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ON THE FIRST PASSAGE OF THE INTEGRATED WIENER PROCESS

By MALcoLM GOLDMAN
New York University

The rate of first passage of the integrated Wiener process to x>0 is
determined in terms of the ‘}-winding time” distribution of H. P.
McKean, Jr. The probability that the integrated Wiener process is cur-
rently at its maximum is approximated.

1. Introduction. Let e(¢) be the standard representation of the l-dimensional
Wiener process (e(0) = 0). In [2] McKean studied the winding around the origin
of the two-dimensional Markov process (u,v) where o(t) = b+e(f) and
u(t) = a+ [¢ v(s)ds. In addition to many interesting strong limit theorems, he
obtained the joint distribution of the “4 winding time” t, and the hitting place h,

3hexp[—2(1—h+h?)/t]
2%ns?

4/t ,—36/2
X <J‘0 W d9>dtdh

where t; = min (¢; £ > 0, u(t) = 0), h; = |u(t,)| and a = 0, b = 1. By means of
the scaling e(t) — ce(t/c?) for ¢ > 0, the requirement b = 1 can be converted to
b # 0. In [3] the integral in (1.1) is shown to be expressible in terms of theta-
functions.

Whereas [2] deals with the first return of u(z) to its initial value, this note takes
up the first passage of u(¢) to x > 0 when u(0) = a = 0 and v(0) = b < 0. The
assumption a = 0 is not restrictive. Let p(¢, &, 5, x, y) be the transition density for
(1), v(t)), ©, = min (¢; ¢ > 0, u(t) = x) and ¢,(x, t) = (d/dt)P(z, < t). We show
that

(a (Proposition 1))  ¢y(x, 1) = 4[3/@2nt*)]¥(3xt 1 —b) exp [—3(x—bt)*/2£>]+
,"80 dé _‘-:) j’go £P0,§(t1 € dS, hl € dh)[p(t_s’ O’ b’ X, ‘E)_p(t_s’ 0’ b’ X, —é)]

(b (Proposition 2)) As t — o0, ¢o(x, t) ~ const. x x!/6¢~G/¥),

() P(u(t) = max, <<, u(s)) is approximately 0.372 when a = b = 0.

(1.1) Py 4(t, edt, h, e dh) =

2. Basics. We let P,, be the probability measure of the process (u, v) where
(0), v(0)) = (a, b) and g, ,(t, x, y)dxdy = P, (maxo<,<, u(s) = u(t) € dx,
v(t) € dy). As in [2] the transition density for P, ,(u(t) € dx, v(t) € dy),

2 6
p(t, a, b, x, y) = 3*nt* exp [—7 (y=b)*+3(y—b)(x—a—bi)
6 2
-3 (x—a—bt)* |
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It is well known that forz = O0and ¢ > 0
(2.1) Py 4(u(?t) € dx, v(t) e dy, maxg <,<,4(s) < z)
= p(t’ O’ b’ X, Y)dXdy—j:) ds 580 ﬁgo,b(t_s’ Z, 6)1’(5, z, 6, X, Y)dé dxdy'

Ifx=2=0,b<0,y <0, (2.1) is equivalent to (3.1) of [2]. If y > 0, we may
take the limit z — x* and obtain

(2.2) goult, x,¥) = p(1, 0, b, x, y) =[5 ds [§ Ego(t—s, x, E)p(s, x, &, x, y)dE.
If (2.1) is integrated on x and y we obtain

(2.3) Pop(maxg g <ti(s) £ z) = 1—[b ds [§ Ego p(t—s, z, E)dE.

Ifz >0, 7> 0, pis a genuine density so P, ,(u(t) = z) = 0 and

2.4 P(maxg<,<ti(s) £ 2) = P(r, >t) =1-P(1, £ t).

When —y < 0, (2.2) can be interpreted as

2.5) 0= —p(t,0,b,x, —y)+ o ds [& Egou(t—s, X, O)p(s, x, &, x, —y)de.

Following [1] we let p*(t, a, b, x,¥) = p(t, a, b, x, y)—p(t, a, b, x, —y) and
k*(t’ Y, 6) = P(ta X, é’ X, _y) _P(t’ X, é’ X, y) = (3é/ﬂt2)[exp (_z(yZ _yé'l'éz)/t)_
exp (—=2(* +y¢+EHD)] = p*(1, 0, =&, 0, ).

