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MOVING AVERAGES OF HOMOGENEOUS RANDOM FIELDS!

By L. A. BRUCKNER
College of Santa Fe

Let X(g) be a homogeneous random field on a discrete locally compact
Abelian group G. Let H(X) be the linear completion of {X(g): g € G}in L,
space. The following result is obtained: there exists a fundamental random
field Y(g) on G with values in H(X)such that X(g) is obtained as a moving
average of Y(g) if, and only if, X(g) has a spectral density which is positive
almost everywhere with respect to the Haar measure on the dual group of G.

0. Introduction and summary. The conditions under which a stationary stochastic
process can be represented as a moving average have been investigated by
Kolmogorov [2] and Rozanov [4]. In this paper moving averages are studied in the
more general setting of homogeneous random fields on discrete locally compact
Abelian (LCA) groups. It is shown that a necessary and sufficient condition for a
homogeneous random field to have a representation as a moving average of a
fundamental field is that it have a spectral density which is positive almost every-
where with respect to the Haar measure on the character group. This is a generaliza-
tion of Kolmogorov’s representation theorem [2].

1. Background. Let G be a LCA group and G* its dual group. Then G* is also a
LCA group ([3], [5]). Let #, #* be the Borel fields of G, G* respectively. Let
(2, Z, P) be a probability space. For all ge G, let X(g) € L,(Q, Z, P). We will
assume that the first moment vanishes for all g. L,(Q) is a Hilbert space when the
inner product is defined by

(f1,./2) = Efifs J1:f2s € Ly,
where E is the mathematical expectation. Let H(X) be the linear completion of
{X(g):g € G} in L,(Q). If the correlation function

B(g,9') = (X(9), X(¢9") = B(g—9")
depends only on g—g’, X(g) is a homogeneous random field (HRF) on G. The
spectral representations of X(g) and B(g) are
X(9) = [o+(9, X)Z(dx)
and
B(g) = [s+(g, X)F(dx)
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where Z is an orthogonal measure on %* such that (Z(E), Z(£')) = F(E n E’) for
all Borel sets E, E’ of G*.

The notation used here is that of [1] with one exception. Instead of saying that
Y(g) is obtained from X(g) by a linear transformation, the more convenient
terminology of Kolmogorov [2] will be used— ¥(g) will be said to be subordinate
to X(g).-

2. Moving averages. An HRF X(g) on G is said to be obtained from an HRF
Y(g) by a moving average if, for all g € G, there exist complex-valued coefficients
a(g’), independent of g, such that

X(9) = Ygec a(9) Y(9—9").

An uncorrelated random field Y(g) such that (Y(g), Y(g)) = 1 is called a
fundamental field.

The following theorem gives a necessary and sufficient condition for representing
X(g) as a moving average in terms of a fundamental field.

THEOREM. Let X(g) be a homogeneous random field on a discrete LCA group G.
Then there exists a fundamental random field Y(g) on G, with values in H(X), such
that X(g) is obtained as a moving average of Y(g) if, and only if, X(g) has a spectral
density which is positive almost everywhere with respect to the Haar measure on G*.

PRrROOF. Assume that the spectral density f(x) is positive almost everywhere.
Then, since G* is compact, the random field

Y(9) = [o+(g, X)r(x)Z(dx)

where r(x) = 1/(f(x))?, is a fundamental random field with values in H(X). Let
a(g) = (Y(g), X(0)) = [¢e(g, x)(f(x))¥dx. Then by Plancherel’s Theorem for
Abelian groups ([5], page 26),

(1) (f(x))% = Zg €eG a(g)(_g’ X).
Write
X(9) = Jox(g, )r(x) (f(x))*Z(dx)

and using (1) replace (f(x))%. Since (f(x))* € L,(G*) and {(g, x):g € G} forms a
complete orthonormal system in L,(G*), the interchange of the summation and
integration procedures is valid. Hence

X(9) = Yyec a(9) Y(9—9).
To prove the converse note that if Y(g) is fundamental then
Byy(g) = 0 g#0
=1 g=
= Joo(g, x)dx
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so that for all E € #*
@) Fyy(E) = x(E)

where x is the Haar measure on G*.

By assumption Y(g)e H(X) for all g. Hence H(Y) < H(X). Since X(g) is
obtained from ¥(g) by a moving average X(g) and Y(g) are mutually homo-
geneously correlated. By Theorems 2.2 and 2.1 ([1]) there exists a function
p(x) € L,(F) such that for all E e #*.

Fyy(E) = _[E |p(x)|2F (dx).
By (2) this becomes

X(E) = [g|p(x)|*F(dx)

and the Haar measure is seen to be absolutely continuous with respect to F. Hence,
by the Radon-Nikodym Theorem, the derivative dx/F(dx) = 1]f(x) exists and is
finite a.e. [F], and hence a.e. [x]. Thus the spectral density is positive a.e. [x].
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