). On bounded infinitely divisible random variables.
Sankhya 22 253-260.

[2] CHUNG, K. L. (1953). Sur les lois de probabilités unimodales. Comptes Rendus de I’ Acad. Sci.
de Paris 236: 6 583-584.

[3] Fisz, M. (1963). On the orthogonality of medsures induced by L-processes. Trans. Amer.
Math. Soc. 106 185-192.

[4] Fisz, M. and VARADARAJAN, V. S. (1963). A condition for absolute continuity of infinitely
divisible distribution functions. Z. Wahrscheinlichkeitstheorie und verw. Gebiete. 1
335-339.

[5] GNEDENKO, B. V. and KoLMoGOROV, A. N. (1954). Limit Distributions for Sums of Independent
Random Variables (tr. K. L. Chung). Addison-Wesley, Reading.

[6] IBRAGIMOV, 1. A. (1956). On the composition of unimodal distributions. Theor. Probability
Appl. 1255-260.



918 STEPHEN JAMES WOLFE

[7] IBRAGIMOV, 1. A. (1957). A remark on probability distributions of class L. Theor. Probability
Appl.2117-119.
[8] MEDGYESSY, P. (1967). On a new class of unimodal infinitely divisible distribution functions
and related topics. Studia Sci. Math. Hungar. 2 441-446.
[9] SuN, T. C. (1967). A note on the unimodality of distributions of class L. Ann. Math. Statist. 38
1296-1299.
[10] Tucker, H. G. (1962). Absolute continuity of infinitely divisible distributions. Pacific J.
Math. 12 1125-1129.
[11] Tucker, H. G. (1967). A Graduate Course in Probability. Academic Press, New York.
[12] WINTNER, A. (1938). Asymptotic Distributions and Infinite Convolutions. Edwards Brothers,
Inc., Ann Arbor.
[131 WINTNER, A. (1956). Cauchy’s stable distributions and an “explicit formula” of Mellin.
Amer.J. Math. 78 819-861.