Upon adding (2.2) and (2.5) for —y < 0 we obtain

(2.6)  gou(t, x, y) = p*(t,0, b, x, y)+ o ds [ £gou(t—s, x, k*(s, y, §)dE.
Since k*(t, y, €) = 0 for positive #, y, and &, we have by iteration
2.7 goult,x, y) Z p*(t,0, b, x, y)+[o dr [ Ep*(t—r,0, b, x, OkX(r, y, £)d¢
+o ds [67°dr [ d& [ Enp*(t—s—1,0, b, x, Ok*(r, 1, &)
k*(s, m, y)dn+ -

For b < 0 and each x = 0 the expression on the right-hand side of (2.7), when
muliplied by y and integrated on y and ¢ from 0 to oo, can be seen to be unity.
From (2.3) {§ ds [ ygo4(s, X, y)dy cannot exceed unity. Therefore equality must
hold in (2.7) almost everywhere (y, ). We do not carry out the above calculation.

Let y(t, x, &) = 530.1’1’*(& 0, —¢, x, y)dy. Since k*(t, y, &) = p*(1,0, —¢, 0, y) so
¥(t, 0, &) = [§yk*(t, y, £)dy. Therefore, (2.7) with the aforementioned equality
a.e. implies

(28) 3 ygou(t, x, y)dy = Y(t, x, —b)+[ dr |3 Ep*(t—r, 0, b, x, E)(r, 0, £)d¢
+Jods [o7° dr |3 d& [§ Enp*(t—s—r,0, b, x, Ok*(r, 1, &)
“Y(s, 0, mdn+ -



2152 MALCOLM GOLDMAN

and
(2.9 8 ¥904(1, 0, y)dy = Y(1,0, —b)+ g dr [¢° &p*(t—r,0, b, 0,¢)
“W(r, 0, &)dE+ o ds [o~° dr (& dE [ Enp*(t—s—r,0,b,0,8)
kX, m, OY(s, 0,m)dn + -
In view of (2.9), (2.8) can be identified as

(2.10)  [& ygost, x, y)dy
= lp(t’ X, _b)+ji) dS ISO (580 ng,—g(s’ Oa Y)d)’)P*(t—S, 0, b’ X, é)dé

in view of the associativity of convolution on the time-like variables. If b < 0, it
is clear that equations (2.3) and (2.4) apply to z = 0 providing , is interpreted as
t, of Section 1 and [2]. Therefore [§ygo 4(1, 0, y)dydt = Py 4(t, € dt). By means
of the scaling e — ce(t/c?)

4ght o= 30/2

3h
- — 2 2 -
Py (t; €dt, h; € dh) i exp (—2(*—Eh+h*)[D) L (0)F do dtdh.

Furthermore, evaluation of Y(¢, x, —b) is routine. Therefore, we have

PROPOSITION 1. Ifb < 0 and x > 0

d
Q@11 dy(x, 1) = 7, P(t. £ 1) = [ yg0,(t; X, y)dy
= Y(t, x, =b)+[§ d& [ [& EPo«(t; € ds, hy € dh)

-[p(t—s, 0, b, x, &)= p(t—s, 0, b, x, —&)]
where Y(t, x, —b) = (3/8nt)}(3xt ~1 —b) exp (—3(x—bt)*/21%),
4¢hls 3h 2 36
Poftyeds, h;edh) = L 220 %P l:— " (E*—=Eh+hY)— —Z-]d() dsdh,
and

3¢ 2,6 6 ,
p(r, 0, b, x, §) =Gr—z)eXp[—;(é‘—b) +3 (E=b)x—b)—1 (x—b1)" |

3. Asymptotic behavior of the first passage density. Since the integral in (2.11) is
quite complicated we describe its asymptotic behavior as ¢ —co in the case x > 0,
b = 0. We have

t 0 0 '4h&/s 3h€ 2 ) ) —30
3.1 Iodsjo d.fL th‘o nmexp —-s(é —Eh+h?) >

- p*(t—s,0,0, x, £)do



FIRST PASSAGE OF THE INTEGRATED WIENER PROCESS 2153

where p*(r, 0, 0, x, &) = 2(3)*/(nr?) exp (—2&%/r—6x%[r®) sinh (6¢x/r?) by the pre-
vious definitions. By means of the successive substitutions h — s*h, & — s%¢,
t—s=wt hohE E—o (@wr—h+h?)"¥, h—>t*h, 0>t %, and h—> wh
expression (3.1) can be seen to be

39 3(6)* 9 dw ood oodh a(w,&,h,t) h€3
G2 =pm - W o ¢ 0 o (1—w= 3t *h+h?)*(nb)*

26— 6wt =22 sinn (sewt [ —= 1 \ao
exp | —2&°—6wx —57 ) sin xEw TS hi i

where a(w, & h,t) = 4hE2w (1 —w ¥ th4h?)~1 If w2 t73, wi i1
so l—w it thth? = (1+h)/2. Also, 1—t 'w ¥ < 1—w™d th+h? If I, is
the indicator function of the region where w > t~3, the integrand in (3.2) is
bounded by

(3.3)  wlR3(1+h?) 7207 exp (— 282 —6wx?) sinh (6xEw)4I(w, &, h, 0).

