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DISTRIBUTED LAG ESTIMATION WHEN THE PARAMETER SPACE

IS EXPLICITLY INFINITE-DIMENSIONAL
By CHRISTOPHER A. SIMS

University of Minnesota

1. Introduction. This paper discusses a number of results which were developed
for application to the model
(1) y =x%b+eg,
where x and ¢ are independent covariance-stationary stochastic processes with
zero mean, b is a square summable sequence of real numbers, and “#” denotes
convolution.! We will consider only the case with discrete time parameter.?

Where b is known to lie in some finite-dimensional linear space of sequences,
estimation of b in (1) from a sequence of observations on y with x known can be
carried out by least squares or generalized least squares. Even where restriction of b
to such a space can only be regarded as approximately accurate common practice
is to proceed with estimation as if the model were finite-dimensional without
explicit concern for the effects of approximation.

There is one trivial case in which it is obviously possible to obtain consistent
estimates with consistent confidence statements in an infinite-dimensional para-
meter space for b. Suppose b is known to lie within
(1) S = U145
where A4; is a finite-dimensional linear space containing its predecessors. Any
reasonable metric on S* will induce a topology on 4; equivalent to Euclidean
topology. A natural procedure, then, is to start with 4,, estimating b in (1) on the
assumption that b in fact lies in 4;. When the estimated confidence region for b
has been reduced in radius (in the relevant metric) to 4, proceed to 4,. Continue in
this manner, shifting to 4., ; in every case only when the confidence region estimated
within 4; has shrunk to a maximum radius of 277, Even though the estimates and
confidence regions may be inaccurate to start with, they are bound eventually to
become accurate when we reach a j large enough so that the true value of b (call it
bo) lies in 4;. The only question is whether we can be sure that the procedure will
make j go to infinity with probability one. This condition is easily verified for, say,
the case where x and ¢ both have spectral densities bounded away from zero and
infinity and are ergodic.
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0 oo
e, axb(t) = X a()b(t—s) = X b(s)a(t—s).

§=—00 §=—0
2 The effects of approximating a model of the form (1) but with continuous time parameter by a
similar model with discrete time parameter have been considered by the author (1971). A discus-
sion of the implications of this paper’s approach and results for econometric practice appear in
Sims (1969).
3 Any which makes it a topological vector space.
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But these results are not of much practical importance. In my view, asymptotic
results in statistics are useful primarily as convenient paradigms to describe what
will happen as we proceed from small to very large samples. In many or most
practical applications of (1), we can pass from small to very much larger samples
without ever reaching a situation where it is practical to introduce a parameter
space which we know with certainty to contain the true 5. We may nonetheless be
able to introduce parameter spaces which we are confident contain ’s very close
to the true b in some sense.* In quarterly econometric models for example, we
might be quite sure that the true b(¢) vanishes for ¢ > 80, and also quite sure that
we can choose five- or ten-dimensional linear spaces which already contain very
good approximations to the true b. If we want to regard sample sizes of 100 or so as
“large,” a theory which assumes that no finite-dimensional parameter space
contains the true b may be more useful to us than one which exploits only the fact
that b vanishes for ¢t > 80.

For these reasons, I think the natural choice for a parameter space in the estima-
tion of (1) with approximate restrictions is an infinite-dimensional linear space of
real-valued sequences with a complete metric topology. A space S like that defined
in (1A) cannot be complete in a metric topology if the A4,’s are of strictly increasing
dimension. Furthermore, if the space S defined in (1A) is regarded as a subset of
its completion, S is small in the topological sense that it is a countable union of
nowhere-dense sets, i. e. meagre.®

Since a number of the theorems to follow depend for their impact on the notion
that a meagre set is “small’” and its complement “large,” it is worthwhile examining
for a moment the justification for this identification. The only solid justification is
that the complement of a meagre subset of a complete linear space is always dense
in the space and itself non-meagre. But of course meagre sets may themselves be
dense, and on the unit interval there are meagre sets with an independent claim,
arising out of the algebraic and topological structure of the interval, to being
“large”: there are meagre subsets of the unit interval with Lebesgue measure one.®
In an infinite-dimensional linear space with a complete locally convex metric
topology there is no translation-invariant o-finite Borel measure—i.e., no analogue
to Lebesgue measure’—and hence no natural alternative to ‘“meagreness” as a
definition of “smallness.” Still, it should be borne in mind that a meagre set is
small only in a special sense.

4 See Jorgenson (1966) for an earlier discussion of approximation in models like (1). In econo-
metrics, such models are called “distributed lag” models and the functions b “lag distributions.”
Jorgenson showed that certain unions of finite-parameter families of lag distributions were dense
in the space of all real sequences in the uniform metric. He failed to note, though, the importance
of the choice of metric to approximation questions in infinite-dimensional space and did not
consider explicitly the effects of approximation error on inference.

