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1. Introduction.

1.1. Summary. Consider the problem of estimating the mean of a multivariate
normal distribution on the basis of one observation (or more) from that distribution.
Take squared error as the loss function—the mathematically simplest choice,
and a frequently studied one. We are interested in determining necessary and
sufficient conditions for an estimator, J, to be admissible.

C. Stein (1956) proved that the best invariant estimator (6(x) = x) is admissible
if m—the dimension of the multivariate normal distribution—satisfies m < 2 and
is inadmissible if m = 3. He also gave a heuristic argument which pleads the case
that for sufficiently large m the best invariant estimator must be inadmissible. But
this heuristic argument gives no indication of the fact that “sufficiently large” m
isreallym = 3.

There is another interesting division between dimensions m = 2 and m = 3
with which probabilists and statisticians are familiar. Brownian motion is recurrent
in dimensions m = 1, 2 and is transient if m > 3. A variant of the heuristic argu-
ment mentioned above pleads the case that for sufficiently large dimension
Brownian motion must be transient, but again there is no indication that m = 3
is “sufficiently large.”

We have been able to determine a necessary and sufficient condition for an
estimator having bounded risk to be admissible. We are also able to extend our
considerations to many estimators having unbounded risk.

In the process of establishing this condition we develop a close mathematical
connection between the statistical question of admissibility and the probabilistic
question of recurrence. This connection goes far beyond the invariant cases men-
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tioned above. Roughly, to each “possibly admissible” estimator, J, there corre-
sponds in a natural way a diffusion on m dimensional space. The indicated result
is that the estimator is admissible if and only if the corresponding diffusion is
recurrent. As mentioned, we have been able to rigorously establish this result
if the estimator has bounded risk, and somewhat more generally. In one direction
no regularity conditions are needed: transience of the diffusion implies inadmis-
sibility of the estimator. We remark that for the condition that the estimator
has bounded risk there is a natural equivalent condition on the related diffusion.
The diffusion related to the best invariant estimator is (essentially) Brownian
motion. Therefore the relation between admissibility of the one and recurrence
of the other which we described above is a special case of a much more general
phenomenon.

The mathematical link between the statistical and the probabilistic problems
is a simple calculus of variations minimization problem. The integral involved in
the minimization problem is a kind of energy integral. The Euler equation for this
minimization problem is an elliptic partial differential equation. This elliptic
equation involves the differential generator of the above mentioned diffusion,
and it is known that the diffusion is recurrent if and only if the appropriate exterior
Dirichlet problem for this equation is insoluble. At the same time, subject to the
regularity conditions mentioned above, we are able to exploit the mathematical
link to the statistical problem to show that the statistical estimator is admissible
also if and only if this exterior Dirichlet problem is insoluble.

The argument leading to our main theorem—Theorem 5.1.1—involves several
different steps. For this reason we give a brief outline here of the contents of the
paper.

The remainder of Section 1 contains basic definitions used throughout the paper
and a sub-section entitled, “A heuristic argument.” In this section we describe
heuristically the mathematical connection between the statistical and probabilistic
problems. At the same time we provide an outline of a possible proof that admis-
sibility of the estimator corresponds to recurrence of the associated diffusion.
This outline is partly needed to facilitate the heuristic discussion. It is also hoped
that this will aid in an understanding of the proof constructed in later chapters,
culminating in Section 5. Some parts of this section are used again later, e.g. in
Sub-section 3.1 and in Section 5.

Section 2 contains some material on multivariate Laplace transforms which we
have not been able to find elsewhere. These results are needed mainly (but not
exclusively) for the multivariate extension of Sacks’ theorem (Sacks (1963)) which
is proved in Sub-section 3.1. These results may be of some independent interest.

Section 3 contains a variety of preparatory results of a statistical nature. There
are several lemmas important for later applications. In addition, Theorem 3.1.1 is
the extension of Sacks’ theorem mentioned above. Also of interest is Theorem 3.3.1
which provides an alternate characterization of the situation when the estimator
has bounded risk, plus a generalization (to the case where the risk is bounded only
on a special convex set—Kp).
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Section 4 contains a variety of results concerning the diffusions which are
associated with decision problems. The considerations of this chapter are mainly
probabilistic, although the results are mainly motivated by the related statistical
questions. As much as possible this section is written so that it may be read in-
dependently of the preceding statistical chapters. We note that Theorem 4.3.1
contains some results which may be of minor probabilistic significance in addition
to their statistical usefulness. This theorem provides a test for recurrence of the
particular diffusions on E™ which are studied here, as well as some other informa-
tion. It will be seen that the question of recurrence for the class of diffusions with
which we are concerned is relatively much easier than for the general diffusion in
several dimensions. :

Chapter 5 contains the statement and proof of the main theorem—Theorem 5.1.1.
This proof is divided into several sections. The “inadmissibility’” half of the theorem
is proved in Sub-section 5.2. The proof of the other part of the theorem is con-
cluded in Sub-section 5.7. Theorem 5.6.1 is a minor extension of the Blythe-Stein
sufficient condition for admissibility using a method due to R. Farrell.

In Section 6 we describe in more concrete statistical terms the implications of
Theorem 5.1.1 by giving some examples of admissible and inadmissible estimators
and types of estimators.

1.2. Basic notation. Let X be an m-dimensional normal random variable with
unknown mean and the identity matrix as variance-covariance matrix. Thus X has
density

po(x) = 2m) "% exp (=321 (x;—0)7)
with respect to Lebesgue measure on E™ = m dimensional Euclidean space. Let
6 = (84, -+, 5,)T denote an estimate of = (0, ---, 0,,)". We take as loss function

L0, 6) = (6—0)"D(—0)

where D is a fixed, known diagonal m x m matrix with elements d,, d,, -+, d,, on
the diagonal, d, =2 d, = --- 2 d,, > 0. Throughout this paper we define the
symbol | || by

I¥|* = "Dy, yeE"
Note that | || is the usual norm in E™ only if D = I Thus L(0,0) = [[0—0|>.
It will be convenient to have another symbol for the usual norm in E£™. Thus, for
x € E™ define

WP = Yx,

As usual for an estimator (- ) the risk function R(-, -) is defined by

R(0, 6(+)) = E,L(, é(x)).
[Note: It can be seen by transforming co-ordinates that the above formulation
represents no loss of generality from the situation where X is normal with any
known non-singular variance covariance matrix and L(-, -) is any positive definite

quadratic form in (0—J). Also, if there are several independent observations
XD x@_ ...) X™ one of course takes X = n~ ' Y7o X©.]
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Let G be any nonnegative Borel measure on E™. If, in addition, G is a finite
measure define the integrated risk of an estimator (-) by

B(G, 6) = | R(0, 5)G(d0).

[If G(E™) = 1 B(G, 9) is of course the Bayes risk of § with respect to G.] Whether
or not G is finite one can define the generalized Bayes estimator d4 by

J 0pe(x)G(db)
| Po(x)G(dO)

so long as the integrals on the right of the above expression exist. (An expression
like j Bpe(x)G(dB), above, is to be interpreted as a vector whose ith co-ordinate is

J 0:p4(x)G(d0).)
For convenience we define yg(x) by

(1.2.1) dg(x) =

P6(X) = dg(x)— x.
Define the convolution density g* = p*G by

g*(x) = | po(x)G(d0).

Since {py(-)} is an exponential family of distributions the region where g*(x) < o
is a convex set. Furthermore on the interior of this region derivatives of g may be
computed inside the integral sign in the above expression (Lehmann (1959) page 52).
We will be interested only in measures G for which g*(x) < oo for all x. For such
distributions, differentiating inside the integral sign yields

V *
(122) olx) = 4
9*(x)

where, as usual, (Vg*(x)); = (0/0x,)g*(x).

An estimator ¢ is called admissible if R(0, ") = R(0, ) for all 6 implies
R (0 6") = R(0, ). [Note: Since L is strictly convex the non-randomized estimators
form a complete class among all randomized decision procedures. This justifies
our restriction of the above formulation to non-randomized estimators.] It can in
fact be shown—see Farrell (1964)—that if § is admissible and R(6, 6") = R(6, 9)
then 6 = ¢’ almost everywhere w.r.t. Lebesgue measure. Let us also note here the
fact which we prove in Sub-section 3.1 that if ¢ is admissible then R(8, §) < o
for all 6. '

If Fis a given generalized prior distribution define K to be the closed convex
hull of the support of F. Where the choice of Fis clear from the context, as is the
case in most parts of this paper, we will write K instead of K. In Sub-section 3.5
and following, where Fis fixed and known, we shall have occasion to write

(1.2.3) d(x) = inf {|x—y|: y e K},
K* = {x:d(x) £ o}
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for a = 0(K° = K). We denote by n(x) the unique point of K such that
(1.2.4) |x—n(x)| = d(x), n(x) € K.

If j: E™ — E' we will say j is piecewise differentiable if there is a collection of
disjoint open sets 0y, 0,, --- such that { )72, 0; = E™ and such that j is continuous
on E™ and continuously differentiable at each pointin0;, i = 1, 2, ---.

1.3. A heuristic argument. In the case of dimension m = 1, J. Sacks (1963) has
shown that the generalized Bayes procedures form a complete class. (See also
R. Farrell (1966).) In Sub-section 3.1 we generalize this result to an arbitrary
dimension for the Normal problem at hand. Thus if ¢ is admissible there is a non-
negative measure F such that f*(x) < co for all x and 6 = 5. As is now well
known, not all procedures of the form J are admissible. See, e.g., Sacks (op. cit.).
The central aim of this paper is to find necessary and sufficient conditions on the
measure F for dp to be admissible. Throughout the remainder of this paper F
will denote a nonnegative measure with f*(x) < oo for all x; and we will be
investigating the possible admissibility of d, and related properties.

The fundamental tool for our investigation is the necessary and sufficient
condition for admissibility due to C. Stein (1955); see also R. Farrell ((1966)
Section 3). According to this, d is admissible only if there is a sequence of non-
negative finite Borel measures, G;,i = 1,2, ---, satisfying «&/,:G,({0}) = 1 and
% ,:G; has compact support and such that

(1.3.1) B(G;, 6p)— B(G;, 6g,) — 0.

Conversely d5 is admissible if for each x, € E™ there is a sequence G| satisfying
Gi({xo}) = 1 and (1.3.1). In Sub-section 5.6 we show that the following slightly
weaker condition also implies admissibility in our problem: If there is a sequence
G, satisfying (1.3.1) and

oG ({0:]0] =1} =1
then 0y is admissible. Note that the condition %, is not needed to imply admis-
sibility.

Interchanging the order of integration, and using the definition (1.2.1) we have—
as in James and Stein (1960)—for any procedure o

(132)  B(G;,8)=B(Gy, 3g) = [ [0(x)=36,(x)]g:*(x) dx

(where g;*(x) = p*G)). Substituting the expression (1.2.2), letting 6 = Jp, and
performing some algebra yields

B(G;, 05)—B(G;, 9¢,)

_ ” VIHx) V()
7 9

2

g:i*(x) dx

J*x)Vgi*(x) —g#x)Vf*(x)

UL
7*G)°

g:(x) ‘
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Defining h (%) = g;*(x)/f*(x) we have the fundamental equation

(1.3.3) B(G;, 6p)—B(G;, 0g) = l—|X)I;i(—x)ﬂ—2f*(x) dx.
(%)

Definingj(x) = (ﬁ {(x))* we have the even more useful version
(1.3.4) B(G;, 5p) = B(Gy, 0g) = [ |V1i(x)||°f*(x) dx.

Equation (1.3.4) may be viewed as the fundamental equation of this study. The
close connection between the statistical problem and diffusions on E™ develops
via this equation. We will outline this development below, but first we describe
some other aspects of this equation of direct statistical significance.

We begin with some implications of the regularity conditions &/, and %, on the
form of §;. o/, implies that g;*(x) = (2r)"™?e~* when |x| = 1. Multiplying F by a
positive constant does not affect the value of R(G;, 6r)— R(G;, é¢,). Without loss
of generality we may thus assume F has been normalized so that f*(x) < g,*(x)
for |x| < 1. Hence, without loss of generality </, implies

Ay jdx) =z 1 for |x| =1.

If F has compact support then §, is an essentially unique Bayes procedure,
and hence is admissible. We are therefore only interested in the case where F
does not have compact support. In order not to have difficulty here with a situation
which needs several special arguments let us assume for the remainder of this
section that K = E™. In this case a theorem of Birnbaum (1955) proves that
%, implies

By:lim, ., , SUP.jxj=r Ji(x) = 0.

It follows that the existence of a sequence satisfying «7,, %#,, and (1.3.4) is a
necessary condition for admissibility. After a few paragraphs—following (1.3.8)—
we will give a heuristic argument implying that the existence of such a sequence is
also sufficient.

Our procedure to see whether such a sequence j; can possibly exist is to first
consider essentially the same problem as above expect that we do not restrict the
functions corresponding to j; to be of the special form (g;*(x)/f*(x))*. That is, we
consider the problem of minimizing

(1.3.5) Jixi>1 [V *(x) dx
for piecewise differentiable j subject to the constraints:

oyjx) =1 |x| <1
and

R 3:1im, o, SUp 4=, j(x) = 0.

If it is the case that (1.3.5) is bounded below by ¢ > 0 for all piecewise differenti-
able j satisfying < ; and 4 5 then clearly (1.3.4) is bounded below by cd,, > 0 when
conditions &/, and 4, are satisfied. (Note that] is certainly piecewise differentiable.)



INSOLUBLE BOUNDARY VALUE PROBLEMS 861

Hence in this case it follows immediately from the above that J is inadmissible.
The only other case possible is that there is a sequence of functions j;, each
satisfying ./ ; and 4 5, such that

(1.3.6) J Vil *(x) dx - 0.

While this indicates that d5 is admissible, it is very far from proving that fact. In
general given functions j; as above it is usually impossible to find a G; and associated
j; such that j, = j;. It is not even clear at first glance that one can find a }; which
approximates the desired j;. However, under certain conditions this can in fact be
done, as we describe in the following paragraph. The line of reasoning of the
following paragraph can be made precise with appropriate regularity conditions.
We have been more successful in making it precise in dimension m = 1 than when
m = 2. For this reason the argument in Section 5 follows a different and somewhat
more involved path. Nevertheless the following heuristic argument is what
originally led us to Theorem 5.1.1. Furthermore the proof in Section 5 can be
viewed as an attempt to follow the following program with the exception that the
approximate equality Vh,(x) ~ Vh(x) for all x e E™ described below is to be
replaced by an equality valid in the mean, rather than everywhere.