The limit as ¢ — oo of the integrand in (3.2) is a constant multiple of (3.3) so an
integration of that limit shows the integrability of (3.3) and shows that limit as
t — oo and integration operations may be interchanged. The result of this is

0 0 o 4hE2w = 3(1 +h2)~ 1 h€3
J dw L d¢ L dh L FYORCOE exp (—2£2 —6wx?)

0
o 6xEw? 0
sinh | 31 ) 40

The series for sinh and integration on @ give

0 0 0 4h-i- 2n+5,n+5/12—-1 6 2n+1
J dw J de J Sw OO exp (=262 —6wx?)dh.
0

0 0 nZ'o m*(1+h?)"32n+1)!

The ¢ and w integrations result in (k) for various k; [§2h%/(1+h2)"**dh =
B(n+1, $); the first term in (2.11) tends to zero more rapidly than £ =%, We there-
fore have

PropoSITION 2. Ifx > 0,as t = o©

2\1/12 9(6) = ['(5/4)'(7/4)I'(5/12
Dolx, D) ~ 171 <%> in)z = )1“((3//2)) B G

4. The probability that  is at its maximum. From the definition of g, ;

4.1) P, (u(t) = max, ¢ <u(s)) = 1818 gap(x, y, 1) dxdy.

If = b = 0 this probability is independent of # and is the limit as ¢ — oo of (4.1)
n other cases.
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We integrate the first two terms on the right-hand side of (2.7)

j J p¥(t, 0,0, x, y)dxdy =
(V] (V]

3t [ [ 6x? 6xy 2y 6x2 6xy 2y vd
B exp| -~z +p - )"\~ y.
The substitutions x — 3~ ¥z%x, y — 3t?y yield

1/27 & & [exp (—3(x* +(y—3*x))) —exp (= 3(x* +(y +3%x)"))] dxdy.

A difference of two integrals may be formed, changed to polar coordinates and
evaluated to give

@]»—-

[&§& p*(t,0,0,x, y) dxdy = 15— 13 =
The integral of the second term on the right-hand side of (2.7) is

3 2 © © t © . ., 2 2 s 6x2 35_2
= dx L dy L dsJ‘O EsT2(t—ys) exp[—-'y —;5 a5} i=s
'[2 sinh G’:—é)] [2 sinh <(T6_-—xf)2>] dé.

With the substitutions y — isty, &— (t—s)¢, x - ((t—s)/12)*x, s — ts, and
(1—s)/s = w, this is just

y2 x2 .
“4.2) _J dxj dYJ dw _I_lexp( '2——3—2(w+1)~f>

- [2 sinh (y¢w®)][2 sinh (3% x¢)] d¢.

If ¢ > 0, [P e */?sinh czdz = /2 [Ge ~2%2 4z so0 (4.2) is

% + éw% 3
call f Eexp[— (3W+1)€2/2]U e 72y f
0

2 |y wHl

1
e_"z/zdx] déE.

We may integrate by parts so that & exp [—(3w+1)&2/2] is integrated and the
product of integrals is differentiated. This gives
3* wiwidw
(w+1)(3w+1)

3t wi3tdw w ot 2 12
+ L_—-(w+1)(3w+l) L d¢ L exp [—1(3w+4)&* —3y*] dy.

3t
d€ J exp [ —3(dw+1)E% —3x*] dx

By means of the usual change to polar coordinates this is

3}_‘5' wtan™![3/(4w+1)]* 3 J’ wt tan~[w/Gw+4)]*
(

ST DOw L D@+ DT o DOw+ DGw 4 "
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The rationalizing substitutions 6> = 3/(4w+1) and 6% = w/(3w+4) give
2 (¥3-6%tan"'0 24 (13 g2tan~1g 0
2|, Gxe+o) |, s+

After integration by parts we have, finally,

3) g:::fﬂ()(tan‘:f)l)l d6+%[—1— <E>2_J”3*20(tan‘:02)2 d()].
nt Jo (940% n? [ 12\6 o (1496%)
The summands in (4.3) are approximately 0.021 and 0.018, respectively. Since (4.1)
is less than
P(u(t) > 0,v(t) > 0) = [& [& p(t, 0,0, x, y) dxdy = 5.
and 0.333+0.021+0.018 = 0.372, we see that )
P(u(t) = maxog <, u(s) | u(t) > 0, v(t) > 0)

is quite close to unity.
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