5 A finite-dimensional subspace of a complete, metric, infinite-dimensional linear space is
nowhere dense. See Schaefer (1966) page 21 ff.

6 See, €.8., Munroe (1953) page 113 f.

7 See Gel’fand and Vilenkin (1964) page 359 ff.
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Two approaches to estimation in infinite-dimensional spaces are taken up in this
paper. First,we look at the usual practice of using approximate finiteness restrictions
and ask what are the conditions under which, by slowly relaxing restrictions as
sample size increases, we can make approximation error in some sense asymptoti-
cally negligible. Second, we look at an explicitly Bayesian approach, asking condi-
tions for its consistency and comparing the “restrictions” implicit in the placing
of a prior measure on an infinite-dimensional space with those required to justify
the successive approximations approach.

2. Successive approximations. Suppose S is some subset of the space R* of one-
sided sequences {b()};2 . Define an inner-product on S via the norm

g:(b) = (E[(x # b)*])*.

It is not hard to verify that the b in a subset A of S which minimizes E[(y—x * b)?]
when the true value of b in (1) is b, will be the g,-projection on A4 of b,. Suppose
that we can form a sequence {4,,} of subsets of S within each of which we can form
a consistent estimate of b,,, the g,-projection on A,, of b,. Suppose further that the
A,, can be chosen so as to have g,-dense union in S. One might hope in this situation
that by proceeding slowly down the A,, sequence as sample size increases, one could
obtain g,-consistent estimates of b,. One might even hope to use the estimates
within 4,,’s to form confidence regions for b,,.

These hopes will not be justified unless we can find some rule for choosing a
sequence m(n) such that, if b, is the estimate of b,, we form the nth sample,
gx(Bm(,,),,—b,,,(,,)) converges in probability to zero. Furthermore, if the estimates
within 4,.’s are to be used to form confidence regions for b,, we must be able to
determine some properties of an asymptotic distribution for d(Bycy> Bm) under
a relevant metric d.

If this sort of approach is to apply in practice, the relation of the g,-topology to
natural loss functions on S is important. I have discussed this point in (1969), where
it is shown that g, induces the same topology as the mean square norm g,,

(2) g2(b) = (X720 b(1))%,

solong as x has an everywhere positive bounded spectral density.

Let A,, be the space spanned by the first m elements of the sequence {c;};L; = S.
Let Z,, be the nx m matrix with typical element ¢; * x(i), y, the nx 1 vector with
typical element y(i), ¢, the n x 1 vector with typical element &(i), and so on. The least
squares estimate of b, is b,,, = Y1 dmn(f)cj, Where the vector 4, is defined by

ﬁmn = (Zrlnnzmn)_ 1ZIInnyn'

The vectors 4,,, may be thought of as estimates of the underlying vector a,,, defined
by the relation

bm = Z;’=1 amO(j)cj'
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Define A, (k, j) and Ak, j) as the maximum and minimum eigenvalues (re-
spectively) of Z;;Z, ;. Then we can show:

THEOREM 1. Suppose: (i) m(n) is a sequence of integers diverging to infinity such
that with probability one lim inf (A, (m(n), n)[Ag.(m(n), n)) > 0; (ii) U;O=1 A, is
g,.-dense in S; (iii) € has a spectral density bounded away from zero. Then

(3) E[(dm— amO),(dm - amO) | x]/E[SIZm(Zm,Zm)-— I(Zm’Zm)_ lzm,8 | X] 8
converges in probability to one as n — .

PrOOF. Set#, = y—x = b,—e = (by—b,,) * x. It is then easily verified that we
can rewrite (3) as .
E[nmlzm(zm,zm)— I(Zm’Zm)_ 1Zm’nm | x]
(4) 1 + ’ ’ -1 1 -1 ’ N .
El¢Z,(Z2,Z2,)" (2, Z,) 'Z,'s |x]
Define

C¢,.=2,2,2,)"'(Z,Z,) 'Z, .
Then (4) can be rewritten
(5) 1+ tr(Cottt )/ tr (CE[e€']),
where “tr” is the trace operator. In obtaining (5) we use the facts that ¢ is independent
of x and that Z,, and #,, are both determined by x. We now take note of a well-
known algebraic inequality :
(6) A g max tT(B) > tr(AB) > A4 yintr (B),

where A 4 max and A4 min are, respectively, maximum and minimum characteristic roots
of A. It is easily shown that tr(C),, exceeds n/A,,,. From the discussion in Grenander
and Szego (1958) pages 63-64, the minimum characteristic root of E[ee'] is known
always to exceed S, ., the minimum of the spectral density function for &. It can
be shown that the non-zero characteristic roots of C are those of (Z'Z) ™, so that
the maximum characteristic root of C is less than 1/1_;,. Finally,

() (1/m) tr () = (1) 2= 1 1(1)?,
so that
(8) (1/n)E[tr(n,m,)] = Var(n,(t)) >0 as m—>o  (byassumption (ii)).