When a sequence {j;} satisfying &/, #3, and (1.3.6) exists it is reasonable
that another sequence {j,} exists satisfying &7 5, %45, (1.3.6), and

§G{(0)*F(db) < oo,

and such that the functions j; are “smooth” in an appropriate sense. We in fact
prove such a result in sub-Section 5.4. Define #; = (j;)? and

(1.3.7) G(d9) = hy(0)F(d9).

There is no loss of generality in assuming that the origin, 0 € £™, has been chosen,
and F has been normalized, so that F({0: |9| = 1}) =z 1. Thus G, as defined here
is a finite measure satisfying «7,’. Observe that p,(x)F(d0)/f*(x) is a probability
distribution with expectation 6p(x). Now, make the assumption—which is vital
for our argument when K = E™—that § ;(x) — x is bounded. Since k; is a “smooth”
function it is therefore reasonable that

hi(x) = | h(O)po(x)F(dO)/f*(x)

is given approximately by 4,(d p(x)), which in turn is approximately 4,(x). While it is
harder to verify, it is also reasonable that vh {(x) is approximately VA,(x). We thus
have

|Vhi(x)|?

B, G)= B0, 6) < d |\ po(e)
(1.3.8) =X d, IVh((x))IZf*( ) dx

= 4d, _f |Vji(x)|2f*(x) dx -0
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where “~”" denotes some appropriate sort of approximation. This implies that §
is admissible.

In Sub-sections 3.3 and 3.4 we discuss the one basic statistical assumption which
is needed for an argument of the above type, namely that é z(x)— x is bounded. In
particular we show this is equivalent to the condition that R(-, §7) be bounded.

By the above arguments the question of admissibility of §; can therefore be
reduced to the question of minimizing

(1.3.5) Vi) *(x) dx

subject to the boundary conditions «/; and %,. This minimization can be discus-
sed from at least two points of view seemingly unrelated to the admissibility of & .

First, one can use the calculus of variations. The Euler equations for the mini-
mization of (1.3.5) can be written

(1.3.9) SEY i+ f*) =0 where j/ = aixj, etc.
It is thus reasonable that (1.3.5) is bounded away from zero if and only if the
elliptic partial differential equation—(1.3.9) has a solution for {x: |x[ > 1} satisfy-
ing &5 and % ;. In Sub-section 4.3 we show that this is the case for m = 2. (For
m = 1, one must treat the left and right halves of the line separately.)

Second, diffusions on E™ are related to equations such as (1.3.5). For purposes of
discussion it is perhaps more suggestive to rewrite (1.3.9) as

5

though this is mainly a matter of taste. (Note: If dz(x)—x is bounded then
[ (x)[f*(x) is bounded.) Write the left side of (1.3.10) as £ j where % is the
elliptic partial differential operator. % is the generator of the diffusion (definable
on all of E™) with local variance-covariance matrix 27 and local mean Vf*/f* =
dp(x)—x. It is easy to check that (1.3.10) has a solution on {x: |x| > 1} satisfying
& 5 and 44 if and only if the diffusion is transient. In this case the solution j may
be taken to be the probability of ever reaching the unit ball, {x:|x| < 1}. The
indicated result is that (at least when R(-, dy) is bounded) the estimator J is
admissible if and only if the related diffusion, defined above, is recurrent. More
details of this interpretation are discussed in Section 4.

Note that the usual, best invariant estimator, J,(x) = x, is the generalized
Bayes estimator for Lebesgue measure as the generalized prior. The diffusion
which corresponds to this estimator is a version of Brownian motion. (More
precisely, it is exactly the usual Brownian motion run with a 4 speed clock.) We
thus have the indicated result that J, is admissible if and only if Brownian motion
is recurrent ; that is, if and only if m < 2. The result that §, is admissible if and only
if m = 1 or 2 is, of course, already known; see Stein (1956) and (1959), James and
Stein (1960), and Brown ((1966) Chapter 3). However we find the connection with
Brownian motion interesting and suggestive, if not enlightening.
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An interesting question which arises is the following: If § = J is inadmissible,
what is a better estimator? In specific cases it is of course possible to find better
estimators as in Stein (1960), Brown (1966), and Baranchik (1969). A reasonable
conjecture based on the constructions outlined in this section is that if &y is
inadmissible then the estimator d is better and is admissible where G is the non-
negative measure minimizing | Vj(x)]zf *(x) dx subject to the conditions
G({0:]0] < 1}) = 1 and g*(x)/f*(x) > 0 as |x| - co. Under appropriate con-
ditions such a G exists. By our previous arguments this G will be given approxi-
mately (but not exactly) by j*(0)F(d0) (if F is normalized by F({0:]0] < 1}) = 1)
where j is continuous and satisfies j(x) = 1, |x| £ 1, j(x) - 0 as |x| > oo, and
Lgj =0 for |x| > 1. It may be that under suitable ‘“‘smoothness” conditions
the estimator corresponding to this latter G is also admissible and also improves
upon 6p. We have few explicit results in the above directions, and we do not
discuss this conjecture further in this paper, except to point out the following:

If m = 3 and §,(x) = x the better estimator suggested by the above considera-
tions is d; where G is given approximately by

= do 0] <1

G(do) = (1/|0)*~*) do 0] > 1

(This turns out to be an estimator such that d5(x) = (1 —(2m—4)/|x|*)x+o(1/|x])
as |x| — oo, which should be compared with those in Stein (1960).) It is interesting
to note that if m = 5 the measure given above is finite, hence it appears that for
m = 5 there probably exist proper-Bayes minimax procedures. Recent results of
W. Strawderman (1971a, b) appear to confirm some of the above heuristic con-

siderations.

2. Prerequisite results on multivariate Laplace transforms.

2.1. Convexity of the log of Laplace transforms. Suppose p is a finite nonnegative
measure on E™. Define the multivariate Laplace transform i by

(2.1.1) (1) = [ exp (t-x)u(dx) te E™

when the integral on the right converges and is finite. It is well known that the set
of values of # for which fi(7) exists is convex in E™. Denote this set by T(u). For all ¢
in the interior of 7(u) the above expression for ji(f) can be differentiated under
the integral sign an arbitrary number of times. Also, [ is continuous on T(u).
(See Lehmann (1959) page 52-53).

From these facts we derive:

LemMA 2.1.1. Log [ is a convex function on T(pn). If the support of u is not con-
tained in an m—1 dimensional subspace of E™ then log [l is strictly convex on the

interior of T(1).
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Proor. Let d?/dt*(log ) denote the mxm matrix whose jjth element is
0%/ot, ot (log ). Differentiating (2.1.1) twice under the integral sign yields

d? 1 T xx; exp (2 x)u(dx)
(2.1.2) [c? (log #)]ij B | exp (- x)u(dx)

_j x; exp (- x)u(dx) | x; exp (¢ x)u(dx)
(J exp (t- x)u(dx))?

for ¢ in the interior of T(u). Thus d?/dt*(log i) is the variance co-variance matrix
of the random variable with distribution exp (7 x)u(-)/[ exp (¢ x)u(dx). Since such
a matrix must be positive semi-definite the first sentence of the lemma is proved.
If the support of u is not contained in an m—1 dimensional subspace then, from
(2.1.2) (d?/dt*)(log [i) is positive definite for all 7 in the interior of 7(u). This proves
that log ji is strictly convex on the interior of T(u). The proof of the Lemma is
complete.

2.2. A continuity theorem for Laplace transforms. The theorem we need is a
slightly modified version of the multivariate analog of the usual continuity theorem
for (real) Laplace transforms. In the following let P, P’, etc. denote closed convex
polyhedra in E™ with vertices (py, ---, pi), etc. Let int. P denote the interior of P, etc.

In the following we say the sequence {g;} of probability measures on E™ is
uniformly integrable if sup; j[x|>, q:(dx) - 0asr —» c0. When m = 1 the probability
measures {q;} are uniformly integrable in our sense if and only if they correspond
to a family of random variables which is uniformly integrable in the classical
sense, see e.g. Doob ((1953) page 629). Various standard theorems concerning
uniformly integrable random variables (when m = 1) carry over with at most
trivial modifications to cover uniformly integrable measures. In particular
sup; | |x|*g{dx) < co implies uniform integrability of {g;}, and uniform integra-
bility of {g;} implies the existence of a subsequence {i,} < {i} and a probability
measure ¢, such thatg; — g, (weakly).

THEOREM 2.2.1. Let u; be a sequence of finite nonnegative measures. Let P be a
closed convex polyhedron such that P < int. T(u;) for all i. Suppose 0 e int P.
Suppose there is a bound B < oo such that
Viip))
ip;)
Let P’ be any closed convex polyhedron such that P’ < int P. Then the probability
measures exp (1-x)u(-)/{ exp (t-x)udx) are uniformly integrable over all te P’
and all i = 1,2, ---. Also, there exists a subsequence {i'} = {i} and a probability
measure w such that p,.[§ w;(dx) — o weakly and Vi, (t)/F;(t) = Viio(t)/fio(t) for

allte P’'. Also, fi, ()], (0) —» fy(t)forallte P’.

Proor. From (2.1.1) it follows that the directional derivative at f e int T(y;)
of log fi; in the direction determined by a unit vector, v, is given by v- (Vi (¢)/i(1)).

(2.2.1) <B F=1,2, 0k i=1,2,
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Since log fi is convex this directional derivative must be increasing along a line
through v. That is
(Vﬂi(m’)>
17. =
Aior)

is a non-decreasing function of a(x real) for av € int T(y,). Let t, € P. Substituting
v = (p;—to)/|p;—to| in the above we have

pi—to (Vi(to+B(p;—10))
[—to] <ﬂ(zo+ﬁ<pj—ro»>|<3 for 0=f=1

Integrating (2.2.2) along the line joining ¢, to p; gives
(2.2.3) |log fi(p;)—log fito)] < Blp;—to| = ¢y, J=12k

where ¢; = 2sup, <<k B]pj—tol. It follows immediately that f,(p;)/f(t,) < e
Letp,’, ---, pi/ denote the vertices of P". Define

¢, = inf {|z—P;|:z¢ P,j = 1,2, -, k'}.

(2.2.2)

Since P’ < int P, ¢, > 0. Using the facts that P’ is convex and le and exp (¢-x)
are convex functions for ¢ € P’ we have

|x|> exp (t-x) < |x|* sup; << exp (p;' - X)

IIA

c3(exp czlxl) SUP; <j<k’ €XP (py - X)
= C38Up; <<k €XP(g;- X)
where g; = pj’+c2x/lx|. The definition of ¢, guarantees that g;" € P. Hence
(2.2.4) |X|* exp 1-x < ¢3 5up; <<k €Xp (P X).
Thus, for te P’,

I\

€3 Z’J('=1 Jexp (p;- x)ui(dx)
C3 le‘:l idp )

J |x]? exp (£ x)pi(dx)

and
(2.2.5) _f lxlz exp (t- x)u(dx)/f (1) = c; 21;:1 fi(p /i)

< cizk et

IA

It follows that the measures exp (¢-x)u;(-)/i,(t) are uniformly integrable over all
tePandi=1,2, .

The remaining parts of the theorem follow by standard arguments from this
uniform integrability and the fact that

(VALD); = | x; exp (1-x)pidx) J=1,2 - m

This completes the proof of the theorem.
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3. Needed statistical results.

3.1. Generalized Bayes procedures form a complete class. In this section we give
a simple proof of the extension to several dimensions of the theorem of J. Sacks
mentioned in Sub-section 1.3. The proof is also valid in dimension m = 1. The
following explicitly applies only to the problem of Sub-section 1.2, but the method
can be generalized to statistical problems involving exponential families of
distributions.

THEOREM 3.1.1. If § is admissible there is a non negative measure F such that
f*(x)' < oo for all x and such that 5(x) = 6 (x) a.e. (dx).

PrOOF. If G, is a sequence satisfying 7, then g;*(x) = (2m) ™2 exp (—|x|*/2).
Hence (1.2.2) and (1.3.2) imply Vg#(x)/gi(x) — y(x) in measure (dx) on each
compact set in E™. Thus there is a subsequence i’ such that

[VaE gz — )] < o ae. (dx).

Defining (for this sub-section only) u(d0) = exp (—|0|*/2)G(d0), the above
implies Vi, (x)/{i;(x) = x+y(x) < oo a.e. (dx). Thus, using Theorem 2.2.1 there is
a measure uy(d0) and a subsequence {i"”’} of {i’} such that Vi, (x)/f(x) —
Viig(x)/fig(x) for all xe E™. Tt follows that Vf,(x)/fis(x) = x+y(x)a.e. (dx).
Defining F(d0) = exp (|6|2/2),uo(d49) we compute f*(x) < oo and Vf*(x)/f*(x)=
Viio(x)/fio(x)—x and hence 6(x) = dx(x) a.e. (dx). This completes the proof of the
theorem.

The construction in the proof of Theorem 3.1.1 and Lemma 2.1.1 yield the
following important Lemma.

LemMa 3.1.2. If o > 0

(3.1.1) Op(x+ay)-y = dp(x) y.
[In words: the y co-ordinate of Jp is non-decreasing as one travels in the y-
direction.]

Proo¥. Defining u4(d0) = exp (—|0|*/2)F(d0) as in the previous proof we have
0p(x) = V(log fiy(x)).
(3.1.1) then follows immediately from Lemma 2.1.1.
From this lemma we obtain, among other results,
LemMa 3.1.3. If|yp(x)| < Bforall xe k, then for x ¢ K. yp(x)- (n(x)—x)/d(x) =
B+d(x). Hence, for x¢ K
(3.1.2) F*(x) Z exp (= Bd(x) — d*(x)[2)f *(n(x)).

Proor. The first statement of the lemma is an immediate corollary of Lemma
3.1.2. Simply take y = n(x)—xin (3.1.1) and observe that for x € K, yF(x)-z/[zl <B
for any z. The inequality (3.1.2) results from integrating the first inequality of the
lemma along the line from n(x) to x. The lemma is proved.
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Before closing this section we also note the following relation
LEmMaA 3.1.4.
(3.1.3) [*(x) £ exp (= d*(x)/2)f *(n(x)).

