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A “FATOU EQUATION” FOR RANDOMLY STOPPED VARIABLES!

By WiLLIAM D. SUDDERTH
University of Minnesota

Let X, be a sequence of random variables adapted to an increasing
sequence of o-fields. In this note, convergence properties of EX, are studied
as t —» oo through the directed set of stopping variables. The analogue of
the inequality in Fatou’s Lemma turns out to be an equation, which
strengthens Fatou’s Lemma.

These problems arise naturally in the theory of gambling.

Let (Q, F, P) be a probability space, {F,},>; an increasing sequence of o-fields
contained in F, and {X,},>, a sequence of random variables such that X, is F,-
measurable for every n. A random variable ¢ is a stopping variable (sv) if its range is
contained 'in {1,2, -:-, + 00}, P[t < + 0] = 1, and, for every positive integer
n, [t < n] € F,. If ¢t and s are stopping variables, write ¢ < s if t(w) < s(w) for all
o € Q. With this natural partial ordering, the stopping variables form a directed
set. Some of the convergence properties of the net EX, are considered below. In
particular, Theorem 2 is an analogue of Fatou’s Lemma in which an equation
replaces the usual inequality.

In what follows, the letters “s*” and “#”’ always denote stopping variables and the
letters “k” and ‘‘n” positive integers.

THEOREM 1. The following inequalities hold whenever all the expectations occurring
in them are well-defined:

) E(lim sup, ., , X,) < lim sup,_ ., EX,
1" E(lim inf, . X,) = liminf,_, , EX,.

Proor. It is enough to prove (1). For convenience, let X* = lim sup,_, o, X,
Equation (1) is obvious if EX* = —oo. Let us assume now that X* is integrable
and return later to the case when EX* = + co.

Let ¢ > 0 and let s be a sv. Define

Hw) =inf{n:n = s(w) and EX*|X,, -, X)) < X, (0)+¢}.

By Lévy’s martingale convergence theorem (29.4, [2]), E(X* | X, X)) o X*
almost surely as » — oo and, hence, P[t < +o0] = 1. Thus ¢tis a sv, t = s, and

EX ; Z;:o=1 ,‘[t=n] E(X* | Xla RS X,,)dP—S
= EX*—¢, which proves (1).
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Finally, suppose EX* = +o00. Let ¢ be a real number and apply the case just
considered to the random variables min (X, ¢). Then

lim sup,_, , EX, = lim sup, ., ,, E(min (X, ¢))
= E(min (X*, ¢)) > EX*

as ¢ —> +00. []

Certain results of Siegmund in [3] are closely related to the ideas of this note. In
particular, the previous theorem seems to follow from his Theorem 3(a) in the
special case that EX,” < + oo for all n.

THEOREM 2. Suppose Z and W are integrable random variables. If X, < Z for all
n, then

2 E(lim sup,_, ., X,) = lim sup,_, EX "
If X, = W for all n, then
2) E(lim inf,_, , X,) = lim inf,, , EX,.

Proor. The proof is a simple modification of the proof of Fatou’s Lemma
(I2], p- 125). Let W, = sup;s, X;. Then

W, | X* = lim sup,_,, X,asn — co. Also, X, < W, fort = n. Hence
lim sup, ., , EX, < lim, , , {sup,5, EX,} < lim,_ ., EW, = EX*.

The opposite inequality is true by Theorem 1. []

When the X, are dominated above, it is easy to see that lim sup,., EX, =
lim sup, . EX,. Thus, Theorem 2 implies the usual Fatou Lemma.

For uniformly bounded X,, a version of Theorem 2 has been proved in which
sv’s are not assumed to be measurable. This result has an interpretation for the
Dubins and Savage utility of a measurable strategy and together with a gambling
theorem (3.9.5, [1]) has been used to establish an optimal stopping result (Theorem
5, [5]) parallel to Siegmund’s Theorem 4 in [3]. Further applications to gambling
theory are in [6].

The next result is immediate from Theorem 2 and is also easy to prove directly.

COROLLARY. Suppose X, = X a.s. and there is an integrable random variable Z
such that | X,| < Z for all n. Then X is integrable and lim,.,, EX, = EX.

Recall that if X, - X a.s. and the family {X,},», is uniformly integrable, then
X is integrable and EX, — EX. The following example shows that, under the same
hypotheses, it is not necessarily true that EX, — EX. It also provides a non-trivial
example (though not the simplest) in which (2) fails to hold.

ExampLE. The X, constructed here will be nonnegative, uniformly integrable,
convergent to zero a.s., and such that

©) lim sup,_, EX, = 1.
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Let (2, F, P) be the unit interval with its Borel sets and Lebesgue measure. Let
{Z,},>1 be independent rv’s and assume Z, is uniformly distributed on [0, 1] for
all n. Now define random variables Y;" forn = 1,2, ---andi = 1, ---, n by

Yi" =n if (l‘—l)/nz é Zn < i/nz’
=0 if not.

Notice that the random vectors (Y;", -+, ¥,"), n = 1, 2, --- are independent.
Choose a sequence of positive integers n; < n, < --- such that

1
H(l—n—>—>1 as k — oo.
Jjzk J

Let X, X,, --- be the sequence Y™, Y,™, ---, Y !, Y™, Y,", ..., Y;2, .. and let
F, be the o-field generated by X, -, X, for all n.
The X, are uniformly integrable since

1

sup,,f |X,|dP == >0 as k - oo.
[1Xnl Zmd Mk

Also, if ¢ > 0 and X; = Y,", then

P[|X,| e forall n2j]=[lxP[|Y,"| Se -, V5| <]

1
gﬂ(l—;)—»l ask - 0.

Hence, X, — 0 a.s.

Let s be any sv. To prove (3), it suffices to exhibit a sv ¢ such that ¢t > s and
EX, = 1.

Let w € Q and suppose s(w) = n. Let j, be the first jsuch thatj > nand X; = Y,"
for some m. Define

t(a)) =jn+i if Ylm = o = Yim = 0, Y;"+1 =m,
—jAm—1  if Y= =¥, =0

Thus X,(w) = max (Y,"(w), -+, ¥,,"(w)) if s(w) = n. Also, (Y,", -, ¥,,)°) is
independent of [s = n]. Therefore, if s(w) = n,

E(X, |s = n)(w) = E(max (Y,", -, Y,,"))
= 1.
Hence, EX, = 1.
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