But a sequence of positive random variables whose expectations converge to zero
converges in probability to zero. Thus

9) plim,_, ., (1/n)tr (n,m,") = 0.

8 In expression (3), the argument of the m(n) functions has been suppressed for legibility. All
“m’s” in (3) are to be thought of as dependent on n. This same convention will be followed
through most of the proof below, where n would appear as subscript or argument.
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Using (6) through (9) above we can take the probability limit of (5) to get
plim [1+tr (C,1,m,")/tr (C,E[e€'])]
= 1 + phm [(A’max/(imin Ss mln))(l/n) tr (nmrlm,)] = 1 D

The hypotheses of Theorem 1 are rather general and abstract. To see that they
apply to some useful cases, consider what we can say when the c;’s are all right-
translates of ¢,—that is, ¢;(t) = c,(t—j). A sufficient condition for Theorem 1’s
assumption (ii) to hold can be developed from the following lemmas:

LeMMA 1. If §(w) is (i) defined in the lower half of the complex plane (including
the real line), (ii) bounded above in absolute value, (iii) continuous over its domain,
and (iv) periodic with period 2r as a function of its real part for any fixed value of its
imaginary part, then § is the Fourier transform of a square-summable lag distribution
q on the integers for which q(t) = 0 for t < 0.

Proor. Here we are thinking of g as a sequence of discrete weights at the integers
along the real line, which define a “‘generalized function’ or “Schwarz distribution.”
From this point of view, ¢’s Fourier transform is a periodic function, and in fact,
any function on the real line with period 27 which is square-integrable over finite
intervals is the Fourier transform of a square-summable set of weights on the
integers (see Lighthill (1964)). What we need to verify here is only that g is “right-
handed,” i.e., that g(#) = 0 for ¢ < 0. For this we draw on the Paley-Weiner
Theorem (see Yosida (1965), page 163). That theorem shows that any function
f (w) which is analytic in the lower half plane and satisfies

SUpy <o J 2o f(x+iy)dy <

is the Fourier transform of a square-integrable function on the real line which
vanishes for negative arguments. Set a(¢) = 1 for 0 < ¢ < 1, a(t) = 0 elsewhere.
Then ¢(¢), the square-summable sequence of which § is the Fourier transform, is
right-handed if and only if ¢ * a is a square-integrable function on the real line
which vanishes for negative arguments. Thus this lemma is proved if §a satisfies
the hypotheses of the Paley—Weiner theorem. But 4 itself satisfies those hypotheses,
and the assumptions of this lemma then guarantee that §a does as well.

LEMMA 2. Linear combinations of finite numbers of right-translates of a (discrete)
lag distribution ¢ are g.-dense in the space of all lag distributions for which g, is
finte if (i) x has a spectral density bounded away from zero and infinity and (ii) the
Fourier transform ¢ of ¢ satisfies lé(a))l > ¢ > 0 for all w with non-positive imaginary
part.

Proor. If b/ is the Fourier transform of a square-summable right-handed
distribution ¢, then we can write b = ¢ * g. Under assumption (i) of this lemma,
g, induces the g,-topology (see page 1624). Absolutely summable b’s are g,-dense
in the space of square-summable distributions. Hence, if for every absolutely
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summable b we have § = b/¢ for a right-handed, square-summable g, finite
linear combinations of right-translates of ¢ are g,-dense. But assumption (ii) of
this lemma is easily seen to guarantee that § = b/¢ satisfies the assumptions of
Lemma 1 for any absolutely summable 5.° []

Lemma 2 shows that assumption (ii) of Theorem 1 is satisfied if |, | is bounded
away from zero and infinity in the lower half-plane. There remains assumption (i).
Rules for choosing m(n) so that assumption (i) of Theorem 1 is satisfied can be
formulated under suitable restrictions on x and c;. If an infinite past for x is known
and the c¢;’s are translates of a fixed right-handed lag distribution, choosing m(n)
can be based naturally on knowledge of the upper and lower bounds of the spectral
density of ¢, * x(f). But of course in practice neither an infinite past for x nor any
other source of bounds on S, are usually known, even when we might be willing
to assume that S is bounded away from zero and infinity. In this case in order to
guarantee assumption (i) we require some way of bounding the dispersion of
Amax/Amin Which is consistent uniformly in m as n goes to infinity. Such a bound is
possible, though to give an explicit rule for determining m(n) here would take us too
far afield. Clearly, we could form a uniformly consistent bound on the dispersion of
Amax/Amin iIf We could form a uniformly consistent bound on the dispersion of the
individual elements of (1/n) Z'Z. In the case at hand, with the ¢;’s all translates of ¢,,
(1/n)Z'Z is the sample covariance matrix of the first m lagged values of a covariance-
stationary process. Hence uniformly consistent bounds on the variances of the
elements of (1/m)Z’Z are available from the formulas given on page 39 of Hannan
(1960) for, e.g., the case where x is Gaussian and ¢, * x has square-summable
spectral density.