ProoF. For 0 e K
|x—0]* = d*(x)+|n(x)—0]*.
Hence
F*x) = @r)™"'2 [ exp (—|x—0|*/2)F(d0)

< (2m) "% exp (—d*(%)/2) | exp (— |n(x)—0]*/2)F(d0)
= exp (—d*(x)/2)f *(n(x)).

3.2. Lemmas. The following condition will play a key role in Section 5 where it is
numbered as condition (5.1.1). There exists a B < oo such that

(3.2.1) lye(x)| < B for all x € K.

In the next section we give an alternative characterization of the situation when
this condition is satisfied. In this section we prove some lemmas to prepare for this
characterization. The second of these lemmas and its corollary also play an
independent role in the proofin Section 5.

The first lemma expresses an important although nearly trivial fact. We remind
the reader that K is the closed convex hull of the support of F.

LemMaA 3.2.1. Forall x, 6 g(x) € K.
REMARK. The converse of this result is also true. To be precise:
K= {6p(x):xe E"}.

This latter result is not quite as trivial as Lemma 3.2.1 and we do not need it for our
development. Hence we do not give its proof here.

PrROOF OF LEMMA 3.2.1.
dp(x) = [ Ope(x)F(dO)[f*(x).

Po(X)F(d0)/f *(x) is the mass element of a probability distribution whose support is
contained in the convex set K. Hence d ¢(x) € K. This completes the proof.

LeMMA 3.2.2. Suppose (3.2.1) is satisfied. Then given k < oo there exists a constant
{ < oo (depending only on k, B, and m) such that

(3.22) § exp (k|0 — x| )po(x)F(d0)f *(x) = { exp ({d(x))
forallxe E,,.

Proo¥r. To begin, note that

(323)  oxp (k0= xpo() = exp (2/2) Y31 polx+(—1ke)
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where e; is the unit vector in the ith co-ordinate direction. Then, since |0 —x| <
2I0i—xi
(3.2.4) | exp (k|0 — x| )po(x) F(d6) f *(x)

< exp (K7)2) Yi=1 im 1 SH(x+ (= DPkep)[f ().

If xe K and |y—x| < k then |n(y)—x| < k. Hence using (3.2.1) and Lemma 3.1.4
(or Lemma 3.1.2), for all x, y € E™, |[y—x| < k implies

F*OIf*x) £ SHEODI*x) < ™
It follows from this and (3.2.4) thatif xe K
(3.2.5) | exp (k|0 —x|)po(x)F(dO)/f*(x) < 2m exp (k*/2+ Bk).

If x ¢ K we proceed as follows. By rotation and translation of co-ordinates we
may assume without loss of generality that x = (x,,0,---,0) with —d(x) =
x;, <0, and n(x) =0, and K = {6 = (0, ---,0,):0, =2 0}. For 0eK 0-x =0
and |x—0| £ d(x)+0|. Hence

[ exp (k|x—60|)po(x)F(d0)
(3.2.6/7) < (m)~™?2 [exp (k d(x)+k|0| —10—x[?/2)
< (2n) ™™ [ exp (k d(x)— |x|*/2) exp (k|0] —|6|*/2)F(d0)
= exp (k d(x)— d*(x)/2)2m exp (k* |2+ Bk)f*(0)

where for the last step we have used (3.2.5). From Lemma 3.1.3

(3.2.8) S#(x) Z £*(0) exp (—d*(x)/2— Bd(x)).
Henceforx¢ K
(3.2.9) | exp (k|x —0])po(x)F(d0)[f *(x)

< exp ((k+ B)d(x))2m exp (k*/2+ Bk).

Letting ¢ = max (2m exp ((k+ B)?/2), k+ B) the condition (3.2.2) is satisfied.
This completes the proof of the lemma.

LEMMA 3.2.3. Suppose (3.2.1) is satisfied. Then there is a constant {, (depending
only on B and m) such that

(3.2.10) lye@)| = 61 +d(x)).

PROOF. yx(x) is the expectation of 0—x under the distribution described by
Po(x)F(dO)/f*(x). Hence by Jensen’s inequality

exp |yx(x)] £ [ exp (|0 —x|)po(x)F(d0)/f *(x).
Thus by Lemma 3.2.2, there is a { < co such that

exp [yr(¥)| = L exp ({d(x)).
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It follows that
|[7p(x)| < log {+Ld(x).
Setting {; = { completes the proof of the corollary.

For the next lemma we do not assume that (3.2.1) is satisfied. In fact the use of
this lemma is mainly in situations where (3.2.1) is not satisfied.

LEMMA 3.2.4. There is a constant {5 (depending only on m and d,) such that
(3.2.11) R(x, 65) = {3(|yp()|—2)? Jor yp(x)22.

Note: The significant part of the above lemma is not the exact form of (3.2.11)
(which is not the best form possible) but rather the fact that [y F(x)| large implies
that R(x, ) is also large.

ProoF. By translating and rotating co-ordinates we may assume that x =
(0,0,+-,0) and yp(x) = (7,0, --+,0) where y, = |yp(x)|. Consider any unit
vector p, say, from the origin and making an angle less than 45° with the positive
x axis. p-yp(x) = y,/2*. For any point z = kp, 0 < k < 1. Lemma 3.1.2 implies
that p-(z+17(z)) = y,/2*— 1. Let Q denote here the set of all such points z.

R(x, 05) = [y + 7] *po(y) dy
2 fo [y +vr()]? infly <1 po(y) dy
> d,(2m) "2 e (7,28 = 1)1 fo dy
z G(|y)]-2)%
This completes the proof of the lemma.
3.3. A condition equivalent to bounded risk.
THEOREM 3.3.1. There is a constant R such that
3.3.1) RO, 0p) < R foralle K

if and only if there is a constant B such that [yF(x)| < Bforall x e K.

PROOF. Suppose (3.2.1) is satisfied. Note that for 6 € K, |0—x| = d(x). Using
Lemma3.2.3, for0 e K

R(0,65) = [ [x+75(x)—0]*po(x) dx
<2d, [ (x—0*+ |7 £()|*)po(x) dx
< 2dim+2d, 8,2 [ (1+|0—x])2py(x) dx
< d2m+4L%+4mi, %)

where {, is asin Lemma 3.2.3.
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Conversely, suppose (3.2.1) is not satisfied. Then for any b > 0 there is an
x € Ksuch that |yp(x)| > b. It follows from Lemma 3.2.4 that supy.x R(0, 6 ) = o0,
and hence (3.3.1) is not satisfied.

This completes the proof of the theorem.
The following corollary is also of interest.

COROLLARY 3.3.2. R(-, 8p) is bounded (i.e. supgepm R(0, 05) < o) if and only if
SUPyepm [75(X)| < 00. (SUPsepm |7p(x)| < o0 only if K = E™)

Proor. It follows without difficulty from Lemma 3.2.1 that if K # E™ then
SUPgegm R(0, 5) = oo. After this observation, the corollary is a direct application
of Theorem 3.3.1.

3.4. Inequalities for the case where F is absolutely continuous. It is not always
easy to determine from a knowledge of F if the condition (3.2.1) is satisfied. In
this section we give a sufficient condition which applies when K = E™ and F has a
sufficiently smooth density. Similar (but not identical) results are also valid when
K # E™ but we do not give such results here. Lemma 3.4.1, below, is also used in
Sub-section 5.3 in the proof of the main theorem.

Throughout this section we assume F has a density with respect to Lebesgue
measure, which we denote by f.

LemMA 3.4.1. Suppose [ is a continuously differentiable function satisfying
(3.4.1) |V/(x)|lf(x) £ ¢ forall x € E™
for some ¢ < . Then
(B42) (42" f(0) 2 f*(x) = @0 T T ()
and
(3.4.3) [V/*@)|/f*(x) = .

PROOF. If [y —x| < 1 then (3.4.1) implies/(y) = e”°f(x). Hence

FHx) > [ymx1<1 SOI(y) dy
> e~ f(X) [z <1 p()dz = @m) ™" em 7 f(x),

which verifies the right-hand inequality in (3.4.2).

Similarly, f(y) < exp (c|y—x|)f(x). Hence

SH(x) = (%) | exp (|0 —x|)py(x) db.

Utilizing the fact that c|0 — x| < ¢*+|0— x|*/4 we compute that

[ exp (c|0—x|)p(x) dO = e +2m/2.
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Substituting this in the above yields the left-hand inequality in (3.4.2).
In order to prove (3.4.3) we begin by assuming without loss of generality that
x = Oand V/*(x) = (|Vf*(x)|, 0, -+-, 0). For this proof let

I’(f) = jf((h X5ttt xm))p(x29 T xm)(o) H:n=2 dxz-

From (3.4.1) it follows that r is continuously differentiable and

(3.4.4) [r'(D|/r(t) < c.

Now,

(3.4.5) [*x) = (12m)* [r(t) e at
and

(3.4.6) V(0| = |(1/2m)* [ tr(r) e™"/2 at.

From (3.4.4) to (3.4.6) the maximum value of |V/*(x)|/f*(x) occurs if r(¢) is of
the form Ce® (use the calculus of variations), from which we easily compute that
(3.4.3) is satisfied. This completes the proof.

Note that generalizations of Lemma 3.4.1 are used in Section 6 without further

proof.

3.5. The boundary condition at co. In Sub-section 1.3 we described a boundary
condition 4,, at oo satisfied by j(x) when K = E™ and 4, is satisfied. In this section
we prove this result as well as an appropriate extension if K # E™.

The results of this section are vacuous if K is compact, so we may as well assume
throughout this section that K is not compact. Then, since K is convex, for all
sufficiently large r there is an x € K such that |x| = r.

The following two paragraphs are used only in this section and in Sub-section 4.2.

Assuming K is not compact, if x, € K there is another point x,, say, such that
x; € K, |x; —xo| = 1, and the ray

Prpsx, = {01y = Xo+a(x; —xo), ¢ = 0}
satisfies P, . < K. For a given x, € Klet O, be the set of all such points x,; i.e.,
0% = {x;:|xi—xo| = 1, {yiy = xo+alx,—xo), 2 = 0} < K.
Since K is closed and convex, Q,*° is compact (for more reasoning see (3.5.1)). Let
0, = {y3|y—x0| =1,3xe Q0™ > |y—x| =1}

Clearly Q,* is also compact. As above, for any two points y, z define the ray
P, . by
P,,={ww=yta(z—y),a =0}
Let
0 = {z:dye Q,*5z€eP, ,}.
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We remind the reader that for« = 0

K*= {x:d(x) < o} (K° = K).
Let
L, = {x:|x—x0| =1, xo+r(x—x,) € K*}.

For fixed o, r < simplies L}3> L. Also, from the geometry of the situation

Xy

(3.5.1) n'>0 L);O,r = Q. < Q,*.

It follows from (3.5.1) that given x, and a = 0 there is an R, sufficiently large
so that

(3.5.2) |x—xo| > R,,, and xeK*=xe Q;™.
LemMA 3.5.1. If G has compact support and o is any fixed number, o = 0, then

(353) limr—mo Sup{x: xeKe,|x| 2r} (g*(X)/f*(X)) = 0.

Note: The supremum in (3.5.3) may be taken over a larger set than indicated
in (3.5.3) (for example over {x:xe K*uU Q3*, |x| = r}.) However (3.5.3) is the
form we will use later in Sub-sections 4.2 and 5.2, and we prove only (3.5.3) in
the following.

ProoF. Let us first suppose that x, = 0. For this proof let {(r,6)} be the
spherical co-ordinate system with r = |x| > 0, 0 a point on the unit sphere in
E™ and (r, 6) = r0.

Let p, be any ray of the form {(r, 6,):r = 0, 6, fixed} such that p, < K (i.e.
0, € 0,°). The fact that K is closed convex and non-compact and 0 € K guarantees
as noted above that at least one such ray exists. Let 6, be any point on the unit
sphere such that |02—01| < 1(.e.0,e Q,%andlet p, = {(r,0,):r = 0}. Thusthe
angle between p, and p, is between —n/3 and + 7/3 inclusive.

Consider lim,_, , g*(r0,)/f*(r0,). There is a hyperplane—call it H, (for this
paragraph, only) such that H, is orthogonal to p,, and supp G is on one side—
call it S;—of H,, and for all r sufficiently large the points rf, are on the other
side—call it S,—of H,. S;, i = 1, 2, are disjoint open half spaces. Since p; < K
it follows that supp F n S, # ¢. Hence it follows from a result of Birnbaum
(1955) that

(3.5.4) lim, _, ,, g *(r0,)/f*(r0,) = 0.
Thus (3.5.4) holds for each 0, € 0,°. For each r, g*(r0)/f*(r0) is a continuous
function on the compact set Q,°. Hence
lim, ., , SUPg ¢ 0,0 9 *(r0)/f*(r0) = 0.
Equivalently
(3.5.5) 1im, o SUP ;x| =r, xe 0501 9 “(X)/f*(x) = 0.

But, from (3.5.2) for all r sufficiently large {x:|x| =r,xe 0;°} = {x:|x| =
r, x € K*}. Hence (3.5.5) implies (3.5.3) is satisfied.
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If x, # O translate the co-ordinate system so that the origin of the new system is
xo. Let || denote the norm in the new system. From (3.5.5) we have

(3.5.6) Lim, , o, SUP(x ;| 21, x e ke 9 T (X)[f*(x) = 0.

But for r sufficiently large |x|' = r implies |x| = r/2. Hence (3.5.3) follows im-
mediately from (3.5.6). This completes the proof.

4. The diffusion {Z,} and the minimization problem.

4.1. Statement of the problem, definitions, preliminary remarks. Let F, f* be as in
Sub-section 1.2 and K = K. We define the following boundary conditions:

(4.1.1) j® =1 x| <1
and
(4.1.2) lim,_,oo Sup{x ixeKm, |x| :,}j(x) = 0.

[Note that (4.1.2) is vacuous if K is compact.] [The reason for using Kf =
{x:d(x) £ B} rather than K in (4.1.2) will become clear at Lemma 4.2.2. We
could substitute any > O for m in (4.1.2) but the choice m is convenient in
Lemma 4.2.1. See the note following (4.2.4).] Let J denote the set of all piecewise
differentiable functions satisfying (4.1.1) and (4.1.2). We consider in this Section
the problem of finding

(4.1.3) infe, | |Vi(x)|2/*(x) dx.

In particular, we are mainly interested in determining whether this infimum is 0
or is greater than 0.

As one means of describing when the infimum in (4.1.3) is 0 we introduce—as
in Sub-section 1.3—the diffusion {Z,} with local mean V/*(x)/f*(x) and local
variance 27. This diffusion is also a useful tool for studying certain aspects of the
minimization problem. In general our results will not depend strongly on the
starting point of {Z,}, but where we wish to indicate that the diffusion starts at a
point x at time ¢ = 0 we will write {Z,*} to indicate that fact. (In Section 5 the
symbol {Z,'} will have a different meaning.) We will use without further comment
the well-known fact that {Z,} has the strong Markov property. Strictly speaking,
we should write {Z (w)} instead of {Z,} in all the above arguments, where w € Q
and Q is a suitable probability space. For simplicity of notation we have omitted
the symbol—(w)—from Z, and all other random variables to be defined later in this

chapter.
We say that {Z,} is recurrent if for all x € E™ the function .4~ defined by
4.1.4) A (x) = Pr {inf, |Z,x| <1}

satisfies o (x) = 1. In words, {Z,} is recurrent if for all x e E™ the diffusion
{Z/} hits the unit sphere with probability one. If {Z,} is not recurrent it is
transient.



874 L. D. BROWN

It follows by standard arguments from the definition of {Z,} that if m = 2
and {Z,} is transient then for all x with |x| > 1

(4.1.5) A(x) = Pr {inf, |Z7] < 1} < 1.

If m=1 and {Z,} is transient either 2 '(x) = Pr {inf, |Z;*| < 1} <1 for all
x > 1 or forall x < —1 (or both).

Before proceeding further we note that some of the results of this chapter
generalize to the case where f* is replaced by a “smooth” positive function, say f,
but we do not concern ourselves here with such possible generalizations.

In order to answer the question posed at (4.1.3) we will also have occasion to
consider the related problem of minimizing

(4.1.6) [xeo [VEG2f*(x) dx
for piecewise differentiable functions satisfying
@4.1.7) k(x) = k'(x) for x¢ 0

where O is a bounded open set and k&’ is a given nonnegative piecewise differentiable
function. If the infimum is finite a unique minimizing solution always exists for
this problem. It is the unique function satisfying (4.1.7) and

(4.1.8) ii k;;(x)+:1 (ff* 8) ki (x) =0

for x € O where (k;'(x) = (0/0x;)k, etc.). Note, k = 0.
We will have occasion to use the following version of Harnack’s inequality (see,

e.g., Serrin (1956)). If k satisfies (4.1.8) for all xe O and k £ 0 and C = O is
compact then thereisa b < oo such that

4.1.9) sup..c (|VA)|/k(x)) < b < oo.

We note that 4 in (4.1.9) need not be a function of O or k' if O is sufficiently
large. More precisely, let O" o C be an open set. Then the bound b may be chosen
so that (4.1.9) is satisfied for all O = O’ and all nonnegative k'

4.2. Lemmas. In this section we prove some lemmas which we need for the proof
of Theorem 4.3.1. Lemma 4.2.1 is strictly probabilistic, and provides the key to
our proof of Lemma 4.2.2, whose conclusion is of an analytic nature. Lemma 4.2.3
applies only in the case where {Z,} is recurrent. Its conclusion is similar in nature
to that of Lemma 4.2.2, but is somewhat simpler.

For this section and Sub-section 4.3 we will use the following definitions:
OR = {x:|x| > land|x| < Rorx¢ K™}.(O"isopen, but not necessarily bounded.)

TR® = inf {£:Z* ¢ O®}.
Note that Tx* is a random quantity since it is a function of the sample path.

LemMA 4.2.1. Fix R < oo. For any x € OR
4.2.1) Pr {T3z* < w0} = 1.
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ProoF. We begin by noting that it can be computed from the infinitesimal mean
and variance of Z, thatif x ¢ K

4.2.2) lim,_, o E(d(Z*)—d(x))/t = —1(x)+d() < _d(tz;(;x)l

where

v(x) = [(x=n(x))- p(x)|/d(x) = d(x).

If x ¢ K™ we have from (4.2.2)
(4.2.3) lim,,q E(d(Z)—d(x))/t < —1.

For this paragraph only let

() = inf (¢, inf {t:Z,* € K™}).

It follows from (4.2.3) that for x ¢ K™ d(Z7.,) is a continuous super-martingale
bounded below by m. Furthermore, for any x
4.2.4) Pr {3taZ e K"} > 0.

[Note: (4.2.4) remains true if the superscript m on K™ is replaced by any f > 0
though the above reasoning does not quite supply a proof. However, it may be
false if m is replaced by 0. For example, suppose m = 3 and K = K° is a one-
dimensional subspace; then Pr {315 Z,* e K°} = 0if x ¢ K.] (4.2.4) and the super-
martingale property imply that for all x

(4.2.5) Pr{dt5Z e K"} =1,

see e.g. Lamperti (1960, Theorem 2.1).
Define (for this paragraph only)

Y(x) = Pr {3t = 05Z>¢ OR).

The complement of OR has a non-empty interior in E™. Using standard proba-
bilistic arguments it can be shown from this and the definition of {Z,} that for all
X, Y(x) > 0. ¢ is a continuous function. For x e K™ with |x| = R, y(x) = 1. It
follows that

(4.2.6) a =infi, . cgm |xj<ry P(X) > 0.

(4.2.5) and the Markov property of Z,* imply that y(x) = y(x)+ (1 —a)a for all
x € K™, |x| < R. Then for all x € E™ (4.2.6) yields

Pr {3t < 0:Z ¢ OR} = 1.
That is to say, (4.2.1) is satisfied, which was to be proved.
LEMMA 4.2.2. Let k;; be piecewise differentiable functions on E™ satisfying
0=sk;=s1
kij(x) =1 x| 1
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foralli=2,3,---,j=0,1,---. Letg;, i = 1, 2, ---, satisfy lim
k; satisfies the Euler equations—(4.1.8)—on

g; = 0. Suppose

i— o0

Sy ={x:11 <|x| <i, or x¢K" and iZ|x|<i+j}
and there is a sequence I, such that

kif(x) = Ii(x) = ¢ for xe K™, |x| > i
Then

4.2.7) - lim,,, lim o, ki(x) = #(x)

where the above limit exists and for each i lim;_, ,, k;;(x) is uniform on all compact
sets C such that C < O', and lim,_, , k;(x) > A'(x) uniformly on all compact sets
Cc {x:|x| > 13}. (A is defined by (4.1.4.) [Note: lim;_, , S;; = O'.]

j— o
Proor. For this proof only, define T;; = inf {#:Z,* ¢ S;;} and 1{;(t) = inf (¢, T})).
Since §;; is bounded, T;j < co with probability one. Since k;; satisfies the Euler
equations on Sy;, k;(Z7, «) is a Martingale. This is immediately seen from the
fact that the operator on the left of (4.1.8) is the generator of the diffusion for
x € S;; (see e.g. Itd and McKean ((1965) page 304) or Dynkin ((1965) page 159).
Thus for xe S;;

(4.28) kif(x) = E(kifZ5)-
For this proof only, define the random variables
ol = SUPo< <1 | Z..

Lemma 4.2.1 and the continuity of the diffusion paths guarantee that o,” < oo
with probability 1. It follows that for each fixed x € S;

Pr{Zixe K"} +Pr{|Zfs| =1} > 1

as j —» oo with each term on the left having a limit as j — oo; and, further, that
Z7x has a limiting distribution as j — oco. Thus, for all x e S;; lim;_, k;;(x)
exists and satisfies

(429) lim; ., Pr{|Z7; | =1} S lim; , kij(x) £ g+ (1—¢) lim, , Pr{|Zjz|= 1}

Let C be a compact set such that C = O'. For all j sufficiently large, say j > J;,
{x:x =y+z,yeC,|z| <J '} = S;;u{x:|x| = 1}. Using Harnack’s inequality it
follows that there is a bound b, say (depending on C), such that |Vkij(x)| < b for
all x e Cand j > J;. Since each k; is a continuous function it follows that the limit
lim;_, , k;;(x) is uniform on C and that the functions lim;_, , k;;(x) are uniformly
continuous on C.

For this paragraph define 7% = inf {r:|Z*| < 1}. (Note that Pr {T* < o0} =
A'(x).), and let ¢* = SUP <, <7~ Z,"[. Again note that Pr {¢* < o0} = A (x), so
thatlim,_ , Pr {¢* < r} = o (x). It follows from this that

lim;, lim;_, , Pr {|Zfz| = 1} = #(x).
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Hence from (4.2.9)
(4.2.10) lim,, , lim;, , k;;(x) = A'(x).

If C = {x:|x| > 1} is a compact set then for all i > I, say, C = O'. From the
uniform continuity on C of lim;_,, k;;(x) which was established above it follows
thatlim;._, ,, k;;(x) > ' (x) uniformly on C. This completes the proof of the lemma.

LeMMA 4.2.3. Suppose {Z,} is recurrent. Let k;eJ, i = 2,3, -, be a sequence
such that ki(x) = 1 for |x| £ 1, k(x) = 0 for |x| = i, and k; satisfies (4.1.8) on
{x:1 < |x| < i}. Thenif C = E™is a compact set k(x) = 1 uniformly on C.

ProOF. The proof is similar to that of Lemma 4.2.2, but somewhat simpler. For
this proof, define '

U*=inf {:|Z] £1 or |z =i}
{k{Z )} is amartingale for0 < ¢ < U;*. Hencefor 1 < |x| < i
ki(x) = Pr {|Z5.] = 1.

Since {Z,} is recurrent Pr {|inx| =1} -1 as i —» . Hence for each fixed
X ki(x)—> 1 as i— oo. By Harnack’s inequality, for all i sufficiently large
sup,.c [Vk{(x)| < co. Hence k,(x) — 1 uniformly on C which was to be proved.

4.3. The characterization. We are now in a position to prove the main theorem of
this chapter. As noted, this theorem gives an analytic criterion, in terms of f*,
for deciding whether {Z,} is transient or recurrent. As indicated in Sub-section 1.3
this analytic criterion plays a key role in the proof in Section 5. Corollaries 4.3.2—-
4.3.4 and the results in Section 6 give applications of Theorem 4.3.1.

Throughout this section we let ko, = | |[VA'(x)|*f*(x) dx where #" is defined by
(4.1.4). The set J, used below, is defined following (4.1.2).

THEOREM 4.3.1. {Z,} is recurrent if and only if

4.3.1) infi.,  |Vj(x)|2f*(x) dx = 0.
If {Z,} is transient then
4.3.2) infj; | |Vi(x)]*f*(x) dx = ko > 0.

{Z.} is recurrent if and only if there is a sequence k;eJ such that k,(x) = 0,
|x| = iand

4.3.3) lim,, ,, | |VEkx)>f*(x) dx = 0.

[Note: If {Z,} is transient and " € J then we clearly have equality in (4.3.2).
However, if o ¢ J, which is possible, then it seems likely that there may be strict
inequality in (4.3.2).]

ProOOF. We begin with the transient case. Suppose there is a piecewise differenti-
able function k € J such that

4.3.4) [ VKGO A *(x) dx = ko—&' < kq.
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Since k'(x) = sup (k(x), 1) € J and satisfies | |[VA'(x)|’f*(x) dx < [ |Vk(x)|*f*(x) dx
we may assume without loss of generality that k(x) = 1, |x| = 1. We will eventually
deduce a contradiction and thus show that no such function k can exist.

Given k as above define k;;(x), i,/ = 1, 2, -+, as follows: As in Lemma 4.2.2 let

Sy={x:1<|x| <i, or x¢K™ and i< |x| <i+j}

Let k;;(x) be the unique continuous function satisfying the Euler equations—
(4.1.8)—on S;; and

kij(x) =1 x| =1
ki(x) = k(x) || > 1, x¢ S,

From the minimization properties of functions satisfying the Euler equations
it is evident that

(4.3.5) |V ()2 *(x) dx = [ |VE)|2f*(x) dx < ko—¢'.
Choose R so that
(4.3.6) Jix1<r [VH @) f*(x) dx > ko—¢'/2.

It follows from Lemma (4.2.2) there is a sequence j(i) such that k;;;)(x) - A '(x)
uniformly for x| = R.

To save writing subscripts define k,(x) = k;;(;)(x).

It follows from Harnack’s inequality that there is a bound #’, say, such that for
iz R+1,|x| =R,

4.3.7) |Vk(x)| < b < oo and |VA(x)| < b

For any two twice continuously differentiable functions /, m, say, on 1 < ,x, < R,
each continuous at |x| = I and |x| = R and each satisfying the Euler equation—
(4.1.8)—on {x:1 < |x| < R} the appropriate version of the general form of
Gauss’ divergence theorem is

(4.3.8) J1<x1<r VI(x) - Vin(x)f*(x) dx
= Jixt=1, 151 =& L) (Vm(x) - n(x))f*(x) ds

where n(x) is the unit normal at x to the surface of {x:1 < |x| < R} in the outward
direction and ds represents the usual differential appropriate for the indicated
surface integral.

If in (4.3.8) we let I(x) = A (x)—k;(x) and m(x) = A (x)+k,(x) we have

f1 <|x|<R (lVf(x)lz - |Vki(x)|2)f*(x) dx
(4.3.9) = jl <1x)<r V(A (x) = ki(x)) - V(A () + ki(x)) /() dx
= Jixi=1, 1x = (F () = ki) (V(A (%) + ki(x)) - n(x))f *(x) ds.
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For |x| = 1, k(x) = #'(x), hence the only contribution on the right of (4.3.9) is
from the integral over the surface |x| = R. From (4.3.7) it follows that
V(A (x)+ k(x))-n(x) < 2b" < 0.

Hence using (4.3.7) in the remaining part of the integral on the right of (4.3.9)
yields

(4.3.10) J1<1x) < ([V2 (x)|? = |VK(x)|*)f *(x) dx - 0 as i— o0.

(4.3.10) contradicts (4.3.5)-(4.3.6) (since k(x) = k;j(;)(x)). Hence (4.3.4) must be
false. We have thus established that

infjelj |Vj(x)|2f*(x) dx 2 ko
which is (4.3.2).