Theorem 1 gives conditions under which inference carried out under the incorrect
assumption that b, lies within the current approximating space will eventually yield
accurate location estimates and accurate Chebyshev-type confidence bounds for
the d.-projection on the current approximating space of b,. The question then
arises whether we can use estimates of d,-projections on the A4; to estimate b, within
the parameter spaces larger than A4;. In one sense, the answer is certainly yes. If .S,
is a set which can be uniformly approximated with arbitrarily high accuracy by
elements of the sequence A4,, and if the relevant metric is weaker than d,, we can
obviously combine consistent confidence statements about the location of b,, within
A,, with knowledge of how well 4,, approximates S, to obtain consistent confidence
statements about b,. However, the sets S, which can be uniformly approximated
by finite-dimensional 4, turn out to be smallin a topological sense.

THEOREM 2. If S, is a subset of a linear space S with a metric topology defined by
the metric d, and for any 6 > 0O there is a finite-dimensional linear subspace A of S
such that for every b in S there is a b’ in A satisfying d(b, b") < 0, then S, is locally
precompact.

° Here and elsewhere we will be using the fact that the Fourier transform of an absolutely
summable, right-handed sequence is bounded and continuous along the real line and in the lower
half-plane.
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ProOF. Pick an arbitrary sphere U in S with radius, say, r, and pick an arbitrary
d > 0. By hypothesis we can pick a finite-dimensional subspace 4 of S which
approximates S, to within §/2. Consider the set U* of all points in 4 which lie
within 6/2 of the set S, " U. U* is clearly contained within a sphere of radius r +(6/)2
within 4, and by the local compactness of Euclidean space, can therefore be covered
by a finite number of spheres of radius §/2. Form a new set U** by taking the
spheres in the finite covering of U*, doubling their radius, and setting U** equal to
their union. U** will then cover S, n U. But since § was arbitrary, we have proved
precompactness for S, 1 U. []

Theorem 2 sharply restricts the nature of S,. If S, = S, S can be a complete
linear space only if it is finite-dimensional. If S is a complete linear space, S, must
be a nowhere-dense subset of it.'® In fact, these restrictions can be somewhat
relaxed, because we are concerned only with asymptotically accurate confidence
statements. For this purpose it is enough if we can find a mapping f from the
positive real numbers to the class of all finite-dimensional subspaces of .S such that
for every point b in S, there is a §, > 0 such that for all § < J, there is a point
b"inf (6) such that d(b, b") < §.Suppose S, satisfies this condition. Then clearly

So = U;o=1 Sop

where Sy is the set of all points & in S, such that for all § < 277 there is a point &’
in f(0) such that d(b, b') < 6. Each of these sets S,; satisfies the hypothesis of
Theorem 2, so that S, now, while not necessarily nowhere-dense in a complete .S,
is certainly a countable union of nowhere-dense sets—i.e., meagre in S.

The result of Theorem 2 can be extended directly to a somewhat broader class of
approximating sets A. The essential property of 4 for Theorem 2 was that its
intersection with any g,-sphere was precompact. On this criterion not only finite-
dimensional linear subspaces of S qualify, but also any set 4 which is homeo-
morphic to a closed subset of a Euclidean space under a transformation which
takes d-spheres into bounded sets. The finite-dimensional parameter spaces of
rational lag distributions (see Jorgenson (1966)) form a class of A’s with this
property when the d-metric is the g,-norm.

3. A Bayesian approach. The successive approximation of the parameter space
by finite-dimensional spaces of increasing dimension is unsatisfactory in that, even
asymptotically, it allows us to make accurate confidence statements only if b is
restricted to a meagre subset of an infinite-dimensional complete space. Might we
avoid these restrictions by spreading a “smooth” and fairly ““flat” prior measure
over the infinite-dimensional parameter space, then using sample information to
modify the prior according to Bayes’ formula ?