It remains only to consider the recurrent case. If a sequence {k;} < J exists
satisfying (4.3.3), etc. then by the above {Z,} is recurrent. For the converse,
assume {Z,} is recurrent. For the remainder of the proof let k;/,i =1, 2, 3, -+,
be the continuous functions satisfying (4.1.8) on {x:1 < |x| < i} and

ki(x) =1 x| =1
ki(x) =0 |x| = i.

(The k; are uniquely defined.) Let 1(x) be the function which is identically 1 on E™.
Fix r < 0. By Lemma 4.2.3 k,(x) - 1 uniformly for |x| = r. Hence as in (4.3.8)-
(4.3.10)foranyr < o©

.f1 <|x]<r lei(x)lzf *(x)dx
(4.3.11) = [1 <11 <r ([VEO)? = [V1(x)|*)/ *(x) dx
=[x =r (ki(x) = D)(VE(x) - n(x))f*(x) ds = O as i— co.

By the minimizing property of solutions of (4.1.8) it follows that | |Vk,(x)|*f*(x)
dx is decreasing as i — 00. Suppose

(4.3.12) lim,, ,, | [VE(x)|*f*(x) dx = & > 0.
For this proof let « be an integer sufficiently large so that
[ |VE ) f*(x) dx < 3e/2
and let # > o be sufficiently large so that
[ <ixt<e [V, (0) < 8.

(The existence of B is guaranteed by (4.3.11).) Let k'(x) = (k,(x)+kp(x))/2.
Since k'(x) = 1, |x| £ 1 and = 0|x| = B the minimal property of k, implies

(4.3.13) JIVE (0f*(x) dx < [ [VE'(X)]2f*(x) dx.
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Using Cauchy-Schwarz and the fact that k,(x) = 0 for |x| > «
[ VA GO *(x) dx
= () [ |VA(x) + VEg ()| *(x) dx
(4.3.14) < @) J VeGP *(x) dx
+ @) f1x1<a |VEL(X) - Viy(x)| f*(x) dx
+@) J VA2 *(x) dx
() Be/2) + BNy 2o [VELX)|f*(x) dx)*
(vt <o [VER2F*(x) dx)

lIA

< &

(4.3.14) contradicts (4.3.12). Thus lim,.,, | |[Vk(x)]*/*(x) dx = 0 which proves
the assertion at (4.3.3). (4.3.1) is an immediate consequence of (4.3.3) and (4.3.2).
This completes the proof of the theorem.

The result below could also have been deduced directly from Lemma 4.2.1, but
we prefer the following proof since it gives a simple application of Theorem 4.3.1.

COROLLARY 4.3.2. If K is compact then{Z,}is recurrent.
PROOF. For this proof let p = supy [x| < o0. Also, F(K) < 0. For |x| > p

(4.3.15) FHx) £ F(K) exp (= (|x] = p)*/2)/2r)""2.
Let j(x) = 1, |x| = i, exp(—(|x| =) for |x| > i. Then j(x)eJ, and for i = p
we have
@3.16) [ [Vi)Pr*(x) dx
= (F(K)/Q21)™2) [ 15> 1 exp (= 2(|x| =) exp (— (|x| = p)*/2) dx - 0

asi — oo.
(4.3.16) and (4.3.1) establish that {Z,} is recurrent.
We can use one consequence of Theorem 4.3.1 in the proof of Lemma 5.4.1.
Applications of the following corollary of statistical interest are presented in
Section 6.

COROLLARY 4.3.3. Suppose there are positive constants b, b,, b, such that for
|x[ > b,

4.3.17) fH*x) = bllx|2“'"“’2.
Then {Z,} is transient.

ProOF. Since, from Lemma 3.1.4, f*(x) < exp (—d*(x)/2)f*(n(x)) it can be
deduced from (4.3.17) that K = E™.
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Let by = inf|,<p, /*(x) > 0 and let b, = min (by, bsy/by?~™*P2). Then f*(x) =
by|x|> ™" " for |x| > 1. ForanyjeJ

a 2
(4.3.18) FIVIGOPf*(x) dx 2 by fje=1 <a_rj(x)> B

where r = |x|. Let (r, ¢) denote spherical co-ordinates on E™ with r = |x| and
dx = w,(p)r™ ' drdp. For simplicity we let k(r, ¢) = j(x(r, ¢)). We rewrite
(4.3.18) as

2

rttbe dr,

0
43.19) [ |V/@Pf*(x) dx 2 by J 0,(0) do Jo 1 |2 k(r, )

The infimum of the right-hand side of (4.3.19) over all k such that k(1, ¢) = 1 and
lim,, , k(r, ) = 0 may be explicitly computed from the appropriate Euler
equation (which here is an ordinary differential equation). The minimizing choice
for k is k(r,p) = 1|r| = 1 and k(r, ¢) = bs 7 s~ """ ds for |r| > 1 where
bs = (P s~ 1+ ds)™! > 0. We have

(4.3.20) infjc; [ |V f*(x) dx = bybs* [T 5740 ds = bybs > 0.

The result of Theorem 4.3.1 immediately completes the proof of the corollary.
In a similar manner we can prove the following, some applications of which
are also given in Chapter 6.

COROLLARY 4.3.4. Suppose there are positive constants b, and b, such that
f*x) = b1]x|2""’_b2. Then {Z,} is recurrent.

PROOF. Let
Jix)= 1 |x| =1
= 0 x| =i
(=D~ 1) 1<y <.
It can then be computed that
J Vi) *(x) dx — 0 asi— o

which implies that {Z,} is recurrent.

4.4. A mean value representation. In equations (5.7.9)-(5.7.11) we will need a
representation of the form j(x) = [j(»)q,(y) dy for certain solutions of the dif-
ferential equation (4.1.8) in the case where ]yF(x)[ is bounded and {Z,} is recurrent.
Here, ¢, is a probability density on the ball of radius one with center x. We will also
need certain additional facts about the functions ¢,, as described in Lemma 4.4.2
below. We remind the reader that (4.1.8) may be written V-(f*x Vj) = 0.

One minor complication in the following is that we need the above representation
for all x whereas we will eventually only be able to assume j satisfies (4.1.8) for
|x| > 1 and for |x| < 1. For this reason we first prove a result of the desired type
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for the general case where (4.1.8) is satisfied everywhere in the ball of radius 3
about x. This is Lemma 4.4.1. Then we prove the lemma we need for our special
case.

The following Lemma is a special case of a result due to J. Bramble ((1963), and
personal communication).

LeMMA 4.4.1. Suppose |Vf*/f*| < B < 0. Then there is a C < oo, depending
only on B and m (not on f*) and a family of probability densities {r.}..pm on the
ball of radius % with center x such that r, < C and

4.4.1) J&x) = [iO)Ir(y) dy
for all j satisfying the equation V-(f*x Vj) = O on {y:|y—x| < 3}.
PROOF. Let p = min (1/4m, 1/8B). For |x—y| < plet
(442) s(x,y) = o(X)(x=y)-V*@)/|x=y|"+ @ =x)-V*Q)/|x—y|" " *p?
+H)2]x=y" "))
For|x—y| 2 pdefine s(x, y) = 0.1n (4.4.2) o(x) is chosen so that
(4.4.3) [s(x,y)dy = 1.
Note that since |(y—x)-V/*(»)| < |y—x| |[V/*(»)| we have
444 s(x, ) 2 o@)G]x—y["Fp* = Bllx—y" !
— Bl|x—y|" ) f*)If *(x).

Observing that |x— yl < p £ B we immediately see that s = 0. Noting further
that f*(»)/f*(x) = exp (—B|y—x|) we also see that there is a bound ', say,
depending only on B and m such that w(x) < w'.

It is shown in Bramble (1963)* that for m = 2 for any j satisfying (4.1.8) on

{yifx—y| < p}
(4.4.5) Jx) = [j()s(x, y) dy.
This result is also valid for m = 1. Since s is not bounded it is not sufficient for

our purposes to define r(y) = s(x, y). However, we may let

(4.4.6) rdy) = fs(x, t)s(t, 1) - (o ¥) nizf1 dr;.

2 In brief, Bramble’s argument for the case m = 3 is as follows. Let
T(x, ») = (@(0)/(m=2))(|x—y|>~"+ p*~ [2%a— (m—2)|a| x — y|-p*)

where o = 2m—15)/2. With w(-) as above, I is a “parametrix’’ (see, e.g. Miranda (1955)) of the
operator V - (fP*V) (operating with respect to y) and satisfies ' > 0 for 0 < |y—x| < p and
VI - (y—x) = 0 on thecircle|y—x| = p. The operator isself adjoint, and s(x, y) = V - ( f*VI).
It follows by standard techniques using the above properties of I that (4.4.5) is satisfied.
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Since s(z, -) is a probability density, so is r.(-). Since p < 1/4m, r(y) = 0 if
Iy—x| > 1. We note that

44.7) 50, 3) £ OB+ 1) e¥]|x—y|"~tpt,

The derivation of this inequality is similar to that of (4.4.4). Note that w(x) < w’.
Hence

(4.4.8) 1)) £ (' (2B+1) et[pt)2m+1
oo et go i -t 2o 1y —tami 20 X = L [F [t =127 [ty — y[F 7 TI2M, dy.

The right side of (4.4.8) is bounded by a constant independent of x, y. Hence
there is a C < oo such that r,(y) < C for all x, y. Finally it is possible to compute
directly from (4.4.5) and (4.4.6) that

Jx) = [jO)ry) dy.

This is the desired result, and the proofis complete.
We now derive the exact representation we need.

Lemma 4.4.2. Suppose j, j < 1, is a continuous function, twice continuously
differentiable on {x:|x| > 1} and satisfying j(x) = 1 for |x| < 1, and V-(f*Vj) = 0
on {x:|x| > 1}. Suppose |Vf*|f*| < B'. Then there is a C' < oo depending only on
B’ and m (but not on j or f*) and a family of probability densities {q.} on the ball of
radius one with center x such thatq, < C' and

(4.4.9) Jx) = [i()gx(y) dy.
[Note: For |x| < § the choice of ¢, may depend on j.]

PRrOOF. Let {r,} be as in Lemma 4.4.1. From the properties of j described above
it follows immediately that j is a superharmonic function. Hence it is reasonable
that

(4.4.10) Jx) = [jO)r(y) dy

for all x € E™. Rather than follow this line of reasoning further, we use below a more
explicit method to establish (4.4.10).

For this paragraph fix x, 1 < |x| < . For |z| = 1 let v,(z) denote the value of
the normal derivative of j to the surface of the sphere {z:|z| < 1} from the outside
of the sphere. Since j < 1 everywhere and j = 1 on the sphere {z: |z| < 1} we see
that v/(z) = O for all z:|z| = 1 (that is, V*j(z)-z < 0 where

V+j(2) = limx—»za]x|>|z| V](X)

when these concepts are well defined). Possibly v;(z) = co. In Bramble ((1963)
(2.7) it is shown that since j satisfies V-(f*xVj) =0 on {x:|x| > I} and
{x:]x] < 1}

Jx) = [JIr») dy+ {5121 v()OTL(») dy
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where T' (y) = 0. (In Bramble (1963) T is constructed so that f*V?*T' +Vf*.VI =
r..) Hence, (4.4.10), j(x) = [ jO)r(y) dy, for 1 < |x| < 3. (4.4.10) is obviously
valid for |x| = % (with equality), and it is also valid for |x| < I sincej < 1.

For this proof only let L, = {y:|y| < 1, |x—y| £ 1} and for |x| < % let

p(») = 1/fr . dy  yelL,
=0 otherwise.

Dw

For |x| < 3, pu(») = 1/f,. dy < oo where |z| = 3. For |x| <

(4.4.11) 1 = [j()py) dy 2 jx).

(4.4.10) and (4.4.11) together imply the existence of an «, 0 =< «, < 1such that, for
x| <2

(4.4.12) Jx) = [jO) e () + (1 =0 )p.(y) dy.
Define
7:(») = r.(») x| = 3
= o, (1) + (1 =0 )p(») |x| < 3.

g, satisfies (4.4.9). Since g.(y) < sup (r(»), p(»)) for |x| < 3 it is possible to find a
C’such thatg,(y) < C’forall x, y. This completes the proof.

5. Statement and proof of the main theorem.

5.1. Statement of the theorem. To facilitate the division of the proof we state the
theorem in two parts. The first is our necessary condition for admissibility, the
second is our sufficient condition.

Before the statement, we remind the reader that {Z,} is the diffusion in E™
with local mean Vf*/f* = V(logf*) and local variance 2I. Section 4 presents
several relevant properties of this diffusion, including a criteria for deciding
whether {Z,} is transient or recurrent (see Sub-section 4.3). Examples concerning
special cases and other related results using Theorem 5.1.1 can be found in Section 6.
We also remind the reader that the set K is the closed convex hull of the support of
F, whichis also given by {y + Vf*(»)/f*(y):y € E™} (see Lemma 3.2.1 and the remark
following it).

THEOREM 5.1.1. A necessary condition for 0 to be admissible is that there exist a
nonnegative measure F such that f* < oo and d(x) = 6x(x) for almost all x in E™
(with respect to Lebesgue measure). Furthermore

(A) If {Z,} is transient then 0 is inadmissible

(B) If{Z,}isrecurrent and

(5.1.1) SUP,ex [7r(X)| = B < ©

then 0 is admissible.
Note that Theorem 3.3.1 establishes that (5.1.1) is equivalent to

supgx R0, 0) < co.
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Before proceeding further we remark that the first sentence of Theorem 5.1.1
is a restatement of Theorem 3.1.1 and hence need not be reproved here.

5.2. Proof of Part A. The proof of Part A of Theorem 5.1.1 is essentially con-
tained in Sections 3 and 4 as outlined in the introductory Sub-section 1.3. (For
simplicity Sub-section 1.3 only considered the case where K = E™.) We review
the main steps below. We begin by assuming that {Z,} is transient.

Stein’s necessary condition for admissibility states that 6 = 0y (a.e.) is admissible
only if there is a sequence of nonnegative finite measures G; satisfying the con-
ditions «7,": G,({0}) = 1, and &%, : G, has compact support, and such that

(5.2.1) FIVI)|P*(x) dx =0

where J(x) = (g,5(x)/f*(x))?. This result is contained in Sub-section 1.3 through
(1.3.4). It is also remarked in Sub-section 1.3 that without loss of generality we may
assume ./,:j,(x) = 1 for |x| = 1 in place of 7, and we will do so here. j is
clearly a continuously differentiable function.

Lemma 3.5.1. states that condition %, implies the condition

'@2/ :limr—wo Sup{x :xeKm, |x| =r}ji(x) =0.

We remark that since {Z,} is transient K is not compact (Corollary 4.3.2.). Hence
for all sufficiently large r, K™n {x: |x| = r} is not empty, and the condition %,’ is
not an empty one.

We established in Theorem 4.3.1 that since {Z,} is transient there is a k. > 0
such that for all continuously differentiable j the conditions &75:j(x) = 1 ]x[ =1;

and #;:1im, ., ,, SUPgmn (x| =r.J(x) = 0 imply
FIVi)|? f*(x) dx = ko > 0.

Hence it is impossible for there to exist a sequence G; satisfying o/,’, 4,, and
(5.2.1). This establishes that ¢ cannot be admissible. The proof of Part A of the
theorem is complete.

5.3. Construction of a “‘smooth” recurrent diffusion. We now begin the proof of
Part B of the theorem. This section contains a lemma of a rather technical nature
which is needed only in the case where K # E™. The proof in Sub-section 5.7 is
valid and may be understood in the case K = E™ without the result of this section.

We need the result of this section for the following technical reason: If K # E™
then V/*(x)/f*(x) is not bounded. Hence given k < oo there is no bound k,, say,
such that ]y—x] < k implies f*(»)/f*(x) < k, uniformly in x, y. However, as we
have constructed our proof we need a bound of this type at the step (5.7.12). Also,
as we have constructed our proof we need a similar smoothness result for the
functions j; which appear in (1.3.6). The result of this section is a useful tool for
proving the existence of such smooth j; when K # E™, which will be done in the
next section. Part B of the theorem can probably be proved without either of these
technical results, but we have not found a shorter or more direct alternative proof.
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Given F, satisfying (5.1.1) we will construct another generalized prior satisfying
the conditions described in the lemma below. We call this prior F, and we denote
the diffusion corresponding to F, by {Z,'} and the estimator by x+y,(x) =
x+Vf1*(x)/f1*(x)-F; Z Fmeans that for all measurable 4 < E™, Fi(A) = F(A).

LEMMA 5.3.1. Suppose F is such that {Z,} is recurrent-and (5.1.1) is satisfied.
Then there exists a measure F, such that F, > F, SUDcpm ]yl(x)l < B, < o0,
(hence Ky = E™),and {Z,'} is recurrent.

PrROOF. Define

(5.3.1) Fy(d0) = F(dO)+f*(n(0)) e *® do.
Clearly F; > Fand K, = E™ ‘
A general geometric fact is that for 0,, 0, € E™

|d(0,)—d(0,)] < |0,—0,|
and

A

l”(91)_”(02)l = IBI_HZI'
Hence as [0, —0,| > 0

JH(@(0, )™ —f¥(n(6,))e ™
(5.3.2) =f*(@(0y) (e7 ) = &™) 4 e 71 fH(n(0,)) - £ *(n(6,)))
S H(R(0,))e ™00, — 0, |+ e YO fH(r(0,)) (e B2~ 01 1),
Denoting f*(n(0)) e™*® by ¢(0) it follows from (5.3.2) that

(5.3.3) [Ve(0)/0(0)| < B+1.
Hence, from Lemma 3.4.1 ¢*(x) = [ pa(x)p(0) d0 satisfies

(5.3.4) [Vo*(x)/p*(x)| < B+1

and

(5.3.5) 9*(x) 2 27" eI 2g(x) = 27 e~ BT2 ) ().
From Corollary 3.2.3 there is a constant ¢, such that

(5.3.6) [V ()] £ {1 +d(x).
Substituting the definition of ¢, and then using (5.3.5) we see that

(5.3.7) [Hx) £ e fH(a(x)) = exp (—d*(x)+d(x)p(x)

< 2"exp (—d?*(x)+d(x)+ B+ 2)p*(x)
f1* = f*+¢*. Hence 4
[VA*)| = [V *(x)+ Vo*(x)|
= LI+dx))*(x) +(B+Do*(x)
Cfi (o) + L d(x)f *(x) + @*(x)
G S (%) +kyo*(x) + 9*(x)
B, f1*(x)

(5.3.8)

IAIIA A
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where here k, = sup {,d(x)-2™ exp (—d*(x)+d(x)+B+2) < o0 and B, =
L4k +1.

It remains only to prove that {Z,'} is recurrent. We shall do this by showing
that for each ¢; > 0 there exists a piecewise differentiable function, j;, satisfying

(5.3.92) Jix) =1 |x| =1
(5.3.90) lim,_, o, Sup|<|=,/i(x) =0
(5.3.9¢) J Vi) f1#(x) dx < e;.

When this is established the recurrence of {Z,!} then follows immediately from
Theorem 4.3.1. .
Since {Z,} is recurrent, given ¢ > 0 there is an R > 0 and a piecewise differenti-
able function j satisfying
Jjx) =1 x| =1
jx) =0 |x| = R
J VIO *(x) dx < e.

We remind the reader that K' = {x:d(x) < 1}. Let n,(x) be the projection of x
on K' and let d,(x) be the distance of x from K'. Thus d;(x) = sup (0, d(x)—1) and
|x— ni(x)| = d,(x). Given ¢ > 0, R, and j as above we may transform the variables
in the following integral from x to 7, (x), d,(x) to get

(5.3.10) &2 [ cupmy<2 |VIC)IPf*(x) dx
= j0<d1<1 ”V](x— l(nls dl))lzf*(x—l(nl’ dl))Jl(nl’ dl)dnlddl

where J, is the Jacobian of the indicated transformation and dn, is the appropriate
Lebesgue differential on the boundary of K'. The geometry of the situation
(especially, K convex) guarantees 1 < J, < d™ ! = (d, +1)""*. It follows from
(5.3.10) that there isa value 8,1 < 8 < 2, such that

(5.3.11) Vi (g, B[S *(x™ ey, B) dry < e

With B as above, we consider the set K# and let my(x) be the projection of x on
K" and djy(x) be the distance of x from K”. Define (for this section only)

(5.3.12) J1(%) = j(my(x)) exp (—oddy(x))

where o > 0 is a small positive number whose value will be specified later. Clearly
J satisfies (5.3.9a) and (5.3.9b). We first write

(53.13) [ VAGPS*@) dx = fio Vi (]S %(x) dx
+ [pmxe [V (021 ¥(x) dix.

It follows from (5.3.4) and Lemma 3.4.1 that ¢*(x) < (exp (B+1)*+2™)p(x).
From Lemma 3.1.3, £ *(x) = e~ ?8%2) f*(n(x)) for all x € K*. Hence for x € K*

@*(x) = (exp (B+1)?+2"7) P72 f4(x).
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It follows thereis a k, < oo such that for all x € K#

(5.3.14) S15(x) = kyf*(x).
Hence
(5.3.15) Txo [VIGOPS () dx < Ky [xe [V *(x) dx < ke

For the second integral on the right of (5.3.13) we begin with the change of
variables

(5.3.16) jE"-—K" |Vj1(x)|2f1*(x) dx
= jd,,> 0 _f Ile(x_ l(np, dﬁ))lzfl*('x— 1(7% dp))-’z(ﬂp, dﬂ) dnﬂ ddﬁ

where (as in 5.3.10) J, is the Jacobian of the indicated transformation and dng
is the Lebesgue differential on the boundary of K. J, < (d/p)"~" < (d;+1)""'.
From the definition (5.3.12) and a computation similar to that in the first part of
(5.3.2)

(53.17) V()] = [V/ry(x))] exp (— ady(x) + iy () exp (= ().

We recall /1*(x) = f*(x)+¢@*(x). Furthermore, f*(x) < e~ %2 f*(n,(x)). Com-
bining (5.3.3) and Lemma 3.4.1 we see that

@*(x) = (exp (B+1)*+2"")p(x) = (exp(B+1)*+2"2) e ™4™ f*(n(x))
= (exp (B+1)*+2"2) ™™ o(x(x))
< (2n)"? eB*E (exp (B+1)2 +2™2) e 71 o¥*(n(x)).
Hence there is a constant k5" such that
Ji¥(x) £ ky' e fH((x)).

We note using (5.3.6) that f*(ns(x)) = e~ **' f*(n(x)). Hence there is a constant k,
such that

(5.3.18) S1¥(x) £ kg e™®) fH(my(x)).
Jem—xe [V 1% (x) dx
(5.3.19) = ks JJag> o [ViCrp)|? exp (= (1+@)dy) f*(mg)(dy + 1)~ dryddy

k30t [fap>07(mg) exp (— (1 +w)dp)(dy+ 1)"~ f¥(ry)dny ddp.

By (5.3.10) the first integration (with respect to ;) in the first expression on the
right of (5.3.19) is < e. Since j(x) = 0 for ]x[ 2 R the first integration in the second
expression is finite. Foro < 1

J @+ 1"V exp (—(1 +a)dy)dd, < (m—1)! €2,
Hence for o sufficiently small

(5.3.20) Jem—xo [Vi O #(x) dx < ky(m—1)1 e%e+e.
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It follows from (5.3.13), (5.3.15) and (5.3.20) that given ¢, it is possible to choose
¢ and « so that with j; constructed as above, j; has the desired properties (5.3.9).
As remarked at (5.3.9) this completes the proof of the lemma.

5.4. Construction of a smooth minimizing sequence. We assume throughout this
section that (5.1.1) is satisfied. If K # E™ let F, be as in Lemma 5.3.1 of the
preceding section, and if K = E™ define F; = F. In either case there is a B, < o
such that |V/,*(x)|/f;*(x) < B, for all x € E™, and the diffusion {Z,'} correspond-
ing to Fy is recurrent. The result we need is described in the following lemma.

LeMMA 5.4.1. Let F, be as above. Then there exist constants B, < o0, By < o
Jor which the following is true: For each ¢ > O there is a continuous positive function
J» continuously differentiable on {x:|x| > 1}, such that j(x) = 1 for |x| =Lj=1,
and

(5.4.1) Jj(x) £ B, exp (By|y—x]) forall x, y € E™
and

(5.4.2) J7*O)F(dY) = [j*(0)F,(dO) < o,

and

(5.4.3) JIViG)PPf () dx < e,

and there exists a family {qy:0 € E™} of probability densities on E™ such that
Go(x) = Oforlﬁ—x] > 1;q4(x) = By < o0 forall 0, x; and

(5.4.4) J0) = [j(»)ae(y) dy.
PRroOF. For this proof define the measure H by H(d0) = exp (2B,|0]) d0, and

define the measures H;, i 2 1, by H, = F,+(1/i)H. (H, is not related to the
functions /i; of Sub-section 1.3.) Using Lemma 3.4.1 we see that

(5.4.5) hi*(x) > h*(x))i = (2m) ™12 ¢~ 2814 p2Bill ;.

It then follows from Corollary 4.3.3 that the diffusion generated by H, is transient.
Again using Lemma 3.4.1, |Vh*(x)|/h*(x) < 2B, hence

(5.4.6) [VA#(x)|/h*(x) < 2B,.

There is no loss of generality in assuming B; has been chosen so that B, > 1.
For convenience we will do so in this proof.

Observe that since |Vfi*(x)|/f,*(x) < By, logf,*(x) = O(B,|x|) as |x| - 0.
From 5.4.5 it then follows that f,*(x)/i*(x) — 0 as x| —» co. Let (r, p)(r = |x|)
denote spherical coordinates in E™. It can be checked directly from Vi*(x) =
[ (0—x) exp (2B,|0)py(x) dO that (3/dr)h*(x)/h*(x) » 2B, uniformly in |x| as
x| = co. Since /,*(x)/h*(x) - 0 as |x| > oo and |[V/,*(x)|/f,*(x) < B, this implies

0
(5.4.7) Ey hi*(x)/h*(x) — 2B,
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uniformly in |x] as |x| - co. This and (5.4.6) imply (6/0y)h;*(x)/h;*(x) - O uni-
formly in |x| and ¥ as |x| - oo for all unit vectors y perpendicular to r = x/|x].
Fixi. Letb. > I be sufficiently large so that for |x| = b-

4 %
33 )

for all unit vectors ¥ perpendicular to r. Let {Z,?} denote the diffusion generated
by H, in the prescribed manner, and let

A (x) = Pr {inf,. er'(i)l < IIZO/(i) = x.

(5.4.8) [hi*(x) < B[4

(This o; is to {Z,;/ P} as A of (4.1.4) is to {Z,}.) A, satisfies the equation

V- (h*VA ;) = 0on {x:|x| > 1} subject to the boundary condition #"(x) = 1 for

|x| < 1. Forallx, # (x) < 1. Consider the function

(5.4.9) K(x) = 1 I < b
= kg Ji5 (B2 )ym=1) dy x| > b

where k™' = [ (e7*®1?/y"~1)dy. By rewriting the operator V-(h*V) in
spherical coordinates and using (5.4.8) and (5.4.9) it can be checked that

(5.4.10) V. (h*VK(x)) > 0

for |x| > b.. (5.4.10) uses By = %.) Since K(x) 2 A (x) for |x| = b. it follows
from (5.4.10) that

(5.4.11) A (%) £ Ki(x) for |x| = b..

[This result is fairly standard, however a quick proof on the lines of our proofs in
Section 4 is as follows: (5.4.10) implies K(Z,?) is a super-martingale when
|Z,/ ] > bo. A (Z,P) is a martingale on the same region. Start the process at the
point x, |x| > b. and let T be the first time |Z,/®|=b,. If T = oo define
J{(Zy' ) = 0 and A" (Zy'P) = 0. Then Ki(x) = E(K(Zy' D)) 2 E(A (Z;' D)) =
A (x).] [Incidentally, (5.4.11) provides an alternate proof that {Z; (7} is transient.]
Finally, note that since f;*(x) = O(exp(B|x)), it follows that [jg— <1 F(d0) =
O(exp(B,|x|)). Hence

[ (0)F(d0) < [K*(6)F(d0)
(5:4-12) < fioy<b. 1 K (OF(d0) + [(supig—ny <1 K2(0)
'_[|x—0|<1 F(d0))dx < oo.