Consider a simple practical example of a prior measure on the space of b’s. The
measure, call it u, could put weight 27" on each of the n-dimensional subspaces E,

10 These assertions follow from elementary theorems about topological vector spaces. See, e.g.,
Schaefer (1966) page 21 ff.
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of finite b’s of length n. E, is spanned by the first » unit-distributions e;, with
e i) = 1, eft) = O for ¢ # i. Within E,, the measure could have, say, the form of
a N(0, ¢*I) distribution. With this prior, it is easy to verify that any linear functional
of b will have a posterior expectation which is a weighted average of the posterior
expectations computed separately within the E’s, the weights depending on (if ¢ is a
normal white noise) the average residual sum of squares within the various E,’s.
The Bayesian procedure would, like the successive approximations method, move
slowly to higher-dimensional E,’s as lower-dimensional ones proved to give less
good fits. The difference would appear to be mainly in the Bayesian procedure’s
averaging in of results over several heavily weighted E,’s instead of looking at only
one E, at a time. (With more careful attention to the specification of the prior, a
Bayes procedure along these lines would be better in small samples than the usual
econometric procedure of picking a “length of lag” by some ad hoc method, then
proceeding with inference conditioned on the choice of lag length.)

The measure does satisfy a fundamental smoothness requirement: it puts positive
probability on every g,-sphere of positive radius. Yet it obviously fails to get us
out of the problem of needing to restrict b to lie in a small subspace of a complete
space in order to make confidence statements. With u as prior we have put prob-
ability zero on all truly infinite ’s. Any set with u-probability one is dense in (say)
I, or 1,'* but the set of all finite lag distributions is meagre in either of those two
spaces (and in fact in any complete infinite-dimensional metric space).

This situation is not the fault of u’s being too simple a measure. One instructive
way to convince oneself of this is to try to construct measures on /; or /, which do
not concentrate on meagre subsets. To see the same thing deductively, note that
it is shown in Parthasarathy (1967), page 29, that any Borel measure on a complete,
separable metric space is “tight” and that a tight measure by definition puts proba-
bility one on a countable union of compact sets. Since compact subsetsof complete,
separable, infinite-dimensional linear metric spaces are nowhere dense, any Borel
probability measure on such a space puts probability one on a meagre subset of the
space. Like confidence statements based on the successive approximation approach,
Bayesian confidence statements must rest on a priori restrictions which limit b to
a meagre subspace of natural infinite-dimensional parameter spaces.

4. Questions of simple consistency. In most applications of (1), confidence
statements will be of prime importance, yet the preceding two sections show that
they will be impossible without prior restrictions which themselves cannot usually
be made with complete confidence. It is an interesting question, therefore, whether
inference collapses completely if these strong prior restrictions are false. We shall
see in this section that in at least two complete, infinite-dimensional metric spaces,
there is a successive approximations procedure which is everywhere consistent. We
shall also show that under very general conditions Bayes estimates converge in

11 The spaces /; and /, are the completions of UE, under, respectively, g; and g,, with

g1b)= X Ib(f)l
t=0
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probability to a false value only on a subset of a meagre set. Unfortunately, a
theorem giving conditions for consistency everywhere in some complete infinite-
dimensional space for a Bayes estimate is not presented. The work of Schwarz
(1965) showed that such theorems are possible for the case of independent and
identically distributed observations, which suggests, but is little help in proving,
that they might also be possible in the more complicated model (1).

First, we recast Schwarz’s Theorem 3.5 from (1965) giving general conditions
for prior-probability-one consistency of Bayes estimates.

THEOREM 3 (Schwarz, Doob). Let S be a metric space with a Borel measure P,
on it. (Here and henceforth we mean by ‘“‘measure,” “‘probability measure.”) For
each b in S, let P, be a Borel measure on the space R® of sequences of real numbers
y =, " Y +++) under the product topology. Let F be the Borel field on R* and
F , be the sub-o-field generated by y , -, y,. If

(i) foreach AinF,,n = 1, -, 00, P,(A) is Borel-measurable as a function of b, and

(ii) there is a function f from R® onto S such that f (y) = b w.p.1 (Py) and for any
closed sphere U c S, f~Y(U)e %, then for any bounded P, measurable random
variable Z on S,

E[z I Yo Yl = Z(b)w.p.l(P,,)w.p.l (Po)-12

ProoF. The theorem stated here is a slightly less general form of that stated by
Schwarz (1965) as Theorem 3.5. As is indicated in that article, the proof consists in
showing that (ii) allows us to identify Z with an equivalent random variable on
S x R® whose value is independent of its first argument. The result then follows
from an application of the Martingale Closure Theorem (Loéve (1960), page 394).