An important additional fact to notice is that (5.4.11) guarantees that 4 ,cJ
where J is the class of functions described at the beginning of Sub-section 4.1.
Hence

(5.4.13) infie; [ |Vi()|?h*(x) dx = [ |VAH (x)]*h*(x) dx.
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(See the remark following Theorem 4.3.1.) Since {Z,'} is recurrent, given ¢ > 0
we may find a piecewise differentiable function s and an R < oo such that
s(x) =1 x| =1
s(x) =0 |x| > R
Vs *(x) dx < gf2.

(See Theorem 4.3.1.) For i sufficiently large, say i = i,, h;*(x) £ 2f1*(x) for all
x:|x| < R. Utilizing (5.4.13) we then have
(5.4.14) JIVA  (0))PhE(x) dx £ |Vs(x)|2h?:(x) dx

2 2[|Vs@)Pfi*(x) dx < e.

Given 1 > & > 0 set j(x) = A, (x). (5.4.14) verifies (5.4.3) and (5.4.12) verifies
(5.4.2). The appropriate form of Harnack’s inequality (see Serrin (1956)) verifies
the existence of a B,’ such that /*(y)/f*(x) < €®'"~*I for |x|, |y| = % (say). For
0 < ¢ = 1 there is a bound b, such that infy.,<, inf,; <3 #"; (x) > b,. Choosing
B, = sup (B,', b, 1) (5.4.1) is satisfied. (B, depends only on B, and m.) (5.4.4)
follows immediately from Lemma 4.4.2. The proof of the lemma is complete.

5.5. Preparatory lemmas. We prove here three technical lemmas to prepare for
the proof in Sub-section 5.7. The last (and most interesting) of these lemmas is an
integration by parts inequality in £™. (These lemmas could also have been proved in
Sub-section 3.2, but since they were not needed before now, we have deferred their
proof to this point.)

LeMMA 5.5.1. Suppose F satisfies (5.1.1). For any constant k there is a 1 < o
such that for all x € E™

(5.5.1) [ e =0 py(x)F(dO)/f*(x) = e™ ).
Proor. We use Lemma 3.2.2 to write
§ €197 po(x)F(d6)/f*(x) < { e ™

where 1 < { < oo is a constant depending on k. py(x)F(d0)/f*(x) is the mass
element of a probability distribution. It follows using a Chebyshev type argument
that for s = (log 2¢ + {d(x))/k (so that & = 2 e,**™)) we have

j|o—x|gspo(x)F(d9)/f*(x) z 4

Hence
fe M==0 p(x)F(dO)/f*(x) = e7*[2 = (20) * e %™)2.
The choice 2 = 2-(2{)* is certainly sufficient to yield the desired result.

LEMMA 5.5.2. Given k; < o there is a k, < oo such that for all x, 0 € E™

(5.5.2) ehilx0l po(x) S k, j|./,|<k1+1p9+,l,(X)dlﬁ.



892 L. D. BROWN

Proor. Without loss of generality we may and shall assume for this proof that
0 =0and x = (x(,0, -+, 0), x; = 0. For this proof only let

T={{:yeE" Y| <k +1,x7—kyx, = |x—y|* =2k}
It is easily checked that [ diy > 0 and €'1*™% py(x) < e®** py, ,(x) for all Y e T.
Let k,™* = e~ 2" [, dy. Then
k, j||//|<k1+1 Po+./,(x) dy >k, ITP9+w(x) ay
> Ky 501 py(x) €724 gy = I ),
This completes the proof of the lemma.

LEMMA 5.5.3. Given ¢, < oo there is a ¢, < oo with the following property:
Let j: E™ — E" be continuously differentiable. Then if |Z—y| < ¢,

(5.53)  J(j(n)—i(x))*poAx)dx

=6 jjm S2c1+2 |x “9|1 _'”IVj(x)lzpz+§(x) d¢dx.

ProoF. Fix y € E™. Let r = |x—y| and let ¢ denote the usual orthogonal angular
coordinates in E™ around the point y. (¢ is an (m—1) vector.) In short (r, ) =
(r(x), @(x)) are spherical coordinates around the point y. For convenience normalize
¢ so that [, <; dx = [ r"~ ! drdp. For convenience, let jg denote j expressed in
terms of these coordinates; i.e. j(x) = js(r(x), @(x)). In the following integrands
the symbols r, s, t are real variables (r, s > 0) and & € E™.

(5.5.4) () —J®)* = (J&2 [Vis(s, o(x))| ds)?

< r(x) [52 |Vjs(s, o(x))|* ds.
Forany Z e E™

P2(x) £ 2m)~"% exp (= (r(x)—r(2))*/2).
Hence, letting r(Z) = r; < ¢,
(5.5.5) [ =j(x))*pa(x) dx
< @n)~"2 [ r([ |Vis(s, @) ds) exp (= (=220~ dr dip
= 2n) "2 [[ |Vjs(s, )| {J ™ exp (= (r—r2)?[2) dr} ds dep.

Since r; < ¢; we can choose a ¢,” (depending only on m and ¢,) such that for all
s>0

[ rmexp (= (r=rp?2) dr ¢,/ (145"~ exp (—(s—r2)*/2)
(see, e.g., Cramér (1946) page 374)). Apply Lemma 5.5.2 to the above noticing

that [+s™"! < 2(m—1)! &* < 2(m—1)! exp (c,) exp (|s—ry|). It follows that there
isac,” < ooand ¢, < oo such that for any (s, ¢)

Jermexp(—(r—rz)2)dr £ ¢5'f 1y oo 16xp (—(s—1)*/2)dt
(5.5.6) = c2(2n)'"/2ji§|<Cl+2py+§(x_1(s, @))d&
= 02(275)"'/2 ,f|¢| <2c1+2 Pz+;(x_ 1(5, @))df-
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(The next to last step of (5.5.6) requires a justification somewhat similar to that in
the proof of Lemma 5.5.2, the details of which we omit. The last step follows
directly from the fact that {y+¢&:|¢| < ¢y +2} = {Z+¢&:|¢] < 2¢,+2}.) Com-
bining (5.5.5) and (5.5.6) yields

(55.7)  J(i(»)=i(x))*po(x)dx
< e ffs' T Vis(s, @) 2(Jig1<2er 42 Pzo (X7 (%, @) dE)s™ L ds do.

Recalling that s™ ! dsdp = dx and interchanging the order of integration in
(5.5.7) yields (5.5.3), which completes the proof of the lemma.

5.6. On Stein’s sufficient condition for admissibility. In this section we prove a
simple extension of Stein’s sufficient condition for admissibility (Stein (1955)).
See also our discussion in Sub-section 1.3. The basic idea for our version is ele-
mentary and was used in R. Farrell (1964), for a similar purpose.

We state the result only for the problem at hand. However the statement and
proof clearly generalize to any statistical estimation problem for which the loss
function is strictly convex and all the unknown distributions have the same support.

THEOREM 5.6.1. If there is a sequence of finite nonnegative measures {G;} such
that G({0:|0] £ 1}) = 1 and

(5.6.1) B(G;, 0)—B(G;, 65,) = 0
then 6 is admissible.

ProOF. Suppose 6 is not admissible. Then there is a ¢’ such that R(0, §") =
R(0, 6) and

(5.6.2) J|6'(x)—6(x)] dx > 0.
Define 6" by 6"(x) = (6'(x)+5(x))/2. Then, using Jensen’s inequality and (5.6.2)
R(0,8") = [ [0—0"(x)|*po(x) dx
< G [ 0=0@)|7po(x) dx+@) [ 0=5'(0)|po(x) dx
= (R0, 8)+ R(0, 6"))/2 = R(, I).

R(6,6") and R(6, ) are both continuous functions. Hence (5.6.3) yields the
existence of an & > 0 such that R(0, ") < R(0, 5)—e for || < 1. Hence if G
satisfies G({0:]0] < 1}) = 1 we have

B(G,;, 0)—B(G,;, dg,) = B(G;, 5)—B(G,;,d") = e.
This contradicts (5.6.1). It follows that if (5.6.1) is satisfied, ¢ is admissible.

5.7. Proof of Theorem 5.1.1B. We assume without loss of generality that the
co-ordinate system has been chosen so that O esupp F, and that F has been
normalized so that F({0:]0] < 1}) = L.
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Throughout this section we assume the hypotheses of Theorem 5.1.1B are
satisfied. We now construct a sequence of finite nonnegative measures G;, i = 1,
2, .-+ having the following two properties

(5.7.1) G({6:]6) = D} =1
and l
(5.7.2) A; = B(G;, 6p)—B(G;, 6g) = 0

where A; is defined by the above. According to Theorem 5.6.1 the existence of
such a sequence will establish the admissibility of .

Asin Sub-section 5.4 if K = E, let F; = Fandif K & E™let F, be asin Lemma
5.3.1. For this section only, let j; be the function satisfying the conclusions (5.4.1)-
(5.4.3) of Lemma 5.4.1 with ¢ = 1/i, and let G, be the measure defined by

(5.7.3) G(d) = j*(0)F(d).

(5.4.2) guarantees that G, is a finite measure. Since j,(8) = 1 for 6] < 1, (5.7.1)
is satisfied. [Note that j; is defined using F,, but F—not F;—appears in the expres-
sion (5.7.3).] As in Sub-section 1.3 we write ,(x) = g;*(x)/f*(x). Differentiating
under the integral sign in the expressions defining g;* and /* and using the funda-
mental relation (1.2.2) we have

(5.7.4) Vh(x) = ([ j(0)O0—x—yHx))po(X)F(d0))/f *(x).
Since | (0—x— yp(x))pe(x)F(d0) = 0 we may write
(5.7.5)  |VE)|? = |JG*©0) =/ (¥))0 — x =y p(x)pe(x) F(d0) [ *(x)|*
< (md,)([|7©0) =/ ()] |0—x—y5(x)| po(x)F(dO)[f *(x))*.

Using Cauchy-Schwartz and | *(0)—j2(x)| = [j(0)—j(x)|- (j(0) +j(x)) we
have

(5.7.6) |VA)|* = (md)([(0) +/i (%)) po(x)F(dO)[f *(x))
~(JG0) =) [0 — x — 7 (%) *Po(X) F(dO) [f *(x)).
We now turn our attention to the first integral on the right of (5.7.6).

hix) = [ j2Opa(x)F(dO)/f *(x)

;2 0
= Jji’(x) J(j:;gg) Po(X)F(dO)[f*(x).
By (5.4.1) (j{(0)/j{x))* = B, * exp (—2B,|x—0|). Hence by Lemma 5.5.1 there is a
A, 1 < A, < oo, suchthat fi,(x) = j2(x) exp (— A,d(x))/A;.

Thus

§ Gi0)+ji (X)) pa()FO)[f *()hi(x) < 2(1+ 24 €444
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and we may write

(517) A, = BG,, 6;)—B(Gy, 05) = J HVS(%)]V () dx
< dmd, A, [f exp (A,d(x)((0)—ji(x))*|0 —x— 7 6(x)|*po(x) F(d0) dx.

Lemma 3.2.3 shows that |0 —x—yx(x)| < |0— x|+ {4 (d(x)+1) for some {; < co.
Forf e K, d(x) < |0—x|. Hence 0 € K

0—x—7p(x)| < (& +D(0—x|+1) £ L exp (L]0 x])
where {, = {, + 1. Using this we may rewrite (5.7.7) as
A; < ky [f exp (ky|0—xD)(i0) —ji(x))* po(x)F(d0) dx

where, here, k, = 4md;A,{3, k; = A;+{,. By Lemma 5.5.2 there is a constant

k5 such that
exp(k2|0—x|)p9(x) = kj jlwl <ky+1 Pe+¢(x)

for all 0, x. Thus, interchanging orders of integration,
(5.7.8) A; < kiks [y <ioe1 11(GH0) = ji(x))? Po+y(x) dxF(dO) dif.
We now invoke the property (5.4.4) to write
((0)=x))* = Jiy-01<1 (i) —J{x))*de(y) dy

where {g,} is defined in Lemma 5.4.1, and satisfies g4(y) = B; for all ye E™.
Hence

(57.9) A; = kik; j|¢1§k2+ 1 ”Ir"l <1 (j(ji(y) —ji(x))2p9+,,,(x) dx)qe(y) dyF(d0)dy.

Observe that the integrand in (5.7.9) is only positive on the region ly— 6+ 1//)| <
k,+2. Using Lemma 5.5.3 there is a k4 < oo such that

(57.10) A S kikska fyrsio s ffis-o<1 (i sziass 2=
’ lvji(z)lzpa+¢+§(2) d&dZ)qy(y)dyF(d0)dy.
Integrating the above first for the variable y, observing that

fy-or<i|z=y[' 7" dy < fiy1< vt 7" dy,
and letting
ks = kykskaBs iy <1 [v]' 7" dy < o0, ke =2k, +6

(5.7.11) A= ks fiyy s fiaisue§ [VidD)(§ Posy+ £ (2)F(d0)) dz dE dyp.
Since py+y+:(2) = Po(z—¥ —&) we have
§ Posy+e(2)F(dO) =f*(z =Y =©).
Finally, for || < ks, |€] < k¢
fHz—Y—8) < fi*z—Y—&) < exp By +E) [i*(2) < k1 f1%(2)
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where k; = exp (k¢ B).
Hence (5.7.11) becomes

A= k5k7jw,lgksf|¢1§k6(HVji(Z)|2f1 *(z)dz)dEdy
(5.7.12) =kg _”Vji(z)lzfl *(z)dz
< kgfi
where kg = ksk; [y <ke J121 <ks A€ d is independent of i. Thus as i — o0, A; - 0,

which proves that (5.7.2) is satisfied. It follows from Theorem 5.6.1 that 6 is
admissible. This completes the proof of Theorem 5.1.1B.

6. Various statistical applications.

6.1. General comments. W. Strawderman (1969) has studied the following
problem: Given a function §(x) is there an F such that 6 = 0;? If m = 1 or if
J is spherically symmetric he has obtained an answer to this question, as well as a
formula for recovering F from a knowledge of 6. Given an estimator, J, the first
step in determining whether it is admissible according to our Theorem 5.1.1 is to
decide whether § = §,. Since we have nothing to add to the answer provided by
Strawderman we will not consider this question further. In the remainder of this
Section we therefore begin with the assumption that given an estimator é whose
admissibility is at issue, it is known that 6 = d;. A complete knowledge of F is
often not necessary since if § = § then V/*(x)/f*(x) = d(x)—x is automatically
known; and admissibility criterion resulting from Theorem 5.1.1 often involve only
this quantity.