The next step is to show that in a wide class of situations Theorem 3 can be
applied to the model (1). The propositions to follow show that if the measure P,
puts probability one on the event that asymptotic mean square residual in (1) is
minimized at b, and if x is linearly regular,'3 then Theorem 3 applies. The interest-
ing points about what follows are: (a) that P, need not specify an exact structure
for e—P, may be integrated over an arbitrary prior distribution on stationary
ergodic structures for ¢; (b) though the residual sum of squares is naturally related
to the g,-topology on the space of b’s, Theorem 4’s results apply to estimation of
some functions of b (e.g., the sum of the b(z)’s) which are g,-discontinuous; and (c)
though non-regular x processes whose spectral densities vanish over some but not
all intervals *distinguish points” in the sense that the property that asymptotic
mean square residual has a unique minimum at the true b is preserved for these x’s,
Theorem 4 does not extend to such an x-process.

12 The conditional expectation in the conclusion of the theorem is defined with respect to the
measure on S x R® obrtained by integrating P, with respect to Py.

13 A linearly regular process is one which cannot be linearly forecast with arbitrary accuracy
from its own past. See Rozanov (1966).
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Define the function G,(y, b) as
Gr(y,b) = (1/T) Y21 (y(1)—x = b(t))*.
THEOREM 4. If in the model (1)

(i) S is a separable metric space,

(ii) with x-probability one P, , is defined as a Borel measure on R® for all b’s in a
Borelset S' < S,

(iii) with x-probability one, Gr(y, b) - H(b; b') as T — o w.p.l. [P, ] where
H(b; b') = g(b—b")+0? and ¢* is a random variable defined on F independent of b,
and

(iv) the metric d on S is such that the g.-closure of a d-sphere is its d-closure,
then there is with x-probability one a function f.: R® onto S’ such that f.(y) = b
w.p.1 (P,,) and f,”'(U) is a Borel set for each (relatively) closed sphere U = S'.

PRrROOF. By (i), S” has a countable dense subset V. We will henceforth treat the
parameter space as S” under the relative topology. Define

G(y,b) =liminfG(y,b) as T — oo.

As the lim inf of a countable collection of measurable (in y) functions, G is itself
measurable in y. (See Munroe (1953), page 152.) Furthermore, by (iii) we have

G(y,b)=H(b;b') forall b’ in Vw.p.1(P,,).
Let N; be a d ~sphere of radius 277 about 0. Set
Ay = {y , [liminf,;, (b+Nj)nV G(y, c)] —[liminf;, GFNHAV G(J"’ C)] < 0}-
Then define
Yy = Uf=1 4s;e

Set f.(y») = b for y in Y, fi(y) = 0 when y is in no Y,. Clearly f.(y) = b w.p.1
(P, ) for all bin S’. The question remains whether f ~!(U) is measurable for closed
d-spheres U. Define

Yy = ﬂ;o=1[cin VnU]ch'

The set Yy is plainly Borel-measurable. We shall now show that the conditions of
the theorem guarantee Y, = f~!(U). That Yy o f~1(U) follows immediately from
the definitions of Y}, and Y. For any y in Yy, there is a sequence {c¢,;} = (V' n U)
such that yisin A, ; for each j. We know that (c,;+ N;) N (¢, + N,) # & forallj, k.
(Otherwise we could obtain the contradiction g.l.b... +n; G(y, b) both greater and
less than g.1.b. (., +,, G(¥, b).) Hence, by the fact that the radii of the N; decrease
exponentially, {c,;} is a Cauchy sequence with a g,-limit @, in the g,-closure of U.
It is easy to see that y is in ¥, . Hence if U is g.-closed, as it will be by (iv) if U is
d-closed, Yy = f~!(U). Therefore Yy, = f~1(U). ]

We now need to see how condition (iv) of Theorem 4 relates to usual sorts of
d-metrics and x-processes.
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LEMMA. If g is a semi-norm of the form
(10) g(b) = (XZoa(t)[p(®)|")"",
p = 1,a() > 0 for all t, then
U={b|gb) =1}

is closed in the topology of coordinate-wise convergence.

PRrooF. It is easily verified that if b; converges coordinate-wise to ¢ and ¢ is
outside U, then the b; must eventually also be outside U. []

COROLLARY. If (i) x is linearly regular, (ii) d is any metric defined by a countable
(or finite) family of semi-norms of the form given in (10), (iii) conditions (i)-(iii) of
Theorem 4 are met with Py(S’) = 1, and (iV) P, , is measurable in b, then Bayes
estimates are consistent for Borel-measurable functions on S with Py-probability one.

ProOF. If x is linearly regular, we know from Sims (1969) that g, defines a
topology stronger than coordinate-wise convergence. Hence (i) and (ii) plus the
lemma give us (iv) of Theorem 4. With (iii), this yields us the conclusions of
Theorem 4, which, with (iv), yield the conclusion of Theorem 3. []

It may be worthwhile to point out here just how it comes about that these results
fail to apply to x-processes which are not linearly regular. As has already been
pointed out, if x has a spectral density over some interval of positive length, then
one-sided b’s are distinguished by g,. The reason is that the Fourier transforms of
distinct one-sided &’s cannot be identical over any interval of positive length. This
means that Theorem 4’s f, function is well-defined and satisfies the requirement
that f(y) = b w.p.1 (P,,). However, since x’s which are not linearly regular in
general produce a g,-topology weaker than coordinatewise convergence, the
condition that inverse images of closed spheres be Borel-measurable will not in
general be met for these x’s. Theorem 4 will apply to x’s which are not linearly
regular, but the measurability condition on f, restricts its application to estimation
of functions of & which depend only on b at frequencies in intervals over which x
has positive spectral density. This excludes many practically interesting functions,
but it should be noted that, e.g., in the case where x has non-zero spectral density
only in some interval about w = 0, the sum of coefficients in b(¢) may be consis-
tently estimable'* by Bayesian methods even though no individual coefficient of
b(t) can be consistently estimated.

Sets of probability one need not be large in any topological sense, and we have
seen that indeed in infinite-dimensional spaces there are always sets of probability
one which are small in a certain topological sense, that is, meagre. Theorem 3 does
allow us to say directly that if P, is spread smoothly over S, i.e., if it puts positive

14 This is a conjecture. I have not actually carried out a formal analysis of what kinds of functions
on S'satisfy measurability conditions for non-regular x’s.
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probability on every sphere, then Bayes estimates are consistent on a dense set;
but dense, meagre sets like the set of all finite-length 5’s may be “intuitively small.”
The following theorem gives conditions which guarantee that Bayes estimates come
arbitrarily close to the true value for arbitrarily long sequences of samples on a set
of b’s whose complement is meagre.

THEOREM 5. If in Theorem 3 P, puts positive probability on all spheres in the
complete metric space S and if (i) is strengthened to require that P,(A) be continuous
in b for sets A in F ,, then for bounded, continuous functions Z on S, E[Z | Vs os Yal
comes arbitrarily close to Z(b) over arbitrarily many consecutive values of n with
Py-probability one for a residual set of b’s (i.e., a set with meagre complement).

PrOOF. Z will take values in some interval I. Partition Finto intervals I,,;, j = 1,
---, m of equal length. Let /,,, be the symmetric, open interval of length 1/m about
zero. Define

B,.; = {b|P,{E[Z|yy, -+, yJin(L,j+2L,0)} > 1=2""Y N Z7 (1,5 +I,.0).

Bnm = UT= 1 Bnmj'

Clearly B,,, is open. Any set containing all b’s for which E[Z ] Y1, ***5 Vs cOnverges
to Z(b) w.p.1(P,) has P, probability one and is therefore dense. Consider

% __ 0 n+p
Bmp - n=1 k=anm'

For each m and p, By, is an open set of Py-probability one. The set of b’s for which
E[Z l Y1, > Yu] comes arbitrarily close to Z(b) over arbitrarily many consecutive
values of n w.p.1(P,) includes

0 *
nm,p= 1 Bmw

which has probability one (hence is dense) and is a G-delta (i.e., is a countable
intersection of open sets). But in a complete metric space every dense G-delta is
residual. (See Munroe (1953), page 69.) [J

COROLLARY TO THEOREM 5. Under the conditions of Theorem 5, the set of b’s for
which E[Z l Y15 =**5 Yn] converges in Py-probability to a number other than Z(b) is a

subset of a meagre set.

PRrOOF. The set of &’s specified in the Corollary is a subset of the complement o
n;no,p= 1 Bnﬂ:p' 0

Theorem 5 is, like Theorem 3, not directly tied to the model (1). Theorem 5’s
conclusions, that Bayes estimates do not behave too very badly except on a meagre
set, do not apply to some of the natural specifications of (1). For example, if the
x-process is linearly regular and Gaussian, x(¢) will be unbounded w.p.l. Hence
Theorem 5°s assumptions will not apply if S is the space of all absolutely summable

b’s under the g ,-norm

g1(b) = 220 [b(1)],
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because P, , will be continuous in b on this S only for bounded x(z). There is,
however, a complete S to which the Theorem does apply: The space S, of rapidly
decreasing sequences under the natural metric topology. This is the space of b’s
for which each of the semi-norms

gsp(b) =Zt°.;0tp|b(t)l, p =0’,,,,w

is bounded, under the topology defined by this family of semi-norms. For &’s in
this space, x*b(¢) is continuous in b w.p.1. On this space, the continuous Z’s include
the sum of b’s coefficients and the “mean lag” defined as [, t6(:)]/[Y_, b(2)].

From the discussion in Section 2 of this paper, the following is almost immedi-

ately clear:

THEOREM 6. When Theorem 1 applies (e.g., when the x-process has a thrice-
differentiable spectral density and the nth approximating space is the space of finite
distributions of length n), we can choose estimates of b which are g,-consistent over
allof 1,.