We take this opportunity to point out that in spite of its broad scope Theorem
5.1.1 does not contain all other known admissibility results for the statistical
problem in question. Namely, not all proper Bayes prior distributions satisfy the
hypothesis (5.1.1) of Theorem 5.1.1. For example, if F(df) = py(0) d0 then
f*(x) = (4m)~"'* exp (—|0]?/4) which does not satisfy (5.1.1). On the other hand,
it is well known that all proper Bayes procedures are admissible. Hence Theorem
5.1.1 says nothing about such Bayes procedures, which are nevertheless known to be
admissible.

6.2. Admissibility results for m = 1. When m = 1 the equation £ j = 0(1.3.10)
is an ordinary differential equation. An explicit solution of the equation is easy.
The general statistical result is given by ta¢ following theorem.

THEOREM 6.2.1. Let m = 1. Suppose 6 = 0. Suppose either

(6.2.1) [2(1f*(x))dx < oo
(6.2.2) =L (/f*(2))dx < oo

then O g is inadmissible.
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If both (6.2.1) and (6.2.2) are false (i.e., both integrals are infinite) and y(x) is
uniformly bounded for x € K then S is admissible.

Proor¥. This result in terms of the related diffusions {Z,} is well known. See e.g.,
1t6 and McKean ((1965) Chapter 4). Let ¢, ' = [{f* !(x)dx < c. Then for
x > 1, A (x)(see (4.1.4) is given by

H¥) = e, [21* (D) dr < 1
as can be seen since £ 4" = 0. Hence {Z,} is transient and &, is inadmissible.
Similarly, if c_~! = [Z1 f*()”" dt < o0. Conversely, if both (6.2.1) and (6.2.2) are

false then #°(x) = 1 and {Z,} is recurrent. This is, of course, equally well known,
but a direct proof based on the criteria of Theorem 4.3.1 is as follows: Define

Jx) =1 x| =1
=Cy;[Lf* (t)dt l<x<i
=C_ . f* (t)dt —i<x< -1
=0 otherwise

where ¢, ; and c_; are chosen to make j; continuous. A direct computation yields
Vi) dx = cyite_; — 0 asi— oo.

Hence {Z,} is recurrent. The statement of Theorem 6.2.1 then follows directly

from Theorem 5.1.1.
The following Corollary gives a more specific criterion based upon Theorem

6.2.1.

COROLLARY 6.2.2. Let m = 1. Suppose 6 = 6. If there isan L < o0 and k > 1
such that yp(x) = 6p(x)—x > k/x for x > L or yp(x) < —k/x for x < —L then
Op is inadmissible. Conversely, if yp(x) £ 1/x for x > L and yx(x) = —1/x for
x < —Land vy isbounded on K then é . is admissible.

PrOOF. The proof is immediate from Theorem 6.2.1 after the observation that
FHX)f#(x) = yp(x) > k/x for x > L implies x* = 0(f*(x)) as x - o0, etc., and
conversely y(x) < 1/x for x > L implies f*(x) = 0(x) as x - co.

We can compute directly various admissible estimators for the problem. For
example, letting F(d0) = |0] d0 we have

F50) =(2/n) e~ "2+ 0%, po(t)dt
from which we compute (for x # 0)
Op(x) = x+/*(x)/f*(x)

(2/m)te 12
x(1 =272 po(t) dt +(2/m)* e~ *?)

=x+1/x—



898 L. D. BROWN

as an admissible estimator performing well for large values of lé)| (in fact, in some
sense as well as possible for such values). The admissibility of this estimator is not
proved in previous results in the literature.

6.3. The case of spherical symmetry. If F, and hence f*, are spherically symmetric
functions then the equation &pj = 0(j(x) = 1 for |x| = 1) can be explicitly
solved by changing it to spherical co-ordinates, and solving by separation of
co-ordinates. The following two results are the direct analogs of those in Sub-
section 6.2, and we omit their proofs. Note the dependence in these results on
dimension m. It is particularly evident in the corollary.

We note first that  is spherically symmetric if and only if F and f* are; see
Strawderman (1969). In this case we may consistently deﬁnefR*(lxD = f*(x). For
convenience let 7, denote the unit vector in the outward radial direction at the
point x € E™. Hence y(x)-r, is the radial component of y at x € E™.

THEOREM 6.3.1. Suppose F is spherically symmetric. Hence f*(x) = f*(|x|). If
[P fr*¥(r)) tdr < oo

then 6y is inadmissible. If this integral is infinite and vy is bounded then & is
admissible.

[Note: Here Ky is either compact or E™. In the former case, not specifically
included in the theorem, d is trivially admissible.]

COROLLARY 6.3.2. Suppose 6 = Oy is spherically symmetric. If there is a k > 0
and L < o0 such that

P(X)-r, 2 2—m+k)|x| for |x| > L
then ¢ is inadmissible. Conversely if

y(X)-r, £ 2—m)/|x] Sor |x| > L
and y is bounded then 6 is admissible.

6.4. General results in m dimensions. Contained in this section are several tests for
admissibility in the general m dimensional case. Since we cannot solve £ j = 0
explicitly in this case, none of these results is as encyclopedic as Theorems 6.2.1
or 6.3.1. We retain the notation, r,, of the previous section. The first result which is

s Txo

really an extension of Corollary 6.3.2 is an obvious consequence of Theorem 6.3.1;
hence we call it a corollary.

COROLLARY 6.4.1. Suppose 6 = 6. If for somek > 0,L < oo
Y(X)-re 2 R—m+k)/|x]| Jor |x| > L
then ¢ is inadmissible. If
Y(X)-re £ (2—m)/|x| Jor |x| > L

and y is uniformly bounded on Ky then § is admissible.
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ProoF. If y(x)-r, > @—m+k)/|x| for |x| > L then f*(x) > k,|x|*"™** for
|x| > L and some k; > 0. It follows from Theorem 6.3.1 by the nature of Theorem
5.1.1 that § is inadmissible. Similarly for the second half of the corollary.

For the next two results we use the following definitions: Let u, denote the
uniform probability measure on the surface of the sphere {x: |x| = r}, and let

(6.4.1) f(r) = [ f*x)u(dx)
be the average value of f* on the surface of the sphere of radius r.

THEOREM 6.4.2. Suppose 6 = Oy and suppose y(x) = O(l/lxl) as |xl — 0. Then if

(6.4.2) [P ™) tdr < o
0 is inadmissible and if
(6.4.3) (@) tdr=

then 6 is admissible.

REMARK. It will be evident from the proof that f*(x,) where x, is any member of
the set {x:|x| = r} may be substituted for f(r) in the criteria (6.4.2) and (6.4.3).
Hence f(r) need not actually be computed.

ProoF. For an appropriate k; < oo, |V/*(x)|[f*(x) < k/|x| for all x. Let
x,,y € {x:|x| = r}. Thensince |y —x,| < 2zrit follows that

e < FAO)I () € €.

Hence

(6.4.4) infiy y=n /() 2 €™ f¥(x,)
and

(6.4.5) SUPy + 1y1=nS (V) = €21 H(x,).

f(r) may be substituted for f*(x,) in (6.4.4) and (6.4.5). It follows that
SIVIE) P/ *(x) dx z e ™ [(Vj(x) 1) f ([x[) dx.

By the same arguments as in Theorem 6.3.1 it follows that if (6.4.2) holds then ¢
is inadmissible. A similar argument will prove the admissibility part of the Theorem
which completes the proof. ‘

Half of the above result remains valid without the assumption that y(x) =
O(l/lxl). The following yields an interesting test for recurrence of {Z,} as well as
for the admissibility of .

THEOREM 6.4.3. Suppose 6 = 0. Suppose v is uniformly bounded on Ky and
suppose

(6.4.6) [P (r) tdr = .
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Then o is admissible.

ProoF. Define

Ji(x) =1 x| =<1
=c fi (" Fr) tdr 1<|x|<i
=0 x| > i

where ¢; = ([{ (r™ "V f(r))"'dr)"! > 0 as i > 0. Then substituting and changing
to spherical co-ordinates we have

SIVICOPP S H(x) dx = i e2(|x]" 7 F([x]) 72 *(x) dx
=c[ir " (r)dr = ¢; > 0.

Hence 6 is admissible and {Z,} is recurrent.
There is also an easy result in the opposite direction in the same spirit as Theorem
6.4.3. Let (r, ¢) denote spherical co-ordinates in E™. Let fg*(r, @) = f*(x(r, ¢)), etc.

THEOREM 6.4.4. Suppose 5 = Op. If there isa Q < {¢} with j'Q dop > 0 such that
(6.4.7) SUP,eo | (r" r*(r, @) dr <
then d  is inadmissible.

REMARK. (6.4.7) is essentially equivalent to [ r' ™™ [, (fr*(r, 9))™ " dop dr < co.
Since

Jo (fr*(ro o)™ do = ([ fr*(r, @) dp)™" [o do),

it will be seen that it is possible to construct examples where neither (6.4.6) nor
(6.4.7) are satisfied.

PrOOF. Observe that if j(x) = 1 for |x| £ 1, and (x) = 0 for |x| > R,
(6.4.8) | |V](x)|2f *(x) dx

:).J

2 fo (JO" ™ 'fr*(r, @)™ " dr)™" dep.

(6.4.8) and (6.4.7) imply via Theorems 5.1.1 and 4.3.1 that § is inadmissible.

We note there are other criteria which can be proved by variations of the above
arguments—for example, if yp is uniformly bounded and there is a ¢ such that
[ (fr*(r, ))~ " dr < oo then &, is inadmissible—but we will not pause here to
catalog further results of this type.

aJ. 2 e
5 /r( @) 1™ ¥, @) dr do

6.5. Co-ordinate by co-ordinate estimation. Let §,(x) = x denote the usual
estimator for x € E', i.e., for dimension m = 1. Suppose m > 1 so that we observe
x = (x,, X, -, X,,) Where the x; are observations from independent normal (0, 1)
distributions. Consider, for example, usual squared error loss—i.e., [t]| = [f] =
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Y t;>. Then there is an m—namely any m > 3—such that the estimator 6, ™(x) =
(6:(xy), -+, 6,(x,,)) is inadmissible. This raises the following question: Is there an
estimator J,, say, on dimension 1 such that for all m the estimator J,™ defined by
3, ™ (x) = (6,(xy), 6,(x,), -+, 65(x,,)) is admissible? If 5, is proper Bayes then,
of course, 6, is also proper Bayes—hence admissible. Thus the interesting
question is whether there is a non-proper Bayes estimator J, for which §,™ is
admissible for all m. The following theorem answers this question in the affirmative.

THEOREM 6.5.1. Suppose & is a generalized Bayes estimator on E' such that
0 = 65 where f*(x) = O(1/|x|) and y is bounded on K. Let 5™ be defined on E™
by 6"™(x) = (8(xy), -+, 8(x,)). Then for any m, 5™ is admissible.

REMARK. That estimators such as J exist is, of course, verified by Lemma 3.4.1;
simply choose F(df) = f(6) d6 where f(0) = O(1/|6)).

PROOF. It is a matter of m-dimensional calculus to check that f(r) = O(1/|r|" %)
for any @ > 0 where f is defined by (6.4.1). Hence by Theorem 6.4.3, §™ is admis-
sible for all m. The proof'is complete.

A more general question is the following: Suppose J, is an admissible estimator
for m—1 dimensions. Consider an m-dimensional problem. Suppose we wish to
use &, to estimate the first m—1 components of 6 on the basis of the first m—1
components of the observation x, and estimate 0,, independently by an estimator
based on x,, alone. Can the resulting procedure be admissible ? More formally, we
ask if there is an admissible estimator of the form &'(x) = (6,(xq, ***, Xp—1)»
83(x,))- It can be shown that if §5 is a proper Bayes estimator then d’ is admissible.
Hence there are many choices of &5 such that for any admissible &, the estimator ¢’
is admissible. A proof of this fact is contained in Theorem 6.5.2. This proof involves
only the appropriate form of Stein’s necessary and sufficient condition; not our
Theorem 5.1.1.

Two questions which remain are:

(a) Given a J, can one find a 6, which is not genuine Bayes such that ¢ is
admissible ? and

(b) Is there a §5 which is not genuine Bayes such that for any admissible 6, the
estimator ' is admissible ?

In view of Theorem 6.5.2 below, one would expect that the answer to the first
question is “Yes.” In the case where §,(x)—x = O(1/|x|) the results of the preced-
ing section can be used to prove that the answer is in fact, “Yes.” We do not give
here the proof of this fact. The second question appears to us the more interesting
but we have been unable to answer it, even if the condition is added that
8y(x)—x = O(1/]x|).

THEOREM 6.5.2. Let 8, be any admissible estimator on E™~ ' and &5 be any proper
Bayes estimator on E'. Define the estimator 5’ on E™ by 6'((xy, -, X)) =
(02(x15 =5 Xpy_1), 03(x,)). Then & is admissible.
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Proor. Since ¢, is admissible there is a sequence of finite nonnegative measures
{G;} on E™! such that Gy({0}) = 1 and R(G}, 6,)—R(G;, ¢,) — 0. Suppose 5
is Bayes for the prior probability distribution H, i.e., ; = 4. Define the sequence
H; of measures on £™ by

H{(AxB) = G(A)H(B), Ac E" ' Bc E'.
Then, since H is a probability distribution and 6; = dp,
R(Hir 5,)_R(Hi7 6H,-) = R(Gw 52)_R(Gia 56,-) - 0.

Furthermore there will be a sphere S of radius one about some point such that
inf; H(S) > 0. It follows as in Sub-section 5.6 that ¢’ is admissible.

There is an alternate probabilistic argument leading to the above theorem via our
Theorem 5.1.1. Denote by {Z,V}, {Z,*®}, and {Z,®} the diffusions associated
with the estimators 6', §, and d 5, respectively. It is a general fact that if {Z,} is the
diffusion associated with the measure F then the (left) invariant measure for
the process {Z,} is f *(x) dx. Thus if 6; = 6, where H is a probability distribution
it follows that the invariant measure for {Z,®} is A*(x) dx, also a probability
measure. Hence {Z,®} is ergodic. It follows that if {Z,**’} is any recurrent
diffusion on E,,_, then the diffusion {Z,"V} = {(Z,'®, Z,®)} on E™ must also
be recurrent. Hence ¢’ is admissible.
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