ProoF. The argument of Section 2 showed that it is possible to choose a function
m(n) such that Euclidean confidence statements about the location of b,, within the
m(n)th approximating space made from the nth sample eventually become arbi-
trarily accurate. Since a necessary condition for this result is that the approximating
spaces be g,-dense in the whole space of possible &’s, all we need do is choose
m*(n) < m(n) such that our estimate of E[g,(Bsinym bm)] < 27" for all n. This
guarantees that gz(l;m.(,,),,, b) converges in probability to zero, which is the result
desired.

The problem here is that, though the g,-topology is certainly of some practical
relevance, a large number of interesting functions of b—including the sum of the
coefficients and the mean lag—are g,-discontinuous. Proving consistency in
topologies stronger than the g,-topology (and hence necessarily in somewhat
smaller spaces than /,) reduces to the problem of showing that given a dense family
of approximating spaces, the sequence {b,,} of g,-projections of b on the approxi-
mating spaces A,, converges to b in the stronger topology. If S is /;, and the 4,,’s
are the spaces of finite distributions of length m, then the requirement that the
g,-topology be equivalent to the g,-topology is not enough to guarantee that b,
converge to b relative to g,.!*> However, it is easy to show:

THEOREM 7. When S is Ss; the space of strongly decreasing sequences, A,, is the
space of finite distributions of length m, and the g.-topology is the g,-topology,
then b,, converges to b in the topology of S;.

Proor. Each 4,, contains a point b,,q, the g,-projection on 4,, of b (obtained, of
course, by truncating b at ¢t = m). The distance g,(b—b,,o) declines faster than any

151 am indebted to David Ragozin, a mathematician at the University of Washington, for
developing an example which proves this statement.
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power of m as m — oo. Within any 4,, there is a maximum ratio p,,, of g, to g,.
This ratio p,, increases more slowly than some power of m for each p. This,
together with the fact that g.(b,,— b,,0) < 29.(b—b,,0) implies that g,,(b,,— b,,0)—0.
But since g,(b—b,,0) — 0 also, g,,(b—b,) — 0.[]

Thus it turns out that the most useful consistency result for the successive
approximations method applies to the same space as Theorem 5’s result for
Bayesian estimates.

5. Conclusion. Though the issues raised in Section 4 are interesting as abstract
problems, the more important results of this paper are, I think, the negative results
in earlier sections of the paper. Estimates to which no confidence statements can
be attached are unsatisfactory in practice. Yet there is no way to make estimates
with attached confidence statements which applies to the whole of an interesting
infinite-dimensional parameter space. The effects of approximating an infinite-
dimensional parameter space by finite-dimensional spaces cannot, in other words,
be made asymptotically negligible. In estimating distributed lags one should, where
no better alternative is available, use Bayesian procedures which satisfy the hypo-
theses of Theorem 5 or use finite-dimensional approximations which can be justified
as part of a procedure to which Theorem 6 or 7 applies (depending on whether g,
or a stronger topology is appropriate to the problem). But the fact that such a
procedure has been used (a fortiori the fact that one is using an approximating space
drawn from a class of spaces dense in the underlying infinite-dimensional parameter
space) cannot justify ignoring approximation error, even in “large samples.” The
alternatives are either to give an explicit discussion of the likely nature of approxi-
mation error along the lines suggested in Sims (1969) or to develop a thoroughly
convincing a priori rationale for a particular finite-dimensional parameterization,
perhaps along the lines suggested by Nerlove (1967).

APPENDIX

The relation of this paper’s Theorem 5 to Freedman’s work. Freedman (1963),
(1965) has dealt with the asymptotic properties of Bayesian inference on an
“infinite-dimensional”” parameter space. The model he works with is quite different
from that which motivates this paper, but Theorem 5 of this paper is general enough
to apply to Freedman’s context. Thus we have a weak positive result to juxtapose
with Freedman’s negative results: Freedman shows that in his model there are
priors which are ““‘unprejudiced” in the sense that they assign positive probability
to each open set but for which the posterior probability of every open set has a
lim sup of 1 except for a meagre set of true parameter values. Theorem 5 shows that
nonetheless, the posterior distribution will be arbitrarily highly concentrated near
the true parameter value for arbitrarily long sequences of samples for all but a
meagre set of true parameter values. An interesting but open question is whether
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the persistent occasional concentration of posterior probability on false values
happens “less often” for larger sample sizes.

Note also that in Freedman’s model it is possible to choose the prior in such a
way as to guarantee consistency. His parameter space is, with appropriate choice
of metric, complete metric but not linear. With an infinite-dimensional complete
linear metric parameter space as in this paper it remains unknown whether the
prior can be chosen to guarantee consistency for a residual set of parameter values